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ON VARIANCE OF THE TWO-STAGE ESTIMATOR
IN VARIANCE-COVARIANCE COMPONENTS MODEL
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Summary. The paper deals with a linear model with linear variance-covariance structure,
where the linear function of the parameter of expectation is to be estimated. The two-
stage estimator is based on the observation of the vector Y and on the invariant quadratic
estimator of the variance-covariance components. Under the assumption of symmetry of
the distribution and existence of finite moments up to the tenth order one approach to
determining the upper bound for the difference in variances of the estimators is proposed,
which uses the estimated covariance matrix instead of the real one.
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l. INTRODUCTION

In most situations when treating the linear model the main objective in analyzing
the data is to make inference about linear combinations of the unknown fixed pa-
rameters of mean. If the variance-covariance matrix of the vector of observations is
known the problem has been discussed by many authors (see e.g. C.R. Rao (1973)).

If the variance-covariance components that are connected with the variance matrix
are unknown, then the traditional procedure in estimating the linear combinations
(functions) of the unknown mean parameter is first to estimate the variance com-
ponents and then to consider these estimators as if they were the true values. In
general, the statistical properties of such two-stage estimators are not specified. Sev-
eral authors studied unbiasedness of such estimators, e.g. Kackar and Harville (1981)

showed that the procedure gives unbiased estimators provided the distribution of the



data vector is symmetric about its expected value and provided the variance compo-
nent estimators are translation invariant and are even functions of the data vector.
Such kind of symmetry arguments were used by Kakwani (1967) and later e.g. by
Don and Magnus (1980), Seely and Hogg (1982), and Khatri and Shah (1981) who
investigated the estimation of fixed effects in a mixed model for growth curves, and
except unbiasedness they derived an expression for the increase in variance due to
substitution of the variances by their estimates.

Here, we attempt to give an expression for the approximation of the variance
of the two-stage estimator of the linear function of mean-parameter, provided the
distribution of the observation vector is symmetric about its expectation and the
variance component estimators are quadratic translation-invariant functions of data
vectors. Further we assume that there exist finite moments up to the tenth order.

2. ESTIMATION OF LINEAR FUNCTIONS OF MEAN PARAMETER’

Most of the linear statistical models can be viewed as a special case of a model
given as follows:
Y =X3 +e¢,

where Y is an n x 1 observable random vector; X is an n x k matrix of known
elements, B is a k x 1 fixed vector of unknown and unobservable parameters; € is an
n X 1 random error vector.

It is assumed that € is symmetrically distributed around zero and that the variance-

P
covariance matrix of € is of the form ) 9;V; with ¥ = (¥4,...,9,) a p x 1 vector
i=1

e

of unknown parameters, 9 € © C RP, provided V(9) =

for all 9 € O.
Taking F to be the expectation operator the following is assumed:

9;V; is positive definite

i=1

1

E()=0; E()=V@®)= iv,-v,-.

i=1

From the symmetry of the distribution all matrices of higher odd moments are iden-
tically zero matrices, e.g. the matrix of the third moments is E(e ® e€’) = 0, etc.
Analogously to the variance matrix we can denote the matrices of higher even orders
as

E(ee"®) = ¢;  E(e€®) = ¢;

E(ee'"®)=x; and E(e€®) = w.



Here A® B stands for the Kronecker product of A and B defined as A® B = (a;; B)
if A = (ai;). The matrices ¥, €, v and w in general depend on the second order
moments of the vector € which in particular means that they are dependent on the
vector parameter .

The following notation partly due to Kleffe (1978) and Volaufova, Witkovsky and
Bognarova (1988), is used.

Let A be an n x n matrix and B an n? x n? matrix decomposed into n? n x n
matrices (Bj;). Then the operation AL, B denotes the n x n matrix with 4, j-th
element tr AB;j, where “tr” stands for the trace of a matrix.

This matrix operation can be expressed in terms of the Hadamard product of
matrices defined as A x B = (Ai; ® Bjj), with partitioned matrices A and B. Let 1
denote the vector of n units 1 = (1,...,1)". Let the matrix B be defined as above.
Then the matrix tr, B is defined as the matrix with 7, j-th element

(tr, B),'j = (tr B,‘j).

Now we can write

ALB = trp[(11' ®A) * B].

Let f(8) = p'B be a linear function of 3, p € R¥ a known vector. f(B) is to
be estimated. It is well known that if ¥ is a known vector parameter, then f(3) is
estimated by a linear function of Y. f(f) is said to be linearly estimable if there
exists a linear unbiased estimate for f(8) and this occurs if and only if p € R(X'),
i.e. p is a linear combination of the rows of the matrix X. Then

PR =(X'V@)TIX)TIX V()Y

is the best linear unbiased estimator (BLUE) of p'# (see C.R. Rao (1973)).

Let the variance components U; be estimated by the quadratic invariant unbiased
estimators, say 15j =Y'A;Y, where A;X =0, A; are symmetric n X n matrices, and
trA;Vi = 6;;, where 6;; means the Kronecker 6. Then for p € R(X') the following is
valid:

PB=p(X'VE) T X)X V(@)Y
is the two-stage estimator of the linear function f(3) = p’B. It is known (e.g. Seely
and Hogg (1982)) that p'B is an unbiased estimator of p'p.

We shall further assume that the rank of the matrix X is full, i.e. »(X) = k, which

implies that for all p € R¥, p’B is an unbiasedly estimable function.

Proposition 1. Under the given assumptions we have for all L € R"

cov(L'Y,Y'AY) =0, whenever AX =0.



Proof. For the proof it is enough to consider the relation
cov(L'Y,Y'AY) = 2L'V(9)AXB.

a

The main jdea of the applo(uh used in this paper to give the upper bound of the
variance of 1//3 1s to express p’ﬁ — p'p according to Taylor’s expression. Obviously

the following holds:

PB—pB=p (XN VE)TN)TIX V@)Y - XB)
= (X'V@)' )TNV e = Ule, ).

We express Taylor’s expression at the point (e,9¢), where g is the actual value

of the parameter 9. Then we can write

o U (e, ) 92U (¢,) S e
(1) U(e, ) = U(e,do) + [T]w (7— o) + = 5 [W (ﬂ(ﬂ Jo)™?,

where 7 is defined from Taylor’s theorem as T = g+ (1 — 6)J,0 < 0 < 1.
Obviously

E(U(e,00)) =0, vary,(U(e,90)) = p'(X'V(09)"' X)!

In our following considerations we shall use the notation

o (e, )

@ Ao = D) i)‘-’U(e,ﬂ)] ,

. 1
Ble) =3 {W@T

2
and analogously when dealing with the derivative at a given point we shall use

C[oue,0)] s(re) = L [ZUED)
W aoeo= [R50 rea =3 %5

Consequently, (1) can be presented as
U(e,d) = Ule, o) + AV, €)(V — Do) + B(r,)(d — 9g)*®
For the next proposition see also Volaufovd, Witkovsky and Bognarova (1988).

Proposition 2. For the derivatives A(Y,¢) and B(9,¢€) the following statements
are valid: ' ,

4



(a)
AW, e) = P (X'V@)T' )TN V)T [-Vi(MV@)M)Fe, o =V (MV(9)M)Te]
where (MV(0)M)* = V(0)™ "My y). and
Myyy=1-XWN'V)T'X)T'XN'V@) ™ =1 = Py,
(b)
B(0,e) = p/(X'V@) ') X V@) T [Vi(MV@)M)YTZ, V(MY (0)M)Z)

where Z = [Vi(MV(@Q)M)*e, ..., V,(MV(Q)M)Fe].
Proof. The proof is obvious but needs tedious calculations. O

For the variance of the statistics U (e, 7)) the following relation is valid:

varg, (U(g,0)) = vary, (U (e, 0g)) + vary, (A(ﬂg,e)(i'} —p))
+ varg, (B(r,€)(0 — 100)*?) + 2 covy, (U(e, Vo), AP0, €)(V — )
+ 2 covy, (U(e, Vo), U(‘r,c’)(ﬁ - 170)'“'®)
+ 2 covy, (A(Do,€)(9 = Vo), B(r, ) (0 — 10,)*9).

Using Schwarz’ inequality we get

(1) |varg, (U(e,9)) = varg, (U (g, 90))| < varg, (A(Do, €)(d = o)) \
+ varg, (B(r,e)(0 — U6)*") + 2| covy, (U(e,¥0), A(Do,€)(d — o)) ]
+2[vary, (AW, €)(D = V) varg, (B(r,e)(d — 14)2®)]"*

+ 2 varg, (U (e, 00)) varg, (B(r,£)(0 — 06)2)] '/,

The last inequality offers irmmnediately an upper bound of the error in variance caused
by the use of the estimated covariance matrix in the form V() instead of the actual
one V(vy) which will be denoted as V4. -

However, the choice of the vector 7 needs some discussion. It is clear that the
vector 7 = 0+ (1 — 0)1) is a random vector. For a very rough approximation in the
expressions for variances and covariances we shall fix the vector 7g. It is the subject
of further investigation to study the behaviour of the upper bound which regard to
the change of the vector 9.

Utilizing some technical approach the following theorems give the exact forms

of the terins appearing in the expression for the upper bound of the difference of
variances.



We recall that the invariant and unbiased estimators of the elements of the vector J
are given by U, =Y'A;iY fori=1,2, ..., p. The matrices A; satisfy the assumptions
A;X = 0 and tr A;V; = 6;;, which ensures the invariance and the unbiasedness of
the estimators.

Theorem 1. The variance of the variable A(9g,€)(9 — 9o) at Ug is given by
varg, (A(90,€)(d — )

(5) =p(X'Va' X)XV ) S Vi(MVeM) T T (MVeM )V Vg X (XY X) T p,
ij

where the matrices J;j are given by
Jij = Ai ® A 'Lf(ﬂo) — Uo; Aj T——ﬂ/)(l?o) - 170inT—ﬂ/)(190) +Joido;Vo 4,5=1,...,p.

Proof. The variance varg, (A(Yo, E)(l? —¥g)) from the definition is expressed
as

(6)  Eoy(AWo, )0 = 90)(I = o) A(Po,€)') = [Eay (AP, €)(I — 00))]”.
First we investigate the second term. According to Proposition 1 (a)

Ey, (A(¥0,€)(9 = o))
= Ego (= P/ (X'V5 ' X)XV Vi(M VM) Fe, ., Vo (MVo M) e] (9 — W)
P
= —p/(X'Vy X)XV Y D Vi(M VoM ) [Eg (e Aie) — D0i Eog(€)] = 0.
i=1
The first term in (6) can be expressed with regard to Proposition 1 (a) as
Eyy(A(o,€)(9 — o) (9 — o)’ A(Vo, €)')
= (X'VyI X)Xy
X > Vi(MVoM)*t Eg, [(0; — 00:) (D — Vo5)ee’ | (MVoM)*V;
i,J
x Vo ' X(X'Vy T X) ™.
The expectation in the middle of the last term is evaluated as follows:
Eg, [(9i = 90i)(9j — do;)ee’]
= Ey, (0;0ee’ — Doidjec’ — Voj0iee’ + Voidojee’)
= antlailﬁjsél) - 190;‘1‘;0“(19]'661) - 190,-E.90(19,-es’) + 170,‘190]‘ E@D(a{l)
= By, [(tr(Ai ® Aj)(ee’ @ ee’))ee’| — Voi Eg, [(Lr Ajee’)ee’]
— 170]' Ey, [(t;l‘ AiEel)EEI] + 170,'190]' Vo
= A; @ A; LEWo) — Y0id; Lip(do) — Uo}AiLﬂﬁ(ﬂo) + Joido; Vo = Jij,



which, after substitution, implies the statement of the theorem. a
Theorem 2. The variance of the variable B(ro,€)(9 — 99)2® at 9 is given by

(7) varyg, (B(To,e)(l? - 170)2®)
=p(X'VIX)T X'V
X Y V(M Ve MYV (M Vey M) K ijaa(M Vg MY Vi (M Ve M)*V
ikl
x VIIX(X'VZIX)™p,
where K;j1 is given as a sum of products of the type “L.” involving all matrices of
even moments up to the tenth order, and the explicit formula is

Kijri = Ai ® A; @ Ax @ AiLw(d0)
-0 A; ® A ® A{LLx(9o) — Doj A; @ Ar ® A Lx(90)
—Jord; @ A; ® AL (Vo) — dorAj @ Ar ® A; Lx(9o)
+ Doivo; Ax @ A LLE(D0) + Y0idor A @ AiLLE(Wo) + DoidmA; @ ArLLE(Wo)
+ 090k Ai ® AiLLE(Vo) + Yoj V0 Ar ® Ai LLE(Y0) + Yordardi @ A; LLE(Yo)
— PoiV0;90k A L (Vo) — DoidojorAr Lup(¥o) — DoidordorA; Lsp(9o)
— Poj 9oV Ai Ly (Vo) + D0idojdordorVo.

Proof. The proof gaes along the same lines as the previous one:
(8) vary, (B(To, E)(’9 - 00)2®)
= Eg, [B(70,€)(d — 96)*®]% = [Eg, (B(0,6)( — 90)*®)]°.

As before, it can be shown that the second term in (8) vanishes. For the first term
we have

Eqg, [B(r0,€)(d — 00)2?]

:p'(,\"v,;’x)-‘,\"v,;l{ Z Vi(MVy M)tV (M Vg M)

ij.k,1
X E,yu ((19, - 190,‘)(19]' - '!90]')(‘[9;; — l?(]k)(é[ - 1901)65’)
X (M Ve MY V(M VTOM)+V,}v,;‘,\'(x'v,;l,\’)-‘p.
The expression with the expectation can be denoted as the matrix Kijr from the

statement of the theorem if we use the symbol “L,” and the matrices up to the 10th
order moments of the vector €. a

7



Theorem 3. The covariance of the variables U(e, Vo) and A(Ug,€)(9 — vg) at g
is given by

covg, (U(e,90), A(Wo, £)(9 — V)
=P (NVy TNy (Z Vi(MVoM)* A; Ly»wo)) VoI (XY X T .

T

Proof. For the proof it is enough to express Ey, (0;ee’ — 0g;ec’), which leads

to Ai L_,I/)(l?o)A O

Summarizing tlie previous considerations we get the following theorem.

Theorem 4. Under the conditions given above the upper bound for the increase
of the variance of the unbiased estimator of p' 3 using the estimated value of ¥ instead
of the actual value Vg is given by (4).

In that case vary, (A(Vo,e)(9 — ¥o)) is given by (5), varg, (B(r, )V — 00)?) is
given by (7), and covy, (U(e, Do), A(Vg, €)(J — Vo)) is given by (9).

Note. The crucial point is to express the matrices of even higher order. A very
frequent situation is that the vector € is normally distributed. Then the elements
{w(D0)}ij,kt,mn,op,rs Of the matrix w(o) can be derived using the characteristic func-

tion of the vector € in the form

0'%(t)
0L DL 0L Dl 0Ly, DL, O, 0L 0L,

)
t=0

. . 1
where the characteristic function ¢(t) = exp (—Et’Vot), te R".

For example, the matrix (o) = Iy (e’ @ e€’), ir = Ly (cieree’), iju =
Iy, (eierejer) is given by its entries as

Yij et = ViUt + vipvj +vgvgg, LG k=100,

where v;;, i,j = 1, ..., n are the elements of the matrix V4. For more details sece

Kubacek (1988).



(1]

References

F.J.H. Don and J.R. Magnus: On the unbiasedness of iterated GLS estimators, Com-
mun. Statist.-Theory Meth. A9(5) (1980}, 519-527.

R.N. Kackar and D.A. Harville: Unbiasedness of two-stage estimation and prediction
procedures for mixed linear models, Commun. Statist.-Theory Meth. A10(3) (1981),
1249-1261.

N.C. Kakwani: The unbiasedness of Zellner’s seemingly unrelated regression equations
estimators, Journal of the American Statistical Association 67 (1967), 141-142.

C.G. Khatri and K.R. Shah: On the unbiased estimation of fixed effects in a mixed
model for growth curves, Commun. Statist.-Theory Meth. A10(4) (1980), 401-406.

J. Kleffe: Simultaneous estimation of expectation and covariance matrix in linear mod-
els, Math. Operationsforsch. Statist., Series Statistics 9(3) (1978), 443-478.

L. Kubdéek: Foundations of Estimation Theory, Volume 9 of Fundamental Studies in
Engineering, first edition, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1988.
C.R. Rao: Linear Statistical Inference and Its Applications, John Wiley, New York, first
edition, 1973.

C.R. Rao and S.K. Mitra: Generalized Inverse of Matrices and Its Applications, first
edition, John Wiley & Sons, New York, London, Sidney, Toronto, 1971.

J. Seely and R.V. Hogg: Symmetrically distributed and unbiased estimators in linear
models, Commun. Statist.-Theory Meth. A11(7) (1982), 721-729.

J. Volaufovd, V. Witkovsky, and M. Bogndrovd: On the confidence region of parameter
of mean in mixed linear models, Poster at European meeting of Statisticians, Berlin,
August 1988.

Sdhrn

DISPERZIA DVOJETAPOVEHO ODHADU V MODELI
S VARIANCNO-KOVARIANCNYMI KOMPONENTAMI

JULIA VOLAUFOVA

V préci je odvodend horna hranica pre odhad chyby, ktorej sa dopiigfame, ked namiesto

skutocnej kovarian¢nej matice v linedrnom modeli s varian¢no-kovarian¢nymi komponenta-
mi pouzijeme jej invariantny kvadraticky odhad, ktory dosadime do optimalneho odhadu
linedrnej funkcie parametrov strednej hodnoty. Vysledok je odvodeny za predpokladu sy-
metrie rozdelenia a existencie konecnych momentov desiateho radu.
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