Applications of Mathematics

Wolfgang Hackbusch; Stefan A. Sauter
On the efficient use of the Galerkin-method to solve Fredholm integral equations

Applications of Mathematics, Vol. 38 (1993), No. 4-5, 301-322

Persistent URL: http://dml.cz/dmlcz/104558

Terms of use:

© Institute of Mathematics AS CR, 1993

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/104558
http://dml.cz

38 (1993) APPLICATIONS OF MATHEMATICS No.4-5, 301-322

ON THE EFFICIENT USE OF THE GALERKIN-METHOD
TO SOLVE FREDHOLM INTEGRAL EQUATIONS

WOLFGANG HACKBUSCH, STEFAN A. SAUTER, Kiel

Summary. In the present paper we describe, how to use the Galerkin-method efficiently
in solving boundary integral equations. In the first part we show how the elements of
the system matrix can be computed in a reasonable time by using suitable coordinate
transformations. These techniques can be applied to a wide class of integral equations
(including hypersingular kernels) on piecewise smooth surfaces in 3-D, approximated by
spline functions of arbitrary degree.

In the second part we show, how to use the panel-clustering technique for the Galerkin-
method. This technique was developed by Hackbusch and Nowak in [6, 7] for the collocation
method. In that paper it was shown, that a matrix-vector-multiplication can be computed
with a number of O(nlog®*! n) operations by storing O(nlog" n) sizes. For the panel-
clustering-technique applied to Galerkin-discretizations we get similar asymptotic estimates
for the expense, while the reduction of the consumption for practical problems (1000-15 000
unknowns) turns out to be stronger than for the collocation method.

Keywords: boundary element method, Galerkin method, numerical cubature, panel-
clustering-algorithm

AMS classification: 65D30, 65D32, 65N38, 45B05, 45E05
1. INTRODUCTION

The boundary element method is an efficient tool to solve homogeneous linear
PDE numerically. To sketch this technique let us consider boundary value problems
of the form:

(1.1) Lu=0 in Q
Bu=g on T :=09Q,

where L denotes an elliptic differential operator of order 2m:

L:= Z co(z) D7,

lalg2m

This work was supported by the Priority Research Program “Boundary Element Meth-
ods” of the German Research Foundation (DFG).
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and Q is a bounded domain in R? or the complement of a bounded domain: Q :=
R?\ . B denotes a system of m differential operators acting on the boundary I'
of Q. Throughout this paper we assume that T is a piecewise smooth surface in R
For simplicity we assume that there is a set

M := {i1,i2,...,im}, 0<1 <2< ... <%y £ 2m — 1,
which defines the boundary operators:
B; =08 forl<j<m.

Here 0, denotes the normal derivative. For more general boundary operators B; see
(1], [16].

The basic tool to transfer problem (1.1) to an integral equation on the boundary
is the explicit knowledge of the fundamental solution S, which is defined via Dirac’s
functional bo:

LS - 60.

The existence of a fundamental solutions is ensured by the theorem of Malgrange-
Ehrenpreis (see [10]). For many common differential operators the corresponding
fundamental solutions can be found in [10]. With the help of S it is always possible
to transform the boundary value problem to a system of m integral equations for
the unknown Cauchy data, that means for the computation of the components u; :=
A% u; {i1,i2,...,im} ={0,1,...,2m — 1} \ M. Then the integral equations takes the
form:

(1.2) Xi(2)ui(z) := Z/ki‘j(x,y— z)uj(z) doy + ri(x) Veel, 1<i<m.
j=1p

The functions A;(z) are piecewise constant and contain removable discontinuous
points. The kernel functions k; j(z,y — z) are suitable Gateau derivatives of the
fundamental solution S(y — z). The direction of the derivatives depend on the
boundary operator B;. If Bj = 87 holds, then ki ; is defined by: k; j(z,y — z) :=
6,2.’:'"'" S(y — ). For a detailed description of the so-called integral equation method
we refer to [1], [2], [5], [16], [17].

In order to develop numerical methods for solving (1.2), it is important to investi-
gate the form of the appearing kernel functions k; ;. In the case that the differential
operator L has constant coefficients ¢, and contains only derivatives of order 2m,

the fundamental solution can always be written in the form:
(1.3) S5(z) := ||2|*™*(Ko(z) + K1 (2) log |z]l),
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where K is real analytic and Ko(tz) = Ko(z) holds for z # 0, ¢ > 0. K, is vanishing
identically, if the spatial dimension d is odd or d > 2m. Otherwise K is a homo-
geneous polynomial of degree 2m — d. If the coefficients cq(z) depend analytically
on z, (1.3) holds locally for small ||z||. The concept of the integral equation method
is not restricted to scalar equations but can also be applied to systems of differen-
tial equations. The coefficients of the corresponding kernel matrices can always be
written in the form (1.3). These facts and more details can be found in [8, §3] and
[3, theorem 4.1]. We restrict our analysis to the three spatial dimensions (d = 3),
thus no logarithmic term appears in the representation of S. The kernels k of the
boundary integral equation are Gateau derivatives of the fundamental solution, so k
(locally) takes always the form:

kz,y~z) = |ly - 2> 2Ko (2, 9,9 - 2),

where j denotes the order of the Gateau differentation. Ko j(z,y, 2) is real analytic
in the third variable and piecewise smooth in z and y, dependent on the smoothness
of the surface.

For our further investigation of boundary integral equations we make the following

Assumption 1.1. Let T be a two-dimensional manifold in R3, which we assume
to be piecewise smooth. We consider the integral equation:

(1.4) A(z)u(z) + Ku(z)=r(z) Vzel

where

(1.5) Ku(z) := /k(z, ¥,y — z)u(y) doy.
r

We assume that Kj in (1.3) can be expanded into a power series containing only
finitely many non-vanishing terms:

Ko(z) := Z c”(ﬂ—zl—l)y
NI

and for all indices with ¢, # 0 the values of |v| is even. This assumption is fulfilled
in many applications. As a consequence the kernel function k(z,y,y — z) can be
written in the form:

(1.6) k(z,yy—z)= "—yt]a:_”m E c(z,y)(y — z)”,

lvi>t

where s+ is odd and t € Np. ¢4 are surface-dependent, piecewise smooth functions
in both variables.
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To simplify the notation, we restrict ourself to the case of a scalar integral equation.
The application of the numerical methods described below to systems of equations
is straightforward.

To discretize the boundary integral equation with Galerkin’s method we have to
transform (1.4) in a variational formulation. Let Al + K be an operator, which
maps the Sobolev space H*(I') into H™*(T') for a suitable s € R. Then the weak
formulation of (1.4) reads:

find u € H*(T') such that

(Au,v)o + (Ku,v)o = (r,v)o Vv e H* (I

holds, where (.,.)o denotes the scalar product in L?(T).
With a sequence of finite-dimensional subspaces { Hpn}nen of H*(I'), satisfying:
H, CHn,;1Vn€eN, lim inf ||z —wn|ls =0Vze H(D),
n—oo v, €Hy,

the Galerkin formulation of (1.7) reads:
find u,, € H,, such that

(1.8) (Aun,vn)o + (Ktn,vn)o = (Tn,n)o Vv, € Hy,

holds. In order to construct the subspaces H, we assume that I' is partitioned into
finitely many pieces m;, called panels, forming the penalization P := {m,ms,...,
wnp}. Each m; can be considered to be the image of a C"-application ¢ = x;(u),
where u is defined on a polygonal parameter domain #; C R2. We restrict our pre-
sentation to the case that the parameter domains #; are triangles and the mappings
Xi(u) are polynomials of degree r in each component:

xij(u) == 2 du® Jj€{1,2,3}.
lalgr
The usual regularity assumptions for the penalization P are:

—7°r,-ﬂ7°r,-:0 V7r,-,1rjEP|7r,-;é7rj,

— each side of ; is also the side of exactly one panel 7;, i # j

— the unisolvent set of each m; w.r.t. the mapping x; lie on the surface I'.

With an unisolvent set = := {z;,...,#ny} C I'n we define a Lagrangian basis
{go,-}’l’gigN, which are polynomials of degree p on each panel, globally continuous
differentiable of order d, and satisfy ¢i(zj) = 6i,;. Then the finite-dimensional
subspaces H,, are defined by H,, := span{pi: 1 < i < N}. Now the finite-dimensional
problem (1.7) can be written in matrix form:

(1.9) M+Kju=f
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with the N x N matrices:

M;; = (Apj,ei)o Kij:=(Kepj, i)

and the right hand side:
fi := (£, ¢i)o-

The solution vector u corresponds to the solution of (1.8) via:

N
u(z) = Iau = }:u,-tp,-(z).
i=1

In many cases the condition number of K is bounded by a constant independent
of the dimension of K, thus iterative solvers need only few iteration steps to give
a sufficiently accurate approximation of the solution. The main difficulty in solving
the linear system (1.9) lies in the fact that K is a full matrix. The computation of
the matrix elements is rather involved because of the (nearly) singular behavior of
the kernel function k(z,y— z) in the neighborhood of y = z. In the following section
we explain how to compute these elements in a reasonable time to any desired accu-
racy by using suitable coordinate transformations. It remains the problem that the
generation of K and each matrix-vector multiplication requires O(N?) operations.
The storage requirements are of the same order. Hackbusch and Nowak introduced
in [9], [6], [7] the panel-clustering algorithm for the collocation method. In the latter
paper it was shown that by storing O(N log® N) quantities a matrix-vector multi-
plication can be approximated by O(N log™*' N) operations without influencing the
asymptotic discretization error. In §3 we develop the panel-clustering algorithm for
Galerkin discretizations and present the corresponding error analysis. In §4 we re-
port about numerical test calculations, where it turns out that the reduction of the
consumption to solve equation (1.9) by the panel-clustering method is considerable
for practical problems (1,000-15,000 unknowns) and not only in the asymptotic be-
havior. It turned out that the reduction of the panel-clustering method is stronger
for the Galerkin procedure than for the collocation method.

COMPUTATION OF SINGULAR AND NEARLY SINGULAR SURFACE INTEGRALS,
ARISING BY DISCRETIZING BOUNDARY INTEGRAL EQUATIONS
VIA THE GALERKIN METHOD

2.1. Representation of the elements of the Galerkin matrix. Before we
analyse the Galerkin integrals we have to introduce the concept of regularized inte-
grals. Let f be a continuous function, defined on a (d — 1)-dimensional, piecewise
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smooth manifold S C R Let S be a split into finitely many patches S;, where
we assume that for every S; there exists a diffeomorphism x; mapping a parameter
domain S; bijectively onto S;. The integral of f over S is defined by:

(2.1) /f (z)do, := Z/\/:j, () dz,

1]»

where g; denotes Gram’s determinant:

gi(2) := det{(Ox(x)/0%;, 9X(I)/5’51>1<i,j<q}~

It is straightforward to extend definition (2.1) to weakly singular functions. To be
more concrete we define the order of a singularity for a function f:

Definition 2.1. A functional f: .S — R is called singular of order 5 in zg € S,
if 5 is the infimum over all t € R}, which satisfy:
(2.2) |f(z) = f(zo)] < Cllx —zo|]|™! Vz € SNK(x0), € €R?T sufficiently small,
where K, (z¢) denotes the ball with centre 2 and radius €. The constant C' may not
depend on ¢.

We state that f is weakly singular in zg if s < d—1. If s = d — 1 the integral (2.1)
diverges, thus we have to introduce the Cauchy-principal value:

Definition 2.2. Let f: S — R be singular in 2y € S of order s = d — 1. Then
the Cauchy-principal value is defined by:

(2.3) p.v. /f(z) do, := Iin?) / f(z)dog,
B S\{Ke(zo)nS}
provided that the right hand side of (2.3) exists.

In the integral equation method the resulting kernels may have a singulanty of
order d. In this case one has to define the part-fini integral:

Definition 2.3. Let f: S C R? — R be a function of the form f = f; - f, where
fi is singular in z¢ of order d, and f; is Holder continuous in zy with exponent
14 A > 0. Then the part-fini integral of f is defined by:

(2.4) p-f. /f(z) doy :=p.v. /fl(z)(fz(:c)—fz(:to)) do,.
s s

If the right hand side of (2.4) is finite, f is called hypersingular.
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With these definitions we can define the elements of the Galerkin matrix K by:

(2.5) Ki;:= /@;(1:) p.v. / k(xz,y—z)bj(y, z) doydo,,

supp(e,) supp(e;)

where {p;}1<ign denotes the Lagrangian basis, introduced in §1. In (2.5) b; is
defined via:

‘ ¢j(y) — pj(x), if kis hypersingular
bj(y, =) = e :
;i (y), if k is Cauchy-singular.

The essential advantage of the Galerkin method in comparison with the collocation
procedure is that isolated corners and edges of the surface S do not cause any diffi-
culties, and the integral (2.5) may be split into a sum over the panels of supp(;),
supp(p;j). The details can be found in the following

Theorem 2.4. Let the surface S be a piecewise smooth, (d — 1)-dimensional
manifold of R?, penalized by smooth panels (e.g. polynomial surface pieces). Further
we assume that the basis functions {p;}1¢ign are Lipschitz continuous on S and
smooth on each panel. Let the integrand of (2.5): k(z,y — x)bj(y,z) be Cauchy-
singular.

Then K; ; can be split into:

Kij= ) 2. KG™

7= Csupp(yi) myCsupp(p;)

where for , # m, the sizes K: ;’"" exist as weakly singular integrals:
(2.6) K™= [ ek -2t (v,2) doydo,
Ty XMy

and for w, = m, the limit process can be interchanged with the outer integration:

(2.7) K:-r’;r = eli% / pi(x)k(z,y — 2)b;(y, z) doydo,.
TX®T
flx—yll>e

Proof. Lemma 3.1.2 in [12] shows that the function H,(z) defined by:

Hx(z) := p.v. /k(a:,y—z)bj(y,z)doydoz

s

is weakly singular. If the case of 7, # m,, (2.6) follows by Fubini’s theorem. If
7z = my holds, the result follows by Lebesgue’s Lemma. a
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We state that the condition of globally Lipschitz continuous basis functions is
necessary only for hypersingular kernels.
In the following we shall develop numerical quadrature methods for approximating

the integrals K"”” We restrict our presentation to the three-dimensional case.
Additional to assumption 1.1 we require that assumption 2.5 holds, which is natural

if the approximation of the surface and the ansatz functions are precewise polynomial.

Assumption 2.5. Let the integral (2.6/7) be represented over the parameter
domain T, X Ty via Xr,(¢), xr,{v). Usually the panels 7 are polygons. We require
all # to be triangular, which can always be attained by a suitable partitioning of 7.
Let £ be a unisolved set. of points of #, and £ C T the corresponding set of points

on the surface panel 7. The mapping x%: # — 7 is defined by:

Xfr,i(u): = Z cviu’

lvi<k
k —
Xw‘i(u]') =T

for all u; € T and corresponding zj; € X and all components 1 < 7 < 3. In this
notation X,l,‘,- denotes the affine transformation of # onto m. We assume, that the
integrands of (2.7) admit an expansion of the form:

Gi(wk(xE (), x5 (), x5, (v) = xE_(w)bj (v, u)y /gt (u)gk, (v)
gk, (wgl (V)k(xx, (), xx, (v) = Xz, (v))

! 1 Ky v
A(vY (v) = L E : Ll Xa, (V) = Xz, (¥) 1
<pifa, (0~ () |u|>0U” (v )(le,‘,,(v) - X}r,(u)”)

Here p; denotes a polynomial of homogeneous degree x3. The numbers x, k3 are
determined by:

2, fn, =my 1, if 7, = 7, and k is hypersingular
Ky = Kg =

1, otherwise 0, otherwise

In [12] it is shown, that under weak assumptions expansion (2.8) holds. Beyond that,
in the paper mentioned above, error estimates are presented, if the sum in (2.8) is
replaced by the corresponding partial sums.

If assumption (1.6) holds, the integrals (2.6/7) consequently can be written in the
form:

(2.6') KI5 ™ = Z / oii(x, y) —z )”doydo,,

& ) - o (o=
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< =i,j . _z 2v
(2.7 KI" = lim / Ty ("M(l/-ﬂ) doydo,,
)J —0 — s — T
nset Tt lly — =l lly
XX

lly—zll>e
with plane triangles: =} = x} () and 7r; = x},y(fry). The coeflicients 7,7, &, are
piecewise polynomials in the first and second variable. 7 is homogeneous of degree
one in the third variable, provided k is hypersingular.

We present now quadrature formulas, to approximate the integrals (2.6'/7'). Ob-

viously it is sufficient to develop formulas to approximate:

. q9(z,y)
2.6" K=" = / % (y — x)"doydo
(26 lly — el v~ %) dowcles
Te Xy
(2.7%) K" = lim / ———q—(—%(y — z)"doydog,
SE2 | s
z X
lly—=ll>e

where ., my,  are plane triangles, s + ¢ is odd, and |v| = t + K2 holds.

2.2. Computation of the singular surface integrals in the case 7, =
my. Consider first the case that 7, = m, =: 7 holds. We choose the coordinate
system in such a way that m lies in the (1, 2) plane and the corner points A, B, C of w
have the coordinates A = (0,0,0)7, B = (By, B2,0)T, C = (B1,C>,0)T with B, <0
and Cy > 0. The difference y — z now is two-dimensional: y — z = (y*? — 2%.2,0)T,
where v!? denotes the (1,2) composed of a vector v € R3. We introduce new variables
(5, w)T € R* by:

§o=yh? P

Then the integral (2.7*) takes the form:

o . q@-wg . .
(29) Ki)j —I |>0£ll_l}(l) / WU dudy.
T wTes
llull>e

The parameter domain £ is a four-dimensional polyhedron and can be described
via:
P={Hu)" eR*|gemIrer|u=y-z}

This parameterization implies that the inner integration corresponds to the variable
u. Let H(u,y) denote the integrand of (2.9). H is a polynomial w.r.t. § and singular
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w.r.t. u. Our aim is to interchange the integration variables, to integrate analytically
with respect to y and develop formulas for the u-integration, adepted to the order and
location of the singularity. To be more concrete, one has to transform the inequalities

below into an equivalent system, where u depends on y.

my(uy + 91) — ¥2 < ma(uy + §1) — 9o

Here m;, m; denote the ratios B2/B; and C2/B;. We skip the detailed transforma-
tions, since they are rather involved and can be found in [12, §3]. The result is that
the integral (2.9) can be written in the form:

lim / {B] 7g‘(]l(u,g)+H(-u,§+tt))d})

e—0
llull>e M
uy  ma(fi—ui)tu,
(2.10) + / / (HC-u,p) + Hu—C,§+C —u)) dy
R

u; maji

+ / / (HB-w,)+ H(u—B,j+ B —u)) dg} du.

my¥1=¥2 ma(ygr—uy)tu,
my—my

Now it is trivial to perform the integration w.r.t.  analytically. It remains to consider
integrals of the form:
(2.11) lirr(l) / (H(P = u,u)+ H(u— P, u)) du,

£—

"
llull>e

for P € {A, B,C}. Hisa polynomial in the second variable and singular in the first
one. A careful analysis [12, p. 54] shows that, with regard to our assumptions on
s, t and kg, the strongest singularity cancels and the integrand is weakly singular,
namely in a P corner of m. These integrals can be solved very cheaply by the use of
Duffy’s triangle coordinates or polar coordinates. The details can be found in [13],

[14], [11, §3].

2.3. The computation of nearly singular surface integrals: dist(7;, 7y) =
O(h). It turns out, that the singular case (7, = m,) is the easiest one. We consider
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now the case that dist(m;, my) = O(h) holds, where h := diam(7;) is assumed to
be of the same magnitude as diam(m,). Further we require that m, Ny contains at
most one point. The cartesian coordinate system has to be chosen in such a way that
7z = A(Xy, X2, X3) lies in the (1,2) plane with X, = (0,0,0)7, Xy = (/\’2',,0,O)T,
X3 = (/\'3'1,/\’3,;;,0)7’. First we consider the case that m, and my are not parallel.
We assume that the orthiogonal projection P;'3 of 7, onto the (1,3) plane results in
a non-degenerate triangle 1r;'3. If ,® is a straight line the projection onto the (2, 3)
plane is regular and the indices in the following formulas have to be modified. 1r;'3
can be mapped onto 7, = A(Y}, Y2, Y3) via the transformation yy:

1 0 0

(2.12) y(o) = xy(0) = | a1 as (“)m |
V9

0 1 - 0

with suitable constants ag, a;, az € R. Thus integral (2.6*) may be parametrized

over (u,v)" € mp x )3,
remy _ 1Tyl / q(u, y(v)) v
2.13 K;>" = ————(y(v) — z) dvdu,
1 = e A
Te Xy

where |.| denotes the area of 7. We introduce the coordinate transform:
w = y(v) — (v,0)7, 2=y

Then (2.13) takes the following form:

L [y / §(w, 2)
LEVY = . v .
(2.14) K, IW;"‘| ”w”H_tw dwdz
(w,z2)T€D

The parameter domain © may be described by:
T
D= {(u,v)T eER?xR?|ue w;'s,B‘y € m |v=(n(u),y(v)) —7}.

A careful examination of © shows that D is a polyhedron with nine corner points
and the surface of D consists of six distorted prisms P;, 1 < i < 6 (see [12, p. 66]).
With P? we denote the convex envelope of {9;,0}. Consequently the integral (2.14)
can be written in the form:

6 -
(2.15) K2 = Iﬂy.’ }:s; / q(w’z)w"dwdz,

[lw]f*+*
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where s; = +1 depend on the orientation of 2. Let the reference element P be
defined by:

P={neR 0N <0< <0< 3 <0< 9 < sl

A linear transformation T;, which maps B onto B? = conv{Ei, E}, Ei, Ei +v', E} +
v, EL + v, 0} (v' € R? denotes a suitable vector) is defined by: '

Tim)y=m E'; + 990t + 7)3(E; - E'l) + 1)4([31'-3 - E;)

Now integral (2.15) takes the form:

6
(2.16) K5 =

1]

T3(n)"dn,

Ll _a(Ti()
il / Il

1=1

where T2 denotes the first three components of T;. We introduce a four-dimensional
analogous of Duffy’s triangle coordinates by:

m =¢, nio=&0;, 1<ig3,

which maps the parameter domain & := {0 < 0, < 1;0<0; < 1,0< 05 <0,;0<
< 1} onto PB. With regard to the linearity of T;, (2.16) takes the form:

" I‘Dl I1T2(1, 0+

r’l

2.17) K™ = m' Z L / 5"M TH(1,0)"de o,
Tew

6,

where k = |v|+ 3 —s—1 is non-negative by assumption 2.5. ¢(%;(¢, 0)) is polynomial
in €, so the &-integration can be performed analytically. In {12, p. 67 ] it is shown
that the remaining integrand in (2.17) has no singular behavior as a funciion of @,
consequently the O-integration can be perforimed via tensor-Gauf-formulas, which
give the desired approximation of the integral (2.7).

It remains to consider the following cases:

(i) 7z, my are different triangles, but have one common edge. In [12, §3] this case is
discussed. Similar transformation techniques yield integrands, where the singularity
can be integrated analytically without any problems and the remaining terms are
smooth.

(11) dist(mz, my) > C. In this case the kernel function has no singular behavior |
so the integrals can be approximated by a standard quadrature scheme.

(in1) dist(mz, my) < Ch; TN Ty is at most one point and 7, and m, are parallel. For

sufficiently small h we can assume that 7, and my lie in a common plane, provided
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the surface I' is continuous. We can use the same technique as in the non-parallel
case, if we replace the parameterization (2.12) by:

(2.12') Y(v) = xy(v) = [(l) (l)} CD

and proceed in an analogous manner.

3 THE PANEL-CLUSTERING ALGORITHM FOR GALERKIN DESCRETIZATIONS
OF INTEGRAL EQUATIONS

3.1. The formulation of the pancl-clustering algorithm. In the previous
chapter we have developed techniques to approximate the system matrix, appearing
by the Galerkin descretization. Nevertheless, the matrix is full, so the generation
of this n x n system requires O(n?) operations and the storage of the matrix needs
n? real numbers. If iterative schemes ar used to solve the linear system, a matrix-
vector multiplication has to be performed in each iteration step requiring again O(n?)
operations. In [6], [7], [9] Hackbusch and Nowak introduced the panel-clustering
for the collocation method. With this techniques it is possible to approximate a
matrix-vector multiplication with a number of 0(nlog"*?n) operations by storing
O(nlog" n) real numbers. The asymptotic reduction of the consumption is obvious
and in [11] the consumption of the panel-clustering algorithm for collocation dis-
cretizations is estimated explicitly. Here we extend the concept of panel-clustering
to Galerkin discretizations.

First we need the following definitions.

Definition 3.1.  cluster, tree of cluslers, cenlre/radius of a cluster
Let the surface I' be partitioned into finitely many panels: P := {m,my,...,7*Np}.

A cluster is the union of some panels:

k
r=Jm,  1<kSNP, 1<ii<ja<...<jt<NP.

i=1

A tree of clusters T is a subset of all possible clusters relative to P which fulfills the
following conditions:

—TrcT )
q
— Each 7 C T is either a panel or the union of smaller clusters 7 = |J 75,. 7 is
i=1
called father of the sons 7;,, 75,, ..., 75,.
The midpoint 2(7) of the ball with smallest radius containing a cluster 7 is called
the centre of 7, the radius o(7) is called the radius of .
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Let in the following u,, always denotes an n-vector and u,, the corresponding trial
function: up, := Iau, = ¥ o u, ;. We assume in the following that the kernel is
i=1 P

hypersingular. A matrix-vector multiplication with the Galerkin matrix K reads:

n
(3.1) ZK‘J“"J Z /Wi(f) p. f. /k(r,y,y— z)u, (y) doydo,
i=1 r

T2 Csupp(@s)

Z Qix. (un).

mx Csupp(wi)

By the panel-clustering method the sizes Q; »_(u,) will be approximated. To this
purpose, let for a panel 7 and a cluster 7 the domain D ; be defined via:

Dy.={z€R|Iyerzen|z=y—2)

We require that the kernel function can be written in the form:

3
(3.2) k(z,y,2) = Y vi(w)ki(x, 2),

i=1
where k; 1s singular for z = 0 and infinitely differentiable in (z, z)T € Dy ;. provided
z # 0. The vector ¥(y) is assumed to be piecewise smooth, according to the smooth-
ness of the surface I'. The functions k;(z,z) can be expanded in a Taylor series
around the centre zy » := z(D; x), which is convergent, provided 0 is not contained

in the ball B,(p, ,)(zx,r). The Taylor expansion of order m takes the following form:
ki(ll Z) = ki,m(l'y Z) + Ifi,nl(llv z)l

with
170\

(3.3) kim(z,2)= .‘7'(0_) ki), (2= 20"

Jvl<m
If in (3.3) the variable z is replaced by y — = and the sum is ordered w.r.t. powers of
¥, ki m can be written in the following form:
(3.4) kim(z,z) =Y KLz, 200 )0,

lvl<m

with suitable expansion coefficients k! (z,zx ). The kernel function k will be ap-
proximated for (z,2) € 7 x D; » by:

3
k(z,2) 2 Y % (Wkim(x,2) =t k(z, 2).
i=1
If the kernel function k is replaced by k,,, the resulting error has to be adapted by

a suitable order of consistency. The exact requirements are stated in the following
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Assumption 3.2. Let the kernel function k(x, y,.) be singular of order s at the
origin. We assume that for arbitrary ¢ > 0 and m € N there exists an 7 € [0, 1, such
that for all z, zo € R?, 29 # 0:

(35) (e 2) — k(2,2 < el + llz0ll ™), stz

holds.

The idea of the panel-clustering algorithm is that on surface pieces (clusters),
where the kernel is not singular, the kernel function k will be replaced by the expan-
sion k,,,. To control the size of the resulting error we need the following

Definition 3.3. Let 5 € [0, 1] be chosen according to assumption 3.2. A cluster

1 € T is called admissible w.r.t. a panel 7 if

n .
0(Dx,r) € —=——= dist(m, 1
(Dr.r) 1+ 72 (7)

holds. A set 6'(x) = {71, 72,...,7,} consisting of clusters 7; € T' with pairwise

disjoint interiors is called an admissible covering w.r.t. a panel m, if the following

condition are fulfilled:

a
—I'=Um,
i=1
— either 7; is a panel or 7; is admissible w.r.t. .
An admissible covering %(7), which contains a minimal number of clusters, is
called a minimal admissible covering. €™ (x) := {7 € €(x) | 7 is not admissible }
is called the nearfield part, €™ (x) := €(7) \ €"*(x) denotes the farfield part.

Now we can formulate the panel-clustering algorithm for the Galerkin method.

For this let the so-called nearfield-matrix be defined by:

K= Y > [e@)

T Csupp(wi) myCsupp(p;)NErear(me)

X Pp. V. /Ic(:c,y— z)(p;(y) — pj(z)) doydoy,

Ty

and the farfield-coeflicients J¥ (1) via:

T¥(u) = /y”ft(.u)v(y) do,, V7eT veN], v|<m,

T
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where v denotes the surface-dependent vector in (3.2). Finally the expansion coef-
ficients k7 (z,z(Dx,r)) (see (3.4)) we have to be integrated together with the trial
functions:
&2 o0) = [ i@ (2 (D)) u(z) dos
s

forallme P, T € €% (x), [v] < m, 1 <r <3, i withsupp(p;)Nw # 0.

With the help of K", J¥(u) and R* ', r(u) a matrix-vector multiplication can be
approximated by:

(3.6) ZK g Y K

7K., #0

Yy 2(<~~<x o)) — (5, 40 ).

7 Csupp(pi) TEER () |vl<m

This representation can eas>ily be derived by partitioning the surface I', appearing in
formula (3.1), into the nearfield panels and the farfield clusters. Replacing the kernel
function k by k,, in the farfield part results in (3.6) (cf. [!2, remark 2.1.10}).

Remark 3.4. In the case that the kernel function is not hypersingular, the
term < X '(un) J”(1)> in (3.6) vanishes. Furthermore E”*’ ), J¥(.) are scalar sizes
in the case, that either the surface is globally smooth or t,lle kernel function does not
depend on the surface (e.g. the kernel is a fundamental solution).

A possible structuring of the panel- clustering algorithm consists in computing
and storing the quantities K€", Jj’(go,) Jr(1), R "L’;r(tp]) “,’f;,(l) in a first step,
which corresponds to the usual generation phase of the system matrix. To perform
a matrix-vector multiplication one has to compute at first the quantities f"(u,,)
K3 r(u,,) by summing up over the tree of clusters and then evaluating formula (3.6).

An explicit formulation of the algorithm is presented in [12, algorithm 2.1.9].

3.2. Error analysis for the panel-clustering method. Here we proceed, by
sketching the error analysis of the panel-clustering technique. In the first step we
have to investigate the relative error (7, m), which results if the kernel function k
is replaced by the function k,,. In [12, §2.2] the following error estimate is proved:

Theorem 3.5. Let the kernel function k(z,y,y — z) be of the form:

k(z,y,2) = Z%‘(y)k-’(x, z),

i=1
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with
ki(z,z) = ||]2]|7*" L cy(z)z”
lvixt
(viz. (1.6),(3.2)) approximated by k., which is defined as the Taylor expansion of k;
around z¢ via (3.3/4). k is singular of order s at the origin:

k(z,y,z) < Cslz]|7%,

and s+t is assumed to be odd.

Then for all x, y, 29 € R® the following error estimate holds:

BT k(e 2) — k(e )] < lnm)(lzl] + [ol), vIEZZN oy

“‘71
z

In order to explain the function €, let Ci(x) denote the Gegenbauer polynomials and
z1(n), ..., (1) the roots of the polynomial ()’/2“(1:) - 1]C’/2+1(z)‘ The function

m—1 m-—2

E3¥t (o ) is defined by:

m-—1
o3+ (),0) = 1 — (1 — 2y cos O + a2)s+V)/2 Z (7}_"+t)/2(cos 9)nk
k=0
and E3Y(n) by:
. g ifs+t=1
E;j 7’) = s+ s+t _ s+t . :
max {lbm (71'1 l)lv ‘Em (1)1 I)L |bvn (7];171)” otherwise.

1<igm

With these definitions, (), m) in (3.7) is given by:

. t—1
e(n,m) < C(k)max (E;'““(n), (m + s:—t )1}"‘),
s

3
where C(k) := max(Cs,Cp)max Y |vi(y)| and
i=1

A
Cp = max oMt
P |)\l$m:l}xa(t,m—l) {lC/\(I)I | 0' Z v

v
lv|zm-1

holds. We state that these error bounds are strict. Asymptotically € can be estimated
by (5, m) < C1(Con)™ with suitable constants Cy, Cs.
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In the next step we have to investigate the effect of the relative error e(n,m)
caused by clustering the panels for a matrix-vector multiplication. In [12, Satz 2.2.1]
the following theorem is proved.

Theorem 3.6. Let the kernel function k(z,y,.) be singular of order s at the
origin. For the approximation k,, according (3.3/4) k,, we require that assumption
3.1 is fulfilled with 7 = (e, m). We assume the panelization P to be quasi-uniform:
o(m) = h/Cy. Let the trial function are bounded: ||¢i|lcc < Cy. We assume that for
all panels, there holds:

/ / [|2(Dx 7 )||~*doydo, < C,/ / [lz — yl|~* doydo.,

T glar(r) T glar(x)

where Cy is independent of w. The panel-clustering method defines an operator KN, ,
which approximates Ku,, = K,,u,. Then the following error estimate:

(3-8) [(Kup)i = (Kmun)i| < €Ch(1 + Cr)Cr(h)||unlloo

holds, where Cy(h) is defined by:

—s ,
121[_:21 Z llx — y||~* doydo; < Cr(h).
”:CSUPP(V’-) T (gv.u(,,)

Estimate (3.8) corresponds to a consistency error, which has to be adapted te a
suitable estimate of the required discretization error, e.g.: € = h*, where h denotes
a “stepsize” parameter and k the order of consistency. In theorem 3.5 it was shown
that under weak assumptions on the form of the kernel function the error-function
€(n, m) asymptotically behaves like € ~ C;(C3, 7)™, so any desired accuracy can be
achieved by a suitable choice of 7 and m. If for the dimensions n of the trial space
the condition n=1/(4=1) ~ h holds, 5 € [0, 1] should be chosen sufficiently small
(independent of h) and m = O(% log n).

3.3. The complexity of the panel-clustering algorithm. In order to esti-
mate the total cost of the panel-clustering algorithm, it is essential to estimate the
number 6"**"(7r) of the nearfield panels and the number o™ () of the farfield clusters
per panel. In [7] it is shown that under the condition of a quasi-uniforin penclset

and some further technical requirements which are usually fulfilled, the estimates:
A , o
(38) Unedr(W) < Cnear"*d:f

1
ar‘“(w) < /'far,,d——l log(e + pt! n)
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hold. To implement the panel-clustering method one has to develop fast algorithms
for computing the tree of clusters, the minimal admissible coverings for all panels, the
farfield-coefficients J:‘,’(tp,'), the expansion coefficients E,’,’;i(tpi), the nearfield matrix
K75, and finally for the evolution procedure. The description of these algorithms is
rather technically and can be found in detail in [12, §4]. The cost of these procedures
depends on the parameters m and 7. By summing up the total storage and compu-
tational cost, we readily state that the computational cost takes O(nm?) operations
for the generation part and O(nm?+4) operations for the evaluation of a matrix-
vector multiplication, where the storage amount comes to O(nm?) real numbers.
Asymptotically the reduction of the total cost is obvious. In [12, §4] the cost of the
algorithins is estimated strictly and computational tests are performed to estimated
the surface-dependent constants Crap, Chear 1n (3.8). Further we use the exact error
function g(n, m) to choose the expansion order m and the relative admissible size n
of the clusters 7 in an optimal way. Thus we get the explicit consumption of the
panel-clustering algorithm, dependent on the number of unknowns, to compare it
with the usual matrix-oriented procedure. The figures below show this comparison
under different optimization strategies. One observes that the panel-clustering algo-
rithm gives a considerable reduction of the storage and computational amount even

for problems of medium size.

CPU-tims per eodal poist

vd + +
1000 2000 2080 00 5000 1000 2000 o0 000 %000

v

wumbes of nodal poiets sumber of sodal points

Figure 3.1. Optimization of the panel-clustering method w.r.t. the computational

cost, applied to the single layer and double layer potential.
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Figure 3.2. Optimization of the panel-clustering method w.r.t. the storage amount,
applied to the single layer and double layer potential.

4. COMPUTATIONAL EXAMPLES

To compare the real amount of the panel-clustering method with the theoretical
estimations of figures 3.1/2, the algorithm was implemented for Fredholm integral
equations of the second kind with weakly singular kernel functions, specifically with
the single layer potential for the Laplacian on the surface of a three-dimensional
cube and the double layer potential on the surface of the unit sphere in 3 D. We
used piecewise linear trial functions over plane triangular panels. We used the nested
multigrid method as iterative solver, combined with the Picard-iteration as smooth-
ing procedure (see [6]). The finest grid of the surface of the cube contained 3072
panels, the surface of the sphere 4096 panels. The tables presented below show the

amount of the panel-clustering compared with the usual matrix-oriented technique.

€ q A(h) Ale, h) Rz | RZ} | RZ,

02 | 131 | 124e—3 | 1.63¢—3 | 338 | 1118 | 116

03 | 201 | 1.24e—3 | 249 —3 | 338 | 1118 78

04 | 244 | 1.24e—3 | 3.03¢—3 | 338 | 1118 63

€ q 8(RZ%) | 8(RZ%) | MEMy | MEM, | 6(MEM)
02 | 131 291 9.6 512 225 2.28
03 | 201 4.33 14.3 51.2 17.3 2.96
04 | 244 5.37 17.7 51.2 14.2 3.62

Table 4.1.

potential. A(h) denotes the relative discretization error without panel-clustering,

Amount of the panel-clustering method, applied to the single layer
A(e, h) the error due to the clustering tolerance € (viz. 3.2).

q 1s defined via
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q := A(e,h)/A(h). RZE resp. RZ, denote the CPU-time of the program with-
out resp. with panel-clustering w.r.t. the tolerance ¢ (in minutes). k denotes the
degree of exactness for the quadratures scheme, applied to the regular integrals.
6(RZ) := RZE/RZ,. The storage amount M EMy, M EM, is defined analogously
and is declared in mega-byte. (M EM) := MEMy/MEM,.

€ q A(h) Ale, h) RZ} RZ} RZ,
0.3 1.64 2.48e — 4 4.07e — 4 1469 3104 974
0.4 2.64 2.48e — 4 6.44e — 4 1469 3104 803
€ q 8(RZ?) 6(RZ®) MEM, MEM, S{(MEM)
0.3 1.64 1.5 3.2 90.7 43.1 2.10
0.4 2.64 1.8 3.9 90.7 36.2 2.51
Table 4.2. Amount of the panel-clustering method applied to the double layer

potential where the algorithi was optiinized w.r.t. the storage amount. The sizes ¢,
A(h), A(s, h), RZy, RZ, etc. are defined in table 4.1.

More numerical tests are reported in [12, §5]. One observes that the reduction
of the consumption is stronger for the single layer potential than for the double
layer. The reason for this is that the single layer kernel is globally smooth, so the
farfield coefficients and the expansion coefficients are scalars instead of vectors in
the case of the double layer kernel. In each case the reduction of the consumptions
1s satisfactory. It remains to discuss the question, to what extend these results are
valid for practical problems. Our examples were chosen so simple, since one knows
explicitly the exact solution for these problems, so one can study systematically
the influence of the additional error caused by the panel-clustering method. The
exact solutions always had an extremely simple behavior, lying nearly in the trial
space. This effects caused an unnaturally small discretization error (without panel-
clustering). In practice this error will be essentially larger, so the parameters (1, m),
which controls the panel-clustering-algorithm, could be chosen more favourable. In
fact by our three-dimensional expansion of the kernel function the error, caused
by panel-clustering, depend neither on the smoothness of the surface nor on the
smoothness of the solution.

The effect of the panel-clustering method strongly depends on the singular be-
havior of the kernel function. That is if the kernel function is strongly singular,
that means decreases fast with increasing distance to the singularity, the admissible
covering could be chosen more favourable. A detailed study if the panel-clustering

method for hypersingular kernels will be the topic of further research.
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