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A GLOBAL ANALYSIS OF NEWTON ITERATIONS
FOR DETERMINING TURNING POINTS

VLADIMIR JANOVSKY and VIKTOR SEIGE, Praha

Summary. The global convergence of a direct method for determining turning (limit)
points of a parameter-dependent mapping is analysed. It is assumed that the relevant
extended system has a singular root for a special parameter value. The singular root is
classified as a bifurcation singularity (i.e., as a degenerate turning point). Then, the Theory
for Imperfect Bifurcation offers a particular scenario for the split of the singular root into
a finite number of regular roots (turning points) due to a given parameter imperfection.
The relationship between the scenario and the actual performance of Newton method is
studied. Both theoretical and experimental arguments are presented in order to question
the claim that a particular bifurcation singularity organizes the Newton method assuming
small parameter perturbations.

Keywords: detection of turning points, Newton method, Newton flow, basins of attrac-
tion, qualitative analysis, normal forms of the flow

AMS classification: 65H20, 58C15

1. MOTIVATION

Let F: RY x R' x R¥ — RN, F = F(u,\, a), be a smooth mapping. In the
bifurcation context, see e.g. [2], the equation F(u, A, «a) = 0 defines implicitly the
dependence A +— u of a stale variable u on a (scalar) control parameter A while an
imperfection parameter « € R* is fixed.

A point (u*, A*, a*) € RY x R' x R* is a singular point provided that

F(u', A", ") =0, dimKer Fy(u*, A", 0"y =m, m>1.

The dimension m is called corank of the singular point. Singular points can be clas-

sified in accordance with qualitative properties of the (perfect) bifurcation diagram
S ={(u,A): F(u, A, a*) =0}

in a neighbourhood of (u*, A*).
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Apart from corank, there is another nonnegative integer called codimension (ab-
brev. codim) that is related to each singular point from the classification list. It
measures its complexity (in a sense): A singular point with a finite codim may ap-
pear generically provided that the dimension k of the imperfection parameter a € R*
satisfies k > codim. We refer to [2] for details.

Let us call the singular points that are classified via [2] as bifurcation singularitics.

The simpliest bifurcation singularity is a turning point (labelled also as a limit
point). It has codim = 0 and corank = 1. The techniques of its computation has
been developed some fifteen years ago, see e.g. [9], [10], [14], [12], (18], [t1], [3]-

Given a fixed imperfection &« € RF, turning points are regular roots (u,\) €
RN x R! of particular extended systems H(u, A, ) = 0, where H(-,-,a): RN xR' —
RN x R!,

F(u, A «)
(1.1) H(u, A\ ) = (o(u,/\,a))'
provided that o(u, A\, @) € R! factors through det F,,(u, A, a).

In this paper, we consider the extended system proposed in [3]: We choose and fix

bordering matrices L € Z(RV,R') and M € Z(R',R"), and define the (open) set

(1.2) i):{(u,/\,a)ERNleka: dem(F“(“’LA’“) Aol>¢o}.

Finally, given (u, A, a) € D, we define ¢ € R! as the (N + 1)st component of the
solution to the linear system

b (PP ) () () mew e

By virtue of the Implicit Function Theorem, o: RN x R! x R* — R! is a smooth
function on D. It is also easy to check that det Fy(u, A, ) = C(u, A, a) o(u, A, «)
where C(u, X, @) # 0on D. It can be shown, see Remark 2.5 in §2, that (u,\, ) € ®
is a turning point of F' if and only if

(1.4) H(u, A\ a) =0, dimKer Hy A(u,A,a) = 0,
i.e., (u, ) is a regular root of H(-,-,a): RN+l . RN+1,

Remark 1.1. Many other extended systems for turning points (see e.g. [12] for
direct methods) can be presented in a similar fashion. For exawmple, taking M :=
F(u, A, @) as a (no longer fixed) bordering matrix, we get o and H that correspond
to the method proposed in [14]. It is also possible to use singular value decomposition
of Fy(u, A, ) in order to define (variable) bordering marices M and L, etc. We claim
that the results of this paper do not depend essentially on the particular technique
applied for the construction of H.
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It is clear that any bifurcation singularity (u*, \*, «*) € D is a root of H(-, -, «*).
If codim of the singularity exceeds 0 then (u*, A%, ) 1s no longer a regular root
namely,
Hu* A, a") =0, dimKer Hy z(u", A%, a") > L.

In such a case, given a small imperfection z € R¥, we fix &« = o* + z. The mapping
H(-, -, a): RN xR' — RN+! possesses a finite set of (generically) regular roots (these
are, in fact, turning points of F(-,-, «)) that cluster in a neighbourhood of (u*, A*).
The particular scenario is supplied by the theory for imperfect bifurcation, [2].

The objective of this paper is a global analysis of Newton method for finding the
roots of H(-,-, a) assuming that a particular bifurcation singularity (u*, A\* «*) is
specified as an organizing center.

Given an imperfection z € R¥ we set a = a*+z and define a vector field A(-, -, a):
I
RY x R! — RN x R!,

(1.5) N (4, A, @) = —(Hy a(u, M, @) " H(u, A, a).

Let us call it Newlon veclor field. Obviously, the domain of .A(-,-;-) should be
restricted to ®. It contains a neighbourhood of the organizing center (u*, A", o).
Moreover, the vector field A(-, -;a* + z) degenerates on the critical set

(1.6) Cv(z) = {(u,A): det Hya(u, X, " + 2) = 0}.

We shall consider (both classical and damped) Newton iterations

u(n ) u(m o
(|.7) (/\(n«{»l)) = (/\(")) +d A (A at + 2),

where d > 0 is a damping parameter. Newton iterations are a discrete version of the
conlinuous Newlon method, i.c., the initial value problem for the systemn of ordinary
differential equations

o ()i (1) ()

The relevant. flow ¢(-,t) on (RN xR")\€_y (2), defined as p(u(®, A 1) = (u(t), \(t)),
is called Newton flow for the operator (1.1) where o = a* + z. The fact that ¢
depends smoothly on parameter z € R* will be reflected by the notation ¢(-, ¢; z).
It is well known that Newton iterations (1.7) can be interpreted as the Euler
discretisation (with a step-size equal to d) of the solution trajectory (u(t), A(t))e>0

to (1.8). The importance of the continuous Newton method consists in the fact that
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it can be analysed comparatively easier then its discrete versions. Simultaneously,
the qualitative information concerning the behavior of the Newton flow is quite
significant for understanding the discrete version (1.7) of the method.

The regular roots of H(-,-,a* + 2) = 0, z # 0, are local altractors for any of the
above mentioned versions of Newton method. Precisely speaking, the regular roots
are stable nodes (see e.g. [4, p. 147]) of

a) the field A°(, -, a* + z) as far as the dynamical system (1.8) is concerned

b) the relevant iteration map related to (1.7).

Note that except for the roots of /(- -, a* + z), there are no fixed pomnts (i.c.,
steady states) of the field A7(-, -, a* 4+ 2) on a sufficiently small neighbourhood of
(u*, A*) (minus € 4 (z), of course), for each z sufficiently small in modulus.

The aim of this paper is a global analysis of the basins of attraction for the methods

(1.7-8):

Definition 1.2. Given an imperfection z € R* let (u,A) be a fixed point of
the vector field A(-,-,a" + z) on RY x R'. The set B ,(u,A;z) = {(u? N9 €
RN x R!: o(u(® A0 ¢:z) — (u,A) in RNV < R! as t — 400} is called the basin of
attraction of the fixed point (u, A) for the continuous Newton method (1.8). Similarly,
B, (u,A;2) = {(u®,AD) € RY x R! : the sequence {(u(™, A"} F> generated by
(1.7) converges to (u,A) in RY x R' as n — 400} is the basin of attraction of the

point (u, ) for the (damped) Newton method (1.7) with damping parameter d.

In [1], there was suggested to regularise the Newton field 4, see (1.5), by a
suitable rescaling: Let A7 (- - a): RY x R' — R x R! be defined as

(1.9) N (u, A o) = n(u, A a) - A (u, A ), n(u, A o) = det T, \(u, A, @)

for each (u, A\, ) € D. (In order to get the idea, consider the inverse (H, x(u, A, av))~!
in (1.5) calculated via Cramer’s rule). Let ¢"(-,t;z) be the flow related to the
regularised Newton field A7 (-, -, a* 4+ 2): RVt — RV Its domain is obviously
the slice

D, ={(u,\) € RN x R': (u, A" + 2) € D}

Remark 1.3. The flows ¢(-,¢; z) and ¢" (-, {,; z) are topologically cquivalent (up
to, perhaps, a time reverse) on connected components of D, \ € 4(z). The reverse
of time is required on those components where n(u, X, ) < 0.

Remark 1.4. The (regular) roots (u,A) € D,\C€ 4 (2),z #0,0f H(,",a*+z) =
0 are also fixed points of the regularised Newton field A7(-, -, a* + z) namely, they
are slable and unstable nodes respectively, provided that n(u, A, a* + 2) is positive
and negative. Setting n(u, A, ) = —det Hy x(u, A, «) in (1.9), the characterisation
of the nodes (stable/unstable) is reversed.
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Remark 1.5. Apart from the mentioned fixed points on D, \ €_y (z) addilional
fixed points of A7 (-, -, a* + z) should be admitted on €_y(z). These may have

substantional influence on the global convergence properties of both (1.7) and (1.8).

One way to understand the global convergence properties of Newton method goes
back to the results by JULIA and FATOU. These indicate that boundaries of the
basins of attraction may reproduce themselves. This property of self-similarity sug-
gests some links with fractal geomelry. So far, a rigorous theory may be provided
for mappings subjected to very restrictive assumptions. Most of the research in
this direction is based on computer assisted studies. Let us quote e.g. [13], [16] as
stimulating examples of an effort in this direction.

Another concept is to apply Singularity Theory. In [8], the gencric bifurcation
singularities of the regularised Newton flow 47 on the critical set are analysed.
(The relevant I1: RY — RV is assumed to be a potential mapping with N = 2 and
N =3). It yields flow paiterns for ¢(-,t) in a neighbourhood the fixed points on the
critical set that persist a perturbation of the mapping. This kind of analysis gives a
quasiglobal information (in the sense of an unfolded normal form).

Our analysis tries to extend the information taking into account the parameter-
dependent flow between all fixed points of A" that are locaily available. We have
not applied the concept of genericity and, instead, we assume a particular scenario
that describes the splitting of a multiple root to If into a sct of simple roots when 1
is subjected to a small perturbation. The crucial role plays Center Manifold(-like)
Theorem for the Newton flow. All these concepts were outlined in [5] assuming a
special case of the organizing center (namely, a simple bifurcation point). The aim
of this presentation is an attempt for a generalisation.

The fact that H s a rather particular mapping (an extended system for turning
points) does not seem to be a substantional restriction of our analysis. We believe
that the technique may be applied as soon as a gencsis (i.e., an organizing cenler)

of simple roots to I is defined by the usual means of the Sigularity Theory.

2. DIMENSIONAL REDUCTION

The function o: RN xR' x R¥ — R! defined in (1.3), is closely related to a version
of Ljapunov-Schmidt dimensional reduction of the mapping I': RV x R! x R¥ — RV:

We recall the fixed bordering vectors L and M, and the set D, see (1.2). Given
(u, A\, @) €D and (x,s,2) ER' x R x RE we require ¢ € R and v € RN to satisfy

Flu+v,A+s,a+4z2)—Mg=1F(u,A «)
(1) ‘

Lv==x
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Obviously, g = 0 € R! and v = 0 € RV solve (2.1) at the origin (x,s,z) = 0 € R**%.

As a consequence of Implicit Function Theorem, the conditions (2.1) define ¢ and
v as germs of smooth mappings ¢: R! x R! x R¥ — R! and v: R' x R! x R* — RV
centred at the origin. Moreover, both g and v depend smoothly on (u, A, ) € D as
a parameter i.e., ¢ = g(z,s,z;u, A, a) and v = v(z, s, z; u, A, ). Writing ¢(0; u, A, o)
or v(0;u, A, @), we mean the part (z,s, z) of the relevant argument to be 0 € Rk

The same convention is understood for the partial differentials of g and v.

Definition 2.1. Let us say that ¢ = g(z,s,2;u, A, a) defined by (2.1), is the
reduction of the mapping F' at the point (u, A, a) € D.

Partial differentials of ¢ = g(z, s, z;u, A\, @) and v = v(x, s, z;u, A, ) with respect
to (z,s,2) € R?*¥ and (u, A, o) € RN x R'** can be obtained from (2.1) by implicit
differentiation (and chain rule, as far as higher differentiale are concerned). For
example, gz, v, and g,, v, at (x,s,z;u, A, «) are defined by the solution to the
following linear systemns

en (7 0)(5)-0) (09 --()
L 0 —9r 1 L 0 —gs 0

where F, and F) are evaluated at (u + v(z,s,2;u, A, a), A+ 5,0 + z) € RV x R1+F,

In principle, any differential of ¢ and v can be computed at the cost of the numerical
solution of (a canonical sequence of) linear problems with the same matrix F, (u +
v, A+s, a+2z) being augmented by the column vector M and the row vector L, see the
definition of ©. Let us note that v = v(x, s, 2;u, A, a) is not known explicitly except
for (z,s,z) = 0. If (z,s,z) # 0, the value of v(x,s,z;u, A, a) has to be computed
numerically from the nonlinear equation (2.1) via Newton iterations, see [5], Remark
3.2.

Remark 2.2. The function o: RY xR xR¥ — R see (1.3) and (1.1), is related
to the reduction g of the mapping F' as follows:

(2.3) o(u, A, a) = g,(0;u, X, «)
for each (u,\, @) € D.
Proposition 2.3. If (u,A,a) € D then

dimKer Hy x(u, A, a) = dim Ker ( g:(030, 0, @) g5(0;0, 2, 1) ) .

Grz (00, A, ) g2, (0;u, A, a)
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Proof. Direct calculations yield that ¢ € RV+! belongs to Ker Hy a(u, A o) if
and only if &€ = ve(0; 0, X, @)bx + v,(0; 1, X\, )bs, where §x, bs € R satisfy

g (05, A ) g(05u, A ) se\ (0
9031, M, 0)  ga (050, A 0) ) \bs ) N0/

Bifurcation singularities of F' on ® can be classified as the roots (u® A%, a%) €

O

D of F that satisfy additional set of scalar conditions that represent require-
orta . .., 0 Y0 0 X : —
ar5:9(x, 8, 2007, A7 ) of the reduction g =

g(x,s,2z;u, A o) at (2,5,2) = 0 € R and (u, A, o) = (¢, A% o).

As examples, we list definitions of particular bifurcation singularities that will be

ments on certain partial derivatives

considered as organizing centers (u*, A", «*) € D of the mapping 1| see (1.1) and
(2.3).

Definition 2.4. A point (¢ A’ %) € D is a turning point provided that
F(u®, A% o) = 0, and

(2.4) 9:(0;u" A0 %) = 0,

(2.5) 9 (051, A%, a%) # 0, 9,(0; 4", A0, a®%) # 0.

Remark 2.5, It follows from (2.3), Definition 2.5 and Proposition 2.3 that
(u, A, @) is a turning point of I if and only if (u,A) is a regular root of H(-,-, a):
RV+1 L RVH! see (1.4).

Definition 2.6. A point (u®,A\? a”) € D is a simple bifurcation point (and

isola formation center, respectively), provided that F'(u® A% %) = 0, and
(2.6) g:(0;u® A%, a’) = 9:(0; u’ A\, uo) =0,

(2.7)
gz;r(o; _“0‘ /\07 ("0) # 01

9r2(0; 4%, A% a%) g, (0;u°, A0, a®) — g2,0;u® X% a®) > 0 (<0, respectively).

Definition 2.7. A point (u®, 1% a%) € D is a hysteresis point provided that
F(u® A° %) = 0, and

(2.8) 9:(0; uo,/\o,ao) = _q_”(();uo,/\ﬂ,no) =90,
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(2.9) 9z22(0;u°, A% a®) # 0, g,(0; 4%, A% %) £ 0.

Definition 2.8. A point (2%, A% a%) € D is a pitchfork bifurcation point
provided that F(u° A% a°) = 0 and

(210)  ga(0;u0, 0%, 00) = g,(0; 1%, A%, 0%) = g (05 4%, A%, ) = 0,

(2.11) 9rrz (051, A0, a%) # 0, 405 (0; 1%, A% %) #£ 0.

Definition 2.9. A point (¢°, X% o) € D is an asymmetric cusp point pro-
vided that F(u® A% %) =0 and

92(0;u®, A% %) = ¢,(0;u®, A%, %) = 0,

2.12 .
(2.12) 922(0; 4%, 2% ) g5, (0; 1”20 ) — g2 (0; 6" A% 0%y = 0,
3
(2.13) 9z (0; u®, A, a’) # 0, (Tlﬁ-‘/(’/}w £,0,u°, A" a”) le=0# 0,
at:

where 8 = —g,,(0; u°, A% 00)/gar(0; 00, A0, ).

Remark 2.10. The above definitions are independent of the particular reduc.
tion (i.e., the choice of the bordering vectors L and M ). It follows essentially from [6].

Remark 2.11. The bifurcation singularities quoted above have corank = 1. In
principle, singularities (u*, A*, a*) with corank > 2 could not be used as organizing
ceniers of the particular H on ©. The reason is that (u*, A" a*) ¢ D whatever

choice of bordering vectors L and M were considered since dim Ker I (u* ) A* o*) =

corank > 2.

Each bifurcation singularity (u*, A", a*) of I’ is linked (via a dimensional reduction
to the bifurcation equation g(z,s,0;u* A", a*) = 0, and via a conlacl equivalence
on the ring of germs of smooth mappings R x R' — R") to a normal form h:
R! xR! — R! of the particular singularity, see [2]. The equation h(x, s) = 0 describes
qualitative features of the (perfect) bifurcation diagram & of I, sce the introduction
in §1.

Refering to [2] again, there exists a universal unfolding

h- Rl x Rl « R:'r)dim - Rl

of the normal form b related to each bifurcation singularity with a finite codim. The

universal unfolding has the following property: If the fixed imperfection parameter o*
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is subjected to a small (in modulus) perturbation z € R* then there exists 3 € Reodim

such that the imperfect bifurcation diagram, i.e., the solution set
S = {(u, X)) € RY x R': F(u, A 0" + z) = 0},

of F'(,-,a” + z) can be hnked (via a local diffeomorphism) with the solution set

(imperfect bifurcation diagram)
G: = {(z,s) €R?: h(xr 5 3) =0)

of h(-, -, Z). It 1s important to note that the mentioned local diffeomorphisin linkes
the turning points of (-, -, z) with the turning points of (-, -, z). The statement has
the obvious local meaning.

The mapping 2: R* — R©U™ that relates 7 = 2(z) to a given imperfection
z € R* is defined and smooth on a neighbourhood of the origin 0 € R*. Obviously,
Z(0) =0.

This mapping may become a local diffeoniorphisni. In this case we say that
F:RY x R' x R* — R is universal unfolding of (-, -, a*) at the singular point
(u", A", a*).  Necessarily, k& = codim. For example, in case of hysteresis point
(v, A", ") € RV x R' x R, the suflicient condition for £ to be a universal un-

folding reads as follows, see [2], Chapter 3:

g (050, A% "), g (0w A" "), g (0, u*, A% ar)
(2.14)  det | gre(O;u™ X" ™), ges (00, A" ), g (050 X 0%) | #£ 0.
Prrr (05 U™ A" %) ger (0507, A% %), e (050", A7 %)

Due to (2.8-9), the condition (2.14) can be obviously reformulated namely,
(215) (05 0%, A% ™) g (0 0%, A%, 0%) = g2 (05 0, A%, 6*) g (0507, A* L 0™) £ 0.

In the case of a general bifurcation singularity (u*, A*, ") with corank = 1, a sufli-
cient condition can be formulated analogously.
In the following Table, universal unfoldings of the normal forms to the above

selected bifurcation singularities are reviewed:

Table 2.12. Universal unfoldings hi: R' x R x R4 L R! of normal forms:

nomenclature codim h = h(z, s, z), z€Roodm Ipl=lql =1

simple bif. point 1 px?—5*)+:

isola form. center 1 px? 482 + 2
hysteresis 1 prd+gs+rz
pitchfork 2 pri+qrs 4 2 4+ 22z

asymietric cusp 2 ]u‘:’ + qs3 + 21 + 829
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Let (u*, A*,a*) € RN xR! xR* be a particular bifurcation singularity (say, from the
above list). Let us set k = codim. The problem is to characterise the imperfections
2 € R¥ that yield only regular roots of H(-,-,a* 4 z) = 0, provided that we restrict
them to a fixed (independent of z) neighbourhood of (u*, A*). Refering to Proposition
2.3,aroot (u,A) € RN of H(-,-,a*+z) = 0, satisfying (u, A, a*+2) € D, is singular
provided that either g,(0;u", A\* a*+2z) = 0 or ¢,-(0; u*, A*, a*+z) = 0. It motivates
to define

B={(y,\,0)€D: F(u, \,a) =0, g¢.(0;u,A,a)=0, g,(0;u, A, o) =0}
and
H={(y,\,@) €ED: F(u, \,a) =0, g¢.(0;u, X, a)=0, g:(0;u,) a)=0}.

In accordance with [2], Chapter 3, let us call them bifurcation and hysteresis sel,
respectively. We refer to Definition 2.6 and Definition 2.7 for a motivation. The
structure of # and ¥ may be very complicated (unpredictable, in fact) unless we
restrict them to a fixed, sufficiently small neighbourhood M* C D of the chosen
bifurcation singularity (u*, A*, a*) € ©. Thus, we set

H=N0N, B =HANN".

Let Q{mp and 7mp e the natural projections of #* and " into the space R*
of imperfection parameters «.

Definition 2.13. The subset 4}, U of R* is called transition sct. The
simply connected components of the complement to the transition set are called

regularity regions.

We can (formally) answer the above posed question: Given z from a regularity
region, the equation H(u, A, a* + z) = 0 resticted to the slice

N = {(u,A) ERY xR (1, )\, 0" 4+ 2) € N},

has only regular roots (u,)). The converse statement is also at hand. Moreover,
the number of roots in N} is constant when z are selected from the same regularity
region. In [2], Chapter 3, there is shown that the imperfect bifurcation diagrams
., being restricted to the slice M}, are “qualitatively the same” (counting, c.g., the
number of turning points) for all 2 from the same regularity region.

There is a natural conjecture related to our analysis of Newton iterations:
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Conjecture 2.14. Fach regularity region determines one particular global con-
vergence patteris of Newton method. For example, given two imperfections zy and
zy from the same regularity region, the Newton flows (-, 65 z;) on N, are expected

to be topologically equivalent.

3. NEWTON FLOW

We assume (u”, A", ") € D to be a singular pomt with corank = 1, see Remark
2.11. The aim of this Section is to rewiev results conceruing properties of the Newton
flow (-, £;2), see (1.8). Essentially, we shall follow [5]. Let us note that i [5],
there was assumed (w*, A", a%) to be a particular bifurcation singularity namely, a
simple bifurcation point, see Definition 2.6. We claim that the below quoted results
rely (unless exphicitly stated) only on the assumption that (", A", %) € D has
corank = 1.

Given an miperfection z € RY sufficiently small in modulus, there exists a 2-
dimensional invariant manifold of the Newton flow. The manifold contains all the
roots of the extended system H (-, - a* 4+ 2) = 0 that are “organized”™ by the singular

porut (u*, A*). In order to formulaie the result, we recall g and v, see (2.1), and set,

i

g(r,s,2) =gz, s, 20", A" a"), v(e, s, 2) =v(r, s, 20", A7 o).

Theorvem 3.1, Let 2 € R* be a sufliciently small (in modulus) imperfection. The

set
J(z) = {(u, ) € RY xR':u=u"4+ov(r,s:), A=A+s (r,s)€ R?}

is invariant manifold of the Newton flow o(-.1;2): RY x R' — RV x R'.
Proof. Werefer to [5], Theorem 3.5, The proof consists in a straightforward

computation of the field . 47(-, - o* + z) restricted to J(z). It can be shown that

) w(x, s, 2)0r + v (r, s, 2)bs
(3.1) At +1'(17,s‘:)‘/\'+s,n'+:):(1 (.5, 2)br +vsx,5.2) >

bs

where 6, 65 € R' are the solution to

(3.2) ( gr(x,5,2)  gs(x,s,2) ) <51',) _ ( g(x, s, z2) ) A
gre(2,5,2) grs(2,5,2) bs gr(2,8,2)



Theorem 3.2. There exist neighbourhoods 4 and B of (u*, A*) € RN xR! and the
origin 0 € R? such that it holds: Given a sufficiently small (in modulus) imperfection
z € R¥, a point (u,)\) € U satisfies H(u, A, a" + 2) = 0, see (1.1) and (2.3), if and
only if (u,A) € 3(2), i.e., u = u* + v(z,s,z) and A = X\* + s, where (x,5) € U solves

(3.3) g(x,5,2) =0, gr(z,s,2)=0.

Proof. For, see [5], Theorem 3.4. 0

Obviously, the flow ¢(-,¢;z) on the invariant manifold J(z) can be described in
coordinates (z, s) € R? that parametrise 3(z). In particular, (3.1) and (3.2) motivate
to define a vector field .#(-,z): R? — R?,

P ~ ) » N A _.‘1 -
(34) .//{(z,s,z):—(gr(x‘sﬂ) gs(Ls“’!"))> <!](I,S,~)‘).

grr(tlsu:) _(I.rs(lhsyl gr(l‘,S,i

Let ¥(-,t;2z): R2 — R2%, t € R', be the flow related to the vector field .#Z(-, z) on R®
We say that ¢ is reduced Newton flow.

In fact, @(-, t; ) is defined on (RY x R')\ € 4 (2), see (1.6). Similarly, (-, ¢ 2) is
virtually a flow on R2\ €_4(z), where € 4(2) = {(x,s): m(zx,s,2) = 0} and
(3.5) m(z, s, z) = det < 9:(,5,2) - gs(x,5,2) ) .

9r(,5,2)  gas(x,5,2)

We will have this fact in mind whenever we would say that ¢(-,t; z) is a flow on R”.

Corollary 3.3. Given an imperfection z € R¥, the flows ¢(- t;2): 3(z) — JI(z)
and ¥(-, t; z) : R — R? are topologically equivalent (conjugate), see e.g. [4, Definition
1.7.3, p. 38] for this notion.

We can formally define a discrete version to the flow (-, £; z) with a fixed imper-
fection z: Given (2°,5%) as an initial approximation of a turning point of ¢(-, - z).
see (3.3), we define the classical/damped Newton iterations

I(n+1) 1:(11) (n) ()
(3.6) <s("+l)) = (s("’) +dod (s ),

where d =1 / d > 0 is a damping parameter.

It should be emphasized that discrete approximations of ¢ (namely, Newton iter-
ations (1.7)) do not leave J(2) invariant. Consequently, the iterations (3.6) have no
clear link with the “large scale” iterations (1.7). Nevertheless, it is shown in [5] that
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(3.6) can be implemented as a fairly reasonable numerical method for determining
the roots of H(-, -, a* + 2).

Let us come back to the original subject namely, to the Newton flow. The sig-
nificance of the reduced flow ¥ follows from a Center Manifold (-like) Theorem, we
are going to formulate. For that purpose, we have to introduce new coordinates in
RY x R'.

First, we define an auxiliary projection operator ) € Z(RY RV) setting Q =
I—(MTM)™" MMT. Note that Ker@ = span{M} and dimlm@Q = N — 1. If
(1, X, ) € D then it is casy to check that the linear operator Q1 (u, A a): {u € RV
L =0} — Im@Q is regular. Given w € Im@Q and (r,s,2) € R*HF et V€ RY and
(A, @) € R'E satisfy

QF "+ V. AN +s,a"+z)=w, LV =z, A=) 45 a=ao"+:.

The hnplicit Function Theorem yields that V = V(w, 2z s, z) is a germ of a smooth
mapping.
The mapping 2 Im@Q x R? x R¥ = RY x R! x R* defined as

Aw,r,s5,2) = (i, A\ o), u=u" 4+ Ve, r,s2) A=A +s,a=a" 4 =

is a local diffeomorphism. It is also clear that domain of 27" can be extended to D.

We refer to cach point @~ (u, A, a) by giving the level w of Q (1, A, a), the scalar
quantity x = Lu — Lu* and the shift (s, 2) of parameters (A, o) wort. (A%, a%).

Given 2z € R we define a flow w(-, ;z) on Iin @ x R? that is conjugate to the flow
(-, 4;2) on RN x R! setting

w((w, x,8),1;2) = 2 (e(A(w, r s, 2),;z),a"+ 2)
for (w,r,s,z) € 2~ 1Y(D).
Theorem 3.4. The flow w(-, 7; 2) corresponds to the dynamical system
(3.7) I——
(3.8) (I> = F(w,x,s,2),

S

where F(-, -, z): ImQ xR? — R? is a smooth mapping on (Im QxR*)\:#~ (€ 4 (2).
a* 4 2) for cach sufliciently small perturbation = € R¥. The operator F is a smooth

perturbation of the vector field . # | see (3.4), namely,
F(0,-, -, 2)= (-, 2).
Proofl. Werefer to [5], Theorem 6.6, where .7 is also explicitly defined. O
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It is simple to elucidate that J(z) is 4(-, -, -, z)-image of the subspace {(w,x,s) €
Im@ xR?: w = 0}. Any phase curve of the system (3.7-8) is exponentially attracted
by the mentioned subspace, unless it hits the eritical set. 27 (€ 4 (2), a* + z). Con-
sequently, the invariant manifold J(z) plays the same role of an attracting set as far
as Newton flow (-, t; z) is concerned.

The natural conjecture is that the right-hand side of (3.8) should be replaced by

(3.4) namely,

Conjecture 3.5. If z # 0 then the flow w(-,(;z) is topologically equivalent to
(3.7),

(3.9) (f) = H(xs).

It seems that the reduced Newton flow (-, ¢;z) on R? may be significant of the
“large scale” flow (-, t;z) on RV*!.

We shall go on analysing (-, ¢; z). It is clear that properties of this 2-dimensional,
parameter dependent flow stem from properties of the singular point (u*, A*, a*).
This point is assumed to be classified as a particular bifurcation singularity with
finite codim (and corank = 1). In particular, we shall consider those from Definitions
2.4-9 in this paper. We also assume F' to be an universal unfolding of I'(-, -, ™) at
(u*, A%, a*), see §2. Consequently, k = codimn. Then turning points of g(-,-, z) for
a given imperfection z € R¥, i.c., the roots of (3.3) are linked with turning points
of the relevant universal unfolding h(-,- 2): R' x R' — R' of the normal form h
that is related to the particular bifurcation singularity (uw*, A\* «*), see Table 2.12
for examples. The imperfection Z is related to the given z via a local diffeomorphism
Z.

Let #*(-,2): R? — R? be the version of the vector field . #(-, z), see (3.4), where

g is replaced by the above unfolding h, i.c.,

he(z, s,z ho(z,s,2) \ " [ h(x,s,2)"

(3.10) M (z,5,7) = — e(2,s,2)  he(x,s,2) W(x,5,2) -
hor(x,5,2) hes(z,s,2) ho(x,s,z)

Let ¥*(-,t; z) be the relevant flow on R? that is defined by the vector field 7% (-, z).

One may think that both flows ¥(-, {; z) and ¥*(-,{; 2(z)) may perform similarly:

Conjecture 3.6. Given z € R¥ sufliciently small in modulus, the flows (- 1; z)
and Y*(-,t; Z(z)) are topologically equivalent on a sufliciently small neighbourhood
of the origin 0 € R2.

In one particular case, the above conjecture has been verified:
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Theorem 3.7. Let (u*, A*, a*) be a simple bifurcation point, sce Definition 2.6.
Let k = 1 and let F be a universal unfolding of I'(-, -, ™) at (u*, A", "), see §2. Let
us set p = sgn gr.(0) in the relevant formala for the unfolding h = p(x* — s?) 4 z, sce
Table 2.12. Then there exist neighbouhoods U and U* of the origin 0 € R* such that
the flow (-, 7, z) on the slice 41, = {(», 1) € R?: (x,t,z) € U} and the flow ™ (-, 7, 7)
on the slice {3, = {(x,t) € R2: (x,t,Z) € U*} are topologically equivalent provided

that both imperfections z and 7 are sufliciently small in modulus and satisfy

(3.11) sgn¢-(0)sgnz = sgn 2.

Proof. Cf. [5], Theorem 5.1. The assertion concerning the topological cquiva-
lence means that there exists a homeomorphism U, — 5, taking all trajectories of
the flow /(- t; z) onto those of ¥* (-, t; Z). The homeomorphism preserves orientation
of the trajectories but it does not preserve necessarily the parametrisation by time

{. 0

Let us note that the assumption (3.11) embraces the requirement 7 = 2(z),

compare with Conjecture 3.6, as a special case. For a detailed reasoning, see [5].

Remark 3.8. We claim that the statement of Theoremm 3.7 remains true if
(u*, A*, a*) were isola formation cenler. The proof of the above quoted Theorem
5.1 in [5] can be casily adapted since universal nnfoldings of both simple bifurcation

point and isola formation center differ up to a change of one sign, see Table 2.12.

In the coming sections §4-8§6, we present three case studies concerning hysteresis,
pilchfork and asymmetric cusp to be the organizing centers for both Newton flow
and Newton iterations. We shall question the above formulated Conjectures 3.6, 3.5
and 2.14.

At the end of this Section, we shall recall some technicalities from [5] that are con-
cerned with analyzing the reduced Newton flow 0. Finally, we mention a regularised
version of the flow i and give its interpretation as a locally Hamiltonian flow on R?.
As an important byproduct, we gain a useful tool for numerical experiments with
the phase portraits of 1.

Given an imiperfection z € R* | let us consider a mapping .7 (-; 2): R* — R? defined

as
(3.12) T(x,s;2) = (g(x,s,2), g:(2, s, ' = &'

Obviously, .7(-; ) is a local diffcomorphism on R?\ € 4 (z).



Observation 3.9. The image (£(1),n(1)) = F(x(l),s(1);z) of any trajectory
(2(t), s(t)) = ¥(-, t; 2) satisfies

(3.13) E=-¢ | = —

Note that trajectories of (3.13) are oriented rays directed towards the origin 0 € B2,
Thus, images of trajectories ¥(-,{; z) are the mentioned rays restricied to the nage
of the z,s-space (a neighbourhood of the origin) via the mapping .7(-;z). The
crucial point of the analysis consists in a specification of the domain of a (possibly)
multivalued inverse Z~1(-;z). We shall exploit this idea in §4.

Following (1.9), we may regularise the field .#. Let us elaborate: Setting
(3.14) M (x,s,z) =m(x,s,2).4(x,5,2),

where m = m(z, s, 2) is defined in (3.5), we obtain a smoeoth vector field .#7(-, =) on
a fixed neighbourhood of the origin 0 € R? for cach sufficiently small imperfection
z €R*. Let ¢ (-,t; 2) be the flow defined by the ficld .#7(-, z) on R? (in the obvious
local sense). Note that the flows (-, {;2) and (-, ¢; 2) are topologically identical in
R2\ €_«(z). Namely, all the trajectories of ¢(-, {; z) are taken to those of Y7 (- ; 2) up
to a nonsmooth time-rescaling that preserves the orientation at those points (x, s) of
the phase space where m(z, s, z) > 0 and reverses the orientation when m(x, s, 2) < 0.

The properties of the phase curves related to the flow (3.13) suggest that the ratio

l_(_w )

(3.15) H(z,s,z) e

IH

should be constant along any phase curve of the flow ¥i(-,1;z) on R*\ € 4(z) and,
consequently, the flow ¥ (-,¢; z) on R®. It is casy to verify the following

Observation 3.10. The flow ¥7(-,t;2) on R?\ {(x,s) € R*: g(x.5,2) = 0} is
defined by the dynamical system

3 -H(z,s,z
(3.16) (2) = "’2(’”"5"2)( H,f»((xJ s,:)))

In other words, the phase portraits of the flow 7 (-, 1;2) correspond locally to a
Hamiltonian flow on R2? except for the solutions set to g(-,-,z) = 0. The relevant
Hamiltonian is H(-, -, 2), see (3.15).

Note that the reciprocal value to H(x, s. z) is also Hamiltonian of the flow 3" (-, (; =)
on R? except for the set {(z,s) € R?: ¢g,.(x,s,z) = 0}.
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Remark 3.11. The phase curves of ¥7(-,1;2) can be simply computed as
the level scts of H(-, -, 2). In particular, the solution sets to ¢g(-,-,z) = 0 and to
g:(-, -, 2) = 0 interpreted as the level sets H(- - z) = 0 and H7'(, -, 2) = 0 respec-

tively, are (a union of) phase curves of ¥ (-, -, z).

Remark 3.12. In the obvious local sense it holds: The flow 7 (-, ;:) i~< Hamil-
tonian in a neighbourhood of the point (2" s%) provided that either g(a ) #£0
or g.(z° 5% 2) £ 0.

We recall that a hyperbolic fixed pomnt of a planar Hanmiltonian flow 1s cither a
saddle point or a center. Consequently, saddles and centers are the {ixed points
of Y (-, t;z) to be generically encountered on € 4(z) for imperfections z # 0. This
simple reasoning yields the same result, that was already achieved in [8] in a slightly

different. contexi (see our conmnment in §1).

4. A CASE STUDY: HYSTERESIS

Let (w*, A", a*) € D be a hysteresis point, see Definition 2.7. Moreover, we assume
F(-, - a4 z) to be untversal unfolding of (- - a*), 1.e., we assume & = | and (2.15).

We shall discuss Conjecture 3.6 in this context. In order to be particular, let us
fix p = I and ¢ = —1 in the umversal unfolding h = h(r, s, z) of the relevant normal
form, sce Table 2.12. Given an imperfection = € R, we consider the vector field
A(-, 2), see (3.10), and its regularised version .27 (-, z) that is defined inthe spirit
of (3.14). The relevant flows are (-, ¢; z) and *" (-, t; z) respectively.

Fig. 4.1, Fig. 4.2 and Fig. 4.3 depict the phase portraits of " with inperfections
=0,z = ~0.05 and z = 0.05. The thick solid line (that is actually the s-axis)
represents the eritical set € 4+ (2) for the relevant =, Note that the phase curves
of ¥* (-, 1;z) arc adentical with those of ¢*7(- t;2) except for the critical set where
the former phase curves are not defined and up to, perhaps, the orientation (since
pg = —1,sgnm(r, s, z) = —pgsgnr = sguri.e., the arrows in the half-plane {(r, s):
x < 0} should be reversed). It is iiportant to point out that € 4+ (0) 1s also a phase
curve of the flow ™" (- £;0). It consists of fired points of the field . Z*7(-,0)

The local diffcomorphism 2 quoted in Conjecture 3.6 preserves the origing 1.e.,
,‘2"(()) = 0. At first, we shall question Conjecture 3.6 just in the special case that
:=0€eR"

Let us set g(a,s,2) = h(x, s, 2) +yxs>, where 4 € R is a parameter. 1t can
be readily verified that g satisfies (2.8 9) and (2.15) for any choice of parameter 7.
Fixing a value of v, we define ./Z(r s 2) and .#7(r,s,2), see (3.4) and (3.14). As
usual, ¥ and )" are the relevant, z-parameter dependent flows. Morcover, they

depend implicitly on the choice of 4 as well. Due to Conjecture 3.6, the flows
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¥(-, t;0) and ¥"(-,t; 0) respectively, should be topologically equivalent to * (-, £;0)
and ¥*"(-,¢;0) whatever choice of ¥ were concerned.

On Fig.4.4 and Fig. 4.7, the phase portraits of )" (-, {; 0) are plotted assuming two
comparatively small values of 4 namely, v = —0.2 and v = 0.2, respectively. At the
first glimpse, the flows on Fig.4.1, Fig. 1.4 and Fig. 4.7 arc topologically different:
On Fig. 4.4, we observe two hyperbolic and two parabolic regions of the flow in a
neighbourhood of the origin 0 € R2. On the contrary, the flow from Fig. 4.7 exhibits
two elliptic regions and two parabolic regions. In general, given any 7, the origin is a
nonhyperbolic (degenerate) fized point of the vector field .#7 (- 0) on R%. Morcover,
if ¥ # 0 then the origin is an isolated fixed point. Its Poincaré inder is 0 and 2
for ¥ < 0 and v > 0, respectively. The observed facts contradict the statement of
Conjecture 3.6. In other words, the flow patterns or Figs.4.1-3 could not serve as
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universal prototypes of the reduced Newton flow 3 that is organized by a hysteresis
bifurcation point. For example, the flows on Fig.4.4 and Fig. 4.7, subjected to a
perturbation, exhibit qualitatively different behavoir then that offered on Figs.4.2 -3:
Fig. 4.5 and Fig. 4.6 report on the phase portrait of the perturbed flow from Fig. 1.4
assuming the imperfection z = —0.05 and = = 0.05, respectively. Simtlarly, Fig. 4.8
and Fig.4.9 yield the same kind of information as far as Fig. 4.7 is concerned. The
thick solid curves depict the critical set € 4 (=) for the relevant z. The special phase
curves labeled by 1 and 2 are the solution sets {(z,s): g(z,s,2z) = 0} and {(x,s):
gz(z, s, z) = 0}, respectively.

Eventhough Conjecture 3.6 failed, a finite classification of 1 is still available: From
now on, we abandon the above counter-exainples of ¢ for a while. We cousider the
flow (-, ¢; z) related (via (3.4)) to any g = g(z,s,z) = g(z, s, z; u™, A*, «”) that satis-
fies (2.8-9) and (2.15). We are going to show that the phase portraits on Figs.4.4-9
are significant for the flow of ¥(-; z) provided that g satisfies an additional nonde-
generacy Assumption 4.7.

Lemma 4.1. Given an imperfection = # 0, the organizing center (hysteresis)
degenerates into a pair of limit points if and only if

(4.1) SgN z = — SEN grrr SEN ¢, sgn det ( s - ) ;

Jrs Yz

where the derivatives of g are to be evaluated at (x,5,z) = 0 € R®. If (4.1) is not
satisfied then there are no limit points in a neighbourhood of the origin 0 € R?.

Proof. We refer to Theorem 3.2. Aplying Implicit Function Theorem at the
origin (z,s,z) = 0 € R3, the solution set to (3.3) can be smoothly parametrised by
z € R! namely, a point (z, s, z) solves (3.3) if and only if z = 2/(2) and 5 = s(x) in
the obvious local sense. Implicit differentiation yields

(42) (0) = 84(0) = 0, 38(0) = — — Jrrsds
det gs Y-
“\Ges 90

The statement (4.1) follows immediately. 0

Remark 4.2. Refering to Definition 2.13, the transition set of the hysteresis
point consists just of one point z = 0. The regularity regions are clearly the sets
{z€R': 2> 0} and {z € R!: z < 0} restricted to asufficiently small neighbourhood
of the origin.
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Let us cousider the transformation .7(-; z) on R?, see (3.12). The strategy of its
application is explained in §3.

We shall analyse the mmage of a fixed, sufficiently small neighbourhood of the
origin 0 € R? under the mentioned transformation 7 (-; z) for small values of =. To

this end, we change coordinates on R? introducing Z(-; z): R? — R?,
g

(4.3) To(x,s:2)=(p,8) . p=m(xs

T
~—

see (3.5). Note that m, = —g¢,g,rr # 0 at (x,5,2) = 0 € R*. Consequently, Z(;z2)
is a local diffeomorphism on a fixed neigbourhood of the origin 0 € R? assuming
small z.

Let us investigate 7 in (y1, 5)-coordinates, i.c., we define 7 (5 2) = Z(77 (5 2):2)

on a neighbourhcod of the origin 0 € R? for small imperfections 2. Let us resume
that (£,1) = i (p, s; 2) if and only if

(4.4) po—m(xr,s,2)=0, &—glr,s,2)=0, n—ge(r s z)=0.

Note that the first two conditions define implicitly r and s as simooth functions of

(y1,€,2), 1.e.,

(4.5) r=X(,&z2), s=5p¢& :z).

m, M “YHrYrrr :
det > = det Yl #0
9r e 0 s
at (x,8,2)=0.

Substituting (4.5) into the last condition from (4.4), we obtain

For, we recall that

(4.6) 0= g (N0 E02), S 2)2) = 0

as the necessary and sufficient condition for (£,7) to be in the range of 7(-, z) in
the obvious local sense.

Let us define
(4.7) n°(&, 2)

g (N(0,€,2),5(0,&,2), 2).

0

il

Remark 4.3, The graph of the function 5 = 1°(&, 2) 1s a local parametrisation
of the image 7(€ 4 (2); 2) of the critical set € 4 () for sufliciently small z. For, realise
that the mentioned function is implicitly defined by (4.4) with g = 0, eliminating »

and &.
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The leading terms of Taylor expansion

(4.8) 1°(€, 2) = n5(0) 2 + 1g(0) € + nge(0) €2 + O(2% + €| + |€7])

depend on the values of selected partial derivatives of g up to the third order com-
puted at the origin (z,s,z) = 0. For the sake of completness, let us review the
relevant formulae:

75(0) = (92295 — gza.‘]:)g.:lv 77?(0) = gz,g_:l,
(4.9) ¢ 14 2.2 2 -4 -1
nff(o) = 5 (g:u = 959z2s + 9zzad; gz:s)g, Irzz-

Note that 72(0) # 0 due to (2.9) and (2.15).
Let us go on analysing (4.6). Expanding (4.6) at u = 0, it yields

(4~10) n—nc(ﬁ,z)—u(gux,,(o,f,z)+g,,5,,(0,€,2))~;42(g,u(0)+R(;t,£, 2)) =0,

where R is a smooth remainder that vanishes at the origin, and gzz, g9zs are to be
evaluated at (z, s, 2) = (X(0,¢, 2), S(0,§, 2), 2).

We claim that the coefficient at u in the expansion (4.10) vanishes. Substituting
(4.5) into the second equation in (4.4), the implicit differentiation w.r.t. g at u = 0
yields g- X, + ¢,5, = 0. Since p = 0, the vector (gzz,9ss) is a multiple of (g, g,),
and the claim follows immediately. We may conclude that (4.6) is equivalent to

(4'1_1) ﬂ“ﬂ°(€»2)=ﬂz(gxzz(0)+ﬁ(|l‘|+|f|+|z|))
for (p,&, 2) from a sufficiently small neighbourhood of the origin 0 € R3.

Lemma 4.4. For each sufficiently small ¢ > 0 there exists § > 0 such that, given
any z € R! that satisfies |z| < 6, the pre-image i, = T~ (9M,; 2) of the set

M, ={(¢n) € R?: ‘52 + ")2 < €, 9222 (0)1) € 9222 (0)9°(€, 2)}

is an open subset of R?, containing the origin 0 € R2. Moreover, denoting the
restrictions {(z, s) € U, : m(z,s,z) > 0} and {(z,s) € U,: m(x, s, 2) < 0} by U} and
U5 respectively, we claim that Z(-;z): ¥ — 9, is a homeomorphism.

Proof. Thissimply follows from the above local analysis of the range of 7 (-; 2),
see (4.6), (4.11) and (4.4-5). ]

Note that Lemma 4.4 yields the following geometric interpretation of the condition
(4.1):
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Remark 4.5. Let z # 0 be sufficiently small in modulus. The condition (4.1)
implies that the origin (£,7) = 0 € R? belongs to the interior of M,. If (4.1) is not
satisfied then the origin stays outside ;.

In the above excluded case of z = 0, the origin sticks to the boundary n = °(¢, 0)
of M. It follows from (4.8) immediately.

We recall the significance of the flow (3.13). Generically, the phase curves of this
flow (recall that these are all oriented rays directed towards the origin) intersect the
curve ) = °(&, 2) (i.e. the image F (€ «(z); z)) transversally. Let us investigate the
nongeneric case i.e., the trajectories of (3.13) that are tangent to the image of the
critical set. The role of these special trajectories will be explained later.

Definition 4.6. Given an imperfection 2z € R!, we say that (§,7) € R? is a cross
point of 7 (€ 4(z); z) provided that

(i) (& n) € T(Cu(2);2)
(ii) the tangent of T (€ 4(z); z) at the point (£, n) passes through the origin 0 € R2.

We introduce the following

Assumption 4.7. Let
(4.12) nge(0) # 0.

See (4.9) for the particular conditions upon g at the origin.

By virtue of the above assumption, the function 5 = 9°(§, z) of £ is locally either
convex or concave for small imperfections 2. Consequently, we may give a simple
asymptotic description of cross points:

Lemma 4.8. The set
P = {(&n,2) € R®: (£, 9)is a cross point of T (€ 4(z);2)}

is a smooth manifold in a sufficiently small neighbourhood N of the origin 0 € R3.
In particular, (€,7,2) € PNN if and only if

(4.13) =96 2), n5(0)z = nge(0)E2 + R(E, 2)

where the higher order terms R behave as R(,z) = O(|¢z| + 2% + |€3]).

Proof. By definition, (§,7) is a cross point provided that b%nc(f,z) =1=
ﬂf—”’l. The rest of the proof consists in a straightforward asymptotic analysis of the
resulting equation 7°(§,2) = ¢ a%nc(f, z), taking (4.8) into account. O
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Let us formulate the following corollary:

Remark 4.9. For each sufficiently small ¢ > 0 there exists § > 0 such that,
given any z # 0, |z|] < 8, there are either two or none cross points (§,7) of
T (€.4(2);2) in the circle {(£,n): €2 + n? < €}. The former case happens if and
only if

(4.14) sgn z = sgn 1;(0) sgn ng(0).

The idea is to classify the flow (3.13) on 9, for small imperfection 2. Note
that Lemma 4.4 together with Observation 3.9 relate that flow (via a topological
equivalence) to the flow ¥(-,¢;z) on U} and on 4.

9
N

T(€m(z),2)

Fig.4.10a
€

T(Cmlz).2)

Fig.4.11a | Fig.4.11b
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T(Cal(z),2

Fig. 4.12a Fig.4.12b

T(€m(2).2)

Fig.4.13a Fig.4.13b

In order to understand the pictures from Figs.4.10-13, we recall the construction
of the phase curves on 9.: Given a point (£°,7°) € M.,

e take the ray in the (§,7)-plane, directed towards the origin and passing through

the given point (¢°,7°)

e restrict the ray to 9.

The connected part of the restriction that contains (€°,7°) is the trajectory ema-
nating from (€9, 2%).

We refer to Fig.4.10a, Fig. 4.11a, Fig. 4.12a, and Fig. 4.13a for examples of phase
portraits of (3.13) on 9M.. Note that the selected examples of the sets M, cover
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all four scenarios that are available for small imperfection z # 0 w.r.t. the condi-
tions (4.1) and (4.14); see Remark 4.5 and Remark 4.9 for the relevant geometric
interpretation.

The corresponding phase portraits of #(-,¢;z) on U, are sketched on Fig.4.10b,
Fig.4.11b, Fig.4.12b, and Fig.4.13b. The dotted trajectories depict the flow on
47 . The link between the flows on U} (and U;, respectively) and the flow on M,
is defined via the homeomorphism Z(-;2): U — M., cf. Lemma 4.4. The same
appeals to ¢"(-,t; z), changing orientation of the dotted trajectories.

The role of cross points becomes clear from Fig.4.10 and Fig.4.12. Since the cross
points belong to the boundary n = 9°(€, z), each of them has just one pre-image. The
pre-images of both cross points from Fig. 4.10a are saddle points of the regularised
flow ¢"(-,t; z) on i,, see Fig.4.10b. The alternative interpretation of cross points is
on Fig.4.12: Both pre-images are simultaneously centres of Y"(-,t;z). Assuming a
sufficiently small imperfection z # 0, we may resume that the flow 9" (-, t; z) possess
a pair of saddles on €_4(2) provided that z satisfies both (4.1) and (4.14). The flow
has a pair of centers on € _4(z) provided that (4.14) does hold while (4.1) does not.
The remaining alternatives for the signum of z imply no fixed points of the flow
Y (-, t;z) on € «(2).

If we were to propose a prototype of the flow 3 then it would be related to a
“normal form” of g that satisfies Assumption 4.7. The class of the counter-examples
analysed at the begining of this Section offers the following candidates: Let us set

(4.15) h(z,s,2,7) = 23 — s + xz + yzs’.

Given any v # 0, the function h = h(:, -, -,7) (being understood as a germ g) satisfies
(2.8-9) and (2.15), as it was already noted. Moreover, the requirement (4.12) can be
easily verified.

Let 9*(-,t;2) be the flow that is defined by the vector field .#Z*(:; z), see (3.10),
for the particular h defined in (4.15). The obvious dependence of ¥* on v will be
reflected by the notation ¢¥*(-,¢; 2, 7).

Theorem 4.10. Let g satisfy (2.8-9), (2.15) and (4.12). We consider the reduced
Newton flow (-, t;z) that is related to g via (3.4).
Let us choose v such that

(4.16) : sgny = sgn(gzz=(0) 7¢e(0)),

and define ¥*(-,t; 2,7) via (4.15) and (3.10). Then there exist neighbourhoods i and
41* of the origin 0 € R3 such that the flow ¥(-t;z) on the slice 4, = {(z,t) € R*:
(z,t,2) € U} and the flow y*(-,t; Z,7) on the slice 47 = {(z,t) € R2: (z,t,Z) e U}
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are topologically equivalent provided that both imperfections z and Z are sufficiently
small in modulus and satisfy

@17)  sgn (ymw) 4:(0) det ( ;;((00)) gg;(("o)) )) sgn z = sgn Z.

Remark 4.11. As asimple consequence, taking two (sufficiently small) imper-
fections z; and z3 from the same regularity region, see Remark 4.2, the corresponding
flows 4(-,t; z;) (and, naturally, ¥7(-,t; z;)) on i,, will be topologically equivalent. It
complies with Conjecture 2.14.

Proof of Theorem 4.10. Let us choose a small ¢ > 0. We consider a
sufficiently small § > 0 from the assertions of Lemma 4.4, Remark 4.5 and Remark
4.9. We shall treat the case z # 0 first:

Let |z| < 6. In accordance with Remark 4.5 and Remark 4.9, the relevant set 9,
can be classified from the following points of view:

(a) M, either does or does not contain the origin
(b) 9, contains either two or none cross points.

The particular scenario (out of four alternatives that are available) depends upon
whether z does/does not satisfy (4.1) and (4.14). We consider the flow (3.13) on 9,
and have in mind that it is topologically equivalent to the flow (-, ¢;2) on 4} and
on 47, see Lemma 4.4.

The germ h = h(:,-,-,7) is understood as a special choice of g. Let Z # 0 be an
imperfection of h, i.e., h = h(z, s, Z,v). We apply the above treatment to the particu-
lar germ: We define 7*(-; Z): R? — R?, 7*(z,s; Z) = (h(z,s,Z,7), ho(z,5,2Z,7))7,
see (3.12). The relevant versions of Lemma 4.4, Remark 4.5 and Remark 4.9 hold.
On the analogy with €, §, M, and UE, we define £*, 6*, M} and U}i. We assume
|Z| < 6*. Note that (4.1) and (4.14) read as sgn Z = —1 and sgn Z = sgn y.

The conditions (4.16-17) gurantee that both 9, and M} have the same classifi-
cation, as far as the above listed criteria (a), (b) are concerned. Then, clearly, the
flows (3.13) on M, and on MY are topologically equivalent. Consequently, the flow
¥(-,t;2) on UE is topologically equivalent to the flow 1*(-,¢; Z) on }J}i. It proves
the claim for z # 0.

The case z = 0 can be treated similarly, by linking the flow (3.13) on 9, with the
same flow restricted to 3. a
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5. A CASE STUDY: PITCHFORK

In this section, we assume (u*, A*,a*) € D to be a pitchfork bifurcation point, see
Definition 2.8. Let F(-,-, a* + z) be universal unfolding of F(-,-, a*). Consequently,
k=2

We consider a universal unfolding h = h(z, s, z1,z2) of the normal form for a
pitchfork bifurcation, see Table 2.12. We choose p = ¢ = 1, i.e,, h = &3 4+ zs +
z1 + 2922, Let (-, t; z) be the corresponding Newton flow, and let ¢*" (-, t; 2) be its
regularised version.

Fig. 5.1 displays the phase portrait of ¥*"(-,¢;0). As a rule, the thick solid curve
is the critical set. The particular phase curves that are labeled as 1 and 2 are the
solution sets to g(-,-,z) = 0 and to g(-,-,z) = 0, respectively. Unlike in the hys-
teresis case, the phase portrait seems to be structurally stable w.r.t. the higher order
perturbations of A(:,-,0) that do not change qualitatively the bifurcation diagram
(i.e., the pitchfork marked as 1). In other words, Conjecture 3.6 is likely to be true
at least for z = 0 € R2.

Transition sets (see Definition 2.13) that correspond to the particular germ h can
be easily computed. (We refer to [2], Chapter 3, that is the fundamental source of
information.) There are four regularity regions.. As it was mentioned in §2, each
regularity region is characterised by a fixed number of (regular) roots (u, A) to the
equation H(u, A, a* + z) = 0 when z belongs to the particular regularity region. In
two regions there is one root of H(:, -, a*+2) = 0 guaranteed while in the remaining
two regions there are three roots available.

1.000 <] 1.000
X X
|
0.000 —10.000
ST st
o —
} - —1.000F : =1.000
-1.000 S 0.000 1.000 -1.000 S 0.000 1.000
Fig.5.1 Fig.5.2
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T ~1.000 :
-1.000 S 0.000 1.000 —1.000 S 0.000 1.000

Fig.5.3 Fig.5.4

Fig.5.2 and Fig. 5.3, respectively, present examples of phase portraits of ¢¥*" (-, ¢; ),
selecting z from the former and the latter kind of regularity region. The particular
values of z are z = (0.1,0) and z = (—0.01, —1), respectively. One can observe
additional fixed points (saddles) of the flow 4*" (-, t; 2) on the critical set. The number
of saddles equals to the number of nodes (= roots of H(-,-,a* + z) = 0). Further
numerical experiments have confirmed that the flow patterns of 4*"(-,¢;2) do not
change qualitatively when varying z in the same regularity region (|z| has to be
comparatively small, of course). It complies with Conjecture 2.14 again.

Fig. 5.4 demonstrates the significance of the flow (-, ¢; z) for the convergence of a
discrete version of Newton method. We have in mind the iterations (3.6), replacing
naturally .# by the vector field .#* that is related to our particular germ h. We
consider the variant without a damping (i.e., d = 1). Let z = (—0.01, —1) be the
same as the imperfection selected for the experiment on Fig.5.3. Fig.5.4 shows the
computed basins of attraction ’Biﬂ.((xj, sj);2), 7 = 1,2,3, of the three nodes (x;, s;)
of 9(+,t; z) from Fig.5.3. These attractors are marked by circles on Fig.5.4. The
relevant basins are shadowed in black and two tones of grey. As far as the corre-
spondence between a particular attractor and the colour of its basin is concerned,
mind the local covergence property of Newton iterations. The significance of the
saddles from Fig.5.3 becomes apparent when these are projected into Fig.5.4: At
these points, boundaries of several basins cross each other. (It motivates the label
“cross point” from Definition 4.6).

One may recognize another two “cross points” of black with dark grey, and dark
grey with light grey basins. These have no counterpart on Fig.5.3. Taking a larger
window in the (z, s)-plane, we would register a lot of cross points of that kind. They
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can be characterised as pre-images of the three saddles on the critical set (i.e., the
iteration (3.6) take them, after several steps, in one of the mentioned saddles on the
critical set).

The analogous experiment with Newton iterations for the same imperfection z =
(0.1, 0) as on Fig.5.2, is not reported here. There is (naturally) just one basin of
attraction that covers the whole window in the (z,s)-plane that is considered on
Fig.5.2. Nevertheless, the saddle point from Fig. 5.2 plays a role of a troublemaker.
It may divert (for a while) the iterations from the direction towards the attractor.

The Conjecture 3.6 was tested on the same example of F: R* x R! x R? — R*
that was considered in [5]. The mapping F can be related to a steady-state 3-box
Brusselator model (we refer e.g. to [15] for a detailed description of this class of
reaction-diffusion problems). We define

D (w® — w®) 4 Af (wV) + e Ew()
(5.1) F(u, A a)= ( ) +2S ()

2D (w® — w®) 4+ Af (w?) + 26 Ew(?)
where u = (u;,us,u3, ug)7 € R%, X € R!, and w(®) are auxiliary vectors that are
related to u such that w() = (u1,us)7, w® = (u3,u4)T. The operator depends on
a number of unfolding parameters namely, D and E are 2 x 2 diagonal matrices and

A — (B + Dw; + wiw,

f = T e R2.
Buy — wiw ) or w=(w,wz) €

fw) = (

In order to have just two imperfection parameters, we fix D = diag(l,10), E =

diag(1,1) and A = 2. The parameters ¢ and B are set free. Thus, a = (¢, B) € R?.
The point (u*,A*,0*) € R* x R! x R?,

(5.2) u* = (2, 1.425, 2, 1.425), A* = 8.095771, a* = (0, 2.85)

serves as an example of a pitchfork bifurcation points that meets all requirements of
this Section. The choice

L=(0,-1,0,1) , M=1i(-1,1,1,-1)7

of bordering vectors guarantees that (u*, A\*,a*) € D.

The imperfection z = (—107%,0) belongs to the regularity region that yields three
regular roots of the extended system H(u,),o* + z) = 0 € R® for turning points
(u,A) € R* x R!'. The phase portrait of the resulting (reduced, and regularised)
Newton flow 4" (-, ¢; 2) is depicted on Fig. 5.5. The window in the (z, s)-plane contains
all expected fixed points of the flow. The flows on Fig.5.3 and Fig. 5.5 are clearly
topologically equivalent. This observation complies with Conjecture 3.6.
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Remark 5.1. A number of numerical experiments that could not be reported
here, confirm the strong belief that Conjecture 3.6 might be true when the flow ¥ is
organized by a pitchfork bifurcation singularity. In other words, the flow patterns on
Figs.5.1-3 might be significant for ¥" (-, ¢; 2) under an arbitrary sufficiently small per-
turbation z, provided that 9" is related to a pitchfork bifurcation point (u*, A*, a*).
Moreover, the numerical tests comply with Conjecture 2.14: The mentioned flow
patterns correspond to particular regularity regions of 2. In fact, if the choice of
z # 0 yields locally one root (and three roots) of H(-,-,a* 4+ z) = 0 then the flow
pattern of ¥7(-,t; z) corresponds to that on Fig.5.2 (and Fig.5.3, respectively).

Let us report on numerical experiments with classical Newton iterations (1.7).
We stick to the above example (5.1-2), and consider the same imperfection 2z =
(—107%,0). Fig.5.6 depicts the basins B, (-; z) of attraction (shadowed in black and
two tones of grey) for each of the nodal points of ¥"(-,¢; z) from Fig.5.5. In order
to get a planar picture (note that the mentioned basins are subsets of R* x R!), we
restricted the basins to the invariant manifold J(z) from Theorem 3.1. As it was
noted in §3, this manifold is not invariant for the discrete dynamical system (1.7).
In our experiment, J(z) serves just as a set of initial conditions for the iterations
(1.7). We have used (z,s) as natural coordinates on J(z). Projecting the saddle
points from Fig.5.5 into Fig.5.6 (note that both refer to the same window in R2),
one will immediatelly understand the significance of these saddles as “cross points” of
various basins of attraction. In principle, Fig. 5.6 exhibits similar qualitative features
as Fig.5.4. Fig.5.8 reports on the same experiment as Fig. 5.6, collecting the data
on a substantionally larger window in J(z).
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In (w, z, s, 2)-coordinates that were introduced for the purpose of Central Manifold
Theorem (Theorem 3.4), we may refer to J(z) as to the set

(5.3) {(w,z,5,2)eImMQxR' xR xR: w=Qy, yeR? 2=(-107%,0)},

fixing y = 0. Obviously, the basins %LV(-;z) can be restricted to any of the 2-
dimensional manifolds from the family (5.3). The particular manifold is selected by
a choice of y € R4

Fig.5.7 and Fig. 5.9 depict such a restriction to the manifold that is characterised
by the choice y = (0,0.1,0,0). Note that the selected windows in the (z, s)-plane
correspond to the windows on Fig. 5.6 and Fig. 5.8. The significant difference between
Fig.5.6 and Fig.5.7 (and, similarly, between Fig.5.8 and Fig.5.9) seems to be just
a shift in s-direction. Conjecture 3.5 claims in fact that various slices (characterised
by a fixed choice of y) of the basins B, (-; z) should be qualitatively the same (at
least when [|y|| is small). The results of the reported experiment comply with the
claim. :

0.050 _ _ 0.050

0.000

0.050M : -
-0.050 S 0.000 0.050 -0.050 S 0.000 0.050

Fig.5.7 Fig.5.8

The same conclusion was made for a number of level sets (5.3) characterised by a
choice of y that would not exceed the upper bound ||y|| < 0.1. Mind you that the
imperfection z that has been considered, is really very tiny. Taking z slightly larger
in modulus, the size of the windows has to be changed dramatically in order to get
“nice” pictures.
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6. A CASE STUDY: ASYMMETRIC CUSP

The aim is to report on some numerical experiments with Newton method (1.7)
and (1.8) assuming that the Newton field (1.5) is “organized” by an assymmetric
cusp, see Definition 2.9.

As a model problem, we consider the unfolding h(z,s,2) = 22 + 3 + 21 + 235
of the relevant normal form (see Table 2.12). There are just two regularity regions
related to h, see the regions marked as 2 and 4 on Fig.6.1. The mapping h(-, -, 2):
R! x R! — R! has one turning point (and three turning points) when z is chosen
from the region 2 (and region 4, respectively). These turning points are fixed points
(nodes) of vector field .#*(-,z), see (3.10). If z is on a transition set (these are
marked as 3 and 5) then there are just two turning points. One of them always
degenerates into either a simple bifurcation point or an isola formation centre. The
former case happens if z belongs to the set 3, the latter case take place when z is from
the transition set 5. If z = 0 then there is just one turning point that degenerates
into the point classified as asymmetric cusp.

We may look at the turning points as (regular, or singular) roots of the mapping
H(,-2):R* = R% H(-,-,z) = (h(-,-, 2), ha(-,-, 2))7 that is defined in a clear analogy
with (1.1). As it was mentioned, we may also interprete the (“nondegenerate”)
turning points as fixed points of .#*(-,z). Let .#*"(-,2) denote the regularised
version of .#*, see (3.14). The turning points that are available in the above scenario
can be also understood as (hyperbolic, or nonhyperbolic) fixed points of .#*"(-, 2)
on R%. We already know that there are fixed points of #*"(-, 2) (located necessarily
on € 4+(z)) that could not be interpreted as roots of H(-,-,z) = 0. We used to
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call them cross points. These have an important influence on the performace of any

variant of Newton method.

We start with the analysis of the flow *7(.,¢; z) that is defined by .#*"(-, z) on R2.
In accordance with Conjecture 2.14, we would expect just one flow pattern provided
that 2z were ranging in one regularity region. It is true as far as the region 4 on
Fig.6.1 is concerned: The typical phase portrait of ¢*"(-,¢; z) is plotted on Fig.6.3
(z = (0,—0.2)). Here and in the forthcoming pictures, the thick verticals represent

critical sets € 4+ (2).

Fig.6.2

1.000 1.000
\_/,_,
/ X
N\
%5 o~ : =3-10.000
/ = \
1
~—_|
/"“‘\
T —1.00 o —~1.000
-1.000 S 0.000 1.000 -1.000 S 0.000 1.000
Fig.6.3 Fig.6.4

In the regularity region 2 from Fig. 6.1, there could be distinguished three subre-
gions of imperfections z that lead to a qualitatively different behavoir of ¢*"(-,¢; z).
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These subregions are related to the subsets that are labeled as 2, 3, 4, 8 and 9 on
Fig.6.2. The relevant flow patterns are sketched on Figs.6.4-6. In particular, Fig.6.4
is computed for the imperfection z = (0,0.2). It illustrates the flow when z belongs
to the subregions 2, 3 and 4 on Fig.6.2.

It should be noted that as far as the (“nonregularised”) flow ¥*(-, ¢; z) is concerned,
it can be shown that the critical set is empty when z is taken from the subregion
2. If z belongs to 4 and 3 then there exists the critical set € 4+(2) that consists
of two and one straight lines parallel to z-axis, respectively. Consequently, the flow
patterns of ¥*(-,¢; z) for z from 2, 3 and 4 are not topologically equivalent.

Fig.6.5 (2 = (0.149,—0.25)) and Fig.6.6 (z = (0,0.2)) illustrate the phase por-
traits of the flow ¢*"(-,¢; z) when z belongs to the subregions 8 and 9, respectively.
The transition of the flow ¥*"(-,t;z) as z varies from the region 8 to the region 2
(e.g., the transition of the flow on Fig. 6.5 to the flow on Fig. 6.4) is organized by two
nonhyperbolic fixed points on € ¢+« (z) when 2z happens to be on the set 9, see Fig. 6.6
for an example. Note that the relevant flow is locally Hamiltonian (see Remark 3.12).

If z is chosen from the transition set labeled as 5 and 7, respectively, the typical
flow patterns are depicted on Fig.6.7 and Fig. 6.8. (Here, the particular z are defined
as z = (253, —3s?) for s = 0.303 and s = —0.303, respectively.) The nonhyperbolic
fixed points of .#Z*"(-,z) organize the flow ¢*"(-, ;2 + 6z) for small variations of
6z. Note that the mentioned organizing centres are a simple bifurcation point and
an isola formation centre, respectively. The perturbation of ¥*"(-,¢;z) is then well
understood (see Theorem 3.7 and Remark 3.8). It explains the transitions from
Fig.6.3 to Fig.6.4 and from Fig. 6.3 to Fig.6.5.

The highest degeneracy of the flow is achieved for z = 0, see Fig.6.9 for the
relevant phase portrait.
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As far as the continuous Newton method is concerned, the above experiment
contradicts Conjecture 2.14. On the other hand, the performance of discrete versions
of Newton method seems to be in an agreement with that conjecture. Eventhough
the flow ¥* (-, ¢; z) exhibits qualitatively different flow patterns when z is chosen from
the regions 2, 3, 4, 8 and 9 (Fig. 6.2), there exists just one basin of attracion %fd.(q z)
of damped Newton iterations that covers all the window in the (z, s)-plane.

1.000 1.000
X X
=2-0.000 | 0.000
-1.000 ~1.000
-1.000 S 0.000 1.000 -1.000 S 0.000 1.000
Fig.6.9 Fig.6.10

There are naturally three basins of attraction for damped Newton method provided
that z belongs to the subset 6. Figs.6.10-12 report on the convergence of damped
Newton (with d = 1, d = 0.1 and d = 0.01), assuming the same imperfection
z = (0,~0.2) as that on Fig. 6.3. The basins of attraction are shadowed in black and
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two tones of grey. Again, the saddles from Fig. 6.3 play an important role as “cross
points” of the basins of attractions. Due to a heavy damping (Fig.6.12), discrete
Newton iterations seem to take over some qualitative features of the continuous
Newton: The “chaotic” region on Fig. 6.12 clearly fits in the region in Fig. 6.3 that is
taken by 9*(-,1; z) in one of the critical sets (we might call the region as a divergence
region of the flow 9*(-,¢;2)). The separatrixes of the flow (Fig.6.3) are, in fact,
boundaries of the chaotic region on Fig.6.12.
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