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ON SOME T O P O L O G I E S ON P R O D U C T S O F O R D E R E D 

SETS 

J . MAYER AND M. N O V O T N Y 1 

Received September 13, 1965 

1. F O R M U L A T I O N O F T H E P R O B L E M 

Several definitions of topologies on ordered sets can be found in the 
literature ([1], [2], [4]). One of them is due to 0. F r i n k [3], who defined 
a certain type of ideal in ordered sets and obtained his topology by 
taking the family of all completely (meet-) irreducible ideals and dual 
ideals as a sub-basis for the open sets. Frink found out that the topology 
of a cardinal product of a finite number of ordered sets defined in this 
manner, is identical with the product topology if every factor of the 
product has been topologized following his definition. 

We shall generalize Frink's notion of ideal in ordered sets by sub
stituting in his definition, finite sets by sets of cardinality < m where m 
is a given infinite cardinal number. Then we take the family of all 
completely irreducible generalized ideals and dual ideals as an open 
sub-basis. This topology is equal to the product topology if the number 
of factors is less than m and if every factor is m-directed, i.e. every 
subset of the factor of cardinality less than m has an upper and a lower 
bound. In particular we can take an arbitrary system of ordered sets 
with a greatest and a least element and define the family of all completely 
irreducible normal ideals and normal dual ideals to be an open sub-basis. 
Then the product topology is identical with the topology defined on the 
cardinal product of these sets in the described fashion, using the family 
of all completely irreducible normal ideals and normal dual ideals of 
the product as an open sub-basis. 

By an ordered set we mean a partially ordered set, by a product of 
ordered sets Pv(v e N) their cardinal product which we denote by 
II Pv. Every x e II Pv is a function x(.) with the property x(v) e Pv for 

veN veN 

every v e N; we set pr v# = x(v), so that pr,,, is a function with the domain 

1 This articl was prepared whil the authors were guests of t h Mathematisches 
Ins itut, Univ rsi ät Bonn. M. N o v o t n ý thanks for t h assistanc given by t h 
Deutşcher Akademíscher Austauschdienst, J . M a y r for a partial grant by t h 
National Sci nc Foundation. 
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II Pv and the range Pv. The symbols pr„A and pr^H have the obvious 
veN 
meanings: If A cz II Pv then prvA = {prr# | x e A}; if B c P„ then 

veN 
pr^1 JB = {x | a: G II Pv, prvx e B}. The following statements are obvious: 

veN 

1.1 If B cz Pv then pr^B = II O/t w&ere O, = B and O/t = P for 

every pi ^ v. 
1.2 7/ Alv c Pv for every veN and A = II Al( ^en A = fl p r ^ 1 ^ . 

reN j>eN 

1.3 If vQeN and A^ cz PVQ for every peM, then prro (fl pr" 1 -^) = 

= n<. 
If (P,,, rv) are topological spaces for every veN (Pv is a set and rv 

a topology on Pv), we denote by 11 (Pv, rv) the cartesian product of the 
veN 

sets Pv with the usual product topology. 
The cardinal number of a set M is symbolized by | M |. And we 

write "iff" instead of "if and only if". 

2. SOME PROPERTIES OF THE OPERATORS * AND + 

G. Birkhoff ([1], p. 58) defined the antitone operators * and + on 
the family of all subsets of an ordered set. In the sequel we need some 
properties of these operators. In the whole paragraph, N is an arbitrary 
non-empty set, Pv an arbitrary non-empty ordered set, for every veN. 

2.1 Lemma / / A c II Pv then pr^-A*) cz (prvA)*, and pr„(^4+) c 
veN 

c (prvA)+, for every veN. 
Proof. If xv e pr,,,^*) then there exists an element x e A* with the 

property prvx—Kxv. Hence t <£ x and prvt ^ prvx ~ xv, for every 
teA. This implies xve(prvA)*. The proof of the second inclusion is 
analogous. 

2.2 Lemma. If the set A, A c II Pv, has an upper [lower] bound, then 
veN 

(prvA)* cz pr„(.A*) [(prvA)+ cz prv(A+)], for every veN. 
Proof. If xv e (prv^4)* then xv ;> tv for every tv eprvA> We take an 

arbitrary element p e A* and set q(fi) = p{/i) for every ft-^.v and 
q(v) =- xv. Therefore we have qe A* and xv = q(v) = prvqeprv(A*). 
The second formula has a similar proof. 

2.3 L«?mma. If 0 4-_4 a M Pv then (prvA)*+
 c prv(A*+), for every 

. veN 

#eN. 
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Proof. If A has no upper bound, we have A* = 0, hence A*+ = U Pv 

veN 

and pr„(A*+) = Pv => (prvA)*+. 
If .A has an upper bound, 21 and 2.2 imply (pr„^4)* = prv(^4*). For 

every x e A and y e A* we have x ^ y; it follows that # e Al*+ and 
that A* has a lower bound. Hence, with 2.2 we obtain (prlH4)*+ = 
= (Wv(A*))+ c pr ,(^*+) . 

3. m-IDEALS 

3.1 Definition. Let m be an arbitrary infinite cardinal number, P an 
ordered set. A subset I cz P is called an m-ideal of P iff for every sub
set M, 0 4= -M cz I with I M I < m the inclusion M*+ cz I holds. 

3.2 Remark. The ideals of Frink are precisely the K0-ideals. A sub
set / of the ordered set P is called normal ideal iff it is an m-ideal of P 
for every cardinal number m. 

Some results of this paragraph are deduced under the following, 
assumption about notation: 

(a) Let m be an infinite cardinal number, N a non-empty set, Pv a non
empty ordered set for every v e N. 

3.3 Lemma. Let (a) hold. If I cz II Pv is an m-ideal of II Pv] then 
veN veN 

prvJ is an m-ideal of Pv for every veN. 
Proof. Let Mv be a set with the properties 0 =j= Mv cz pr„7, 

I Mv I < m. For every x e Mv there exists an element yx e I with the 
property ]>rvy

x = x. We set A = {yx \ x e Mv}, and have 0 4= -4 c / , 
I A I <I I Mv\ < m. Therefore A*+ cz I and pr,,(.A*+) c pri;7. By 2.3 we 
find (Mv)*+ = (prvAl)*+

 c pr,(-4*+) cz p r j . 
3.4 Lemma. Let (a) hold and \ N \ < m. If I cz H Pv is an m-ideal 

veN 

of\\Pv,thenl = IIprvF 
veN veN 
Proof. It is clear that / c II prvJ. Let x e II pr̂ JT. For every veN 

veN veN 

there exists an element xv e I with*pr^" = ^rvx. We put M = {#" | v e N}_ 
Then 0 4= i f c I , | M | 5 i | N | < m , and by assumption i f *+ c / . 
For every y e M* and every i> e N we have #v < ^, hence pr„.r -= p r ^ <I 
5i prvy. This implies x S y for every 1/ e -M*, i.e. # e Jf*+ c: / . So we 
have shown II prvI c / which proves the lemma. 

veN 

3.5 Definition. Let m be an arbitrary infinite cardinal number, P an 
ordered set. The set P is called m-directed from above iff every non-empty 
subset M cz P with the property | M | < m has an upper bound in P. 

Most results of this paper are deduced under the following assumption 
about notation: 
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(/?) m is an infinite cardinal number, N a non-empty set with \N \ < m, 
and Pv a non-empty ordered set which is m-directed from above for 
every veN. 
* It is easy to see that the product II Pv is m-directed from above 

veN 

under the assumption (/?). 
3.6 Lemma. Let (/3) hold. If Iv a Pv is an m-ideal of Pv for every 

v e N, then II Iv is an m-ideal of II Pv. 
veN veN 

Proof. Let 0 4= M c II / „ , | i f | < m . Then prJ(M c Iv, |pr„M | ^ 
veN 

<S | M | < m for every veN. Hence, we have (pr„M )*+c/ r for every 
veN. Since the set M has an upper bound it satisfies (prvM)* c prv(M*) 
by 2.2. Because the operator + is antitone, and because of 2.1 we have 
pr,.(M*+) = pr„((M*)+) c (pr,M*)+ c (prvM)*+cz /„ , for every ve N. 
This implies M*+ c llprv(M*+) c II Iv. 

veN veN 

For an m-ideal Iv <- Pv we can write pr^ 1 ^ in the form of a cardinal 
product, following 1.1; since all factors of this product are m-ideals 
we have 

3.7 Corollary. Let (/3) hold. Let Iv c Pv be an m-ideal of Pv. Then 
pr~xIv is an m-ideal of II Pv. 

veN 

From 3.3, 3.4 and 3.6 we obtain 
3.8 Theorem. Let m be an infinite cardinal number, N a non-empty 

set with | N | < m, Pv a non-empty ordered set which is m-directed from 
above for every veN. Then for a set I c II Pv the following statements are 

veN 

•equivalent: 
(A) I is an m-ideal ofUPv, 

veN 
(B) I = II prv7 and every pr,,J is an m-ideal of Pv. 

veN 

4. COMPLETELY I R R E D U C I B L E m-IDEALS 

4.1 Definition. Let m be an arbitrary infinite cardinal number, P an 
ordered set, 1cPan m-ideal of P. This ideal is called completely irre
ducible iff for every family I^fa e M, M =)= 0) of m-ideals with I = fl IM 

fteM 

there exists an index ju0eM such that I** = / . 
4.2 Theorem. Let m be an arbitrary infinite cardinal number, N a non

empty set with | N | < m, Pv a non-empty ordered set which is m-directed 
Jrom above for every veN. Then for an m-ideal I cTlPv the following 

veN 

•statements are equivalent: 
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(A) I is completely irreducible, 
(B) There exists an index v0e N and a completely irreducible m-ideal IVo 

of PVo such that I = pr^1!,,,. 
Proof, a) If (A) holds, then I = II prvI = n p r ^ p v O , by 3.4 

veN veN 

and 1.2. Then 3.3 and 3.7 imply that every set pr^pr^ I ) is an m-ideal of 
IT Pv. By the irreducibility of I the existence of an index v0e N is 

veN 

assured, with the property I = pr^ (pr1(0I). We set prVoI = IVo. Let 
Ir0(jbiGM, M=(=0) be a family of m-ideals of PVo with I,,0 = n I?0. 

fxeM 

Clearly I = pr~ (n I?0) -= n Wv~Q I?0 and every set pr^ I^o is an m-ideal 
fieM fteM 

of II Pv, by 3.7. This implies the existence of an index fi0eM such that 
veN 

I = pr~1Ii'o°. Hence IVo = prVoI = pr .Jpr" 1^ 0 ) = 1%, and we have 
proved that IVo is completely irreducible, i.e. (A) implies (B). 

b) Let (B) hold and let F(JU e M, M 4= 0) be a family of m-ideals 
w i t h I = n I " . We have F z> I = p r " 1 ^ , and therefore P = 

veM 

= pr^ (pr^P1) for every fieM. Following 1.3 we obtain I„o = 

= Prio(Pr^l/io) = Prro7 = Pr*0( PI I") = prro( n p r ^ p r , , / ' ) ) = np*V0F. 
fxeM pieM peM 

Every set pi\,,0Î  is an m-ideal of P„0 by 3.3. The irreducibility of IVQ 

implies the existence of an index /t0e M for which Ia,o = pr^I*10. Hence 
I = W-lIV0 = p r ^ p r , / " 0 ) 3 F°. Obviously, I c /"•. Hence I = F° 
and I is completely irreducible, i.e. (B) implies (A). 

4.3 Remark. The notion of m-ideal and of set m-directed from above 
can be dualized. The new notions will be called dual m-ideal and 
m-directed set from below. A set is called m-directed iff it is m-directed 
from above and from below. It is clear that a dual theorem can be 
formulated to every of our theorems. 

By dualizing the notion of normal ideal we obtain the notion of 
normal dual ideal. 

5. m-IDEAL TOPOLOGIES IN O R D E R E D SETS 

5.1 Definition. Let m be an infinite cardinal number, P an ordered 
set. Let (P, rm(P)) be the topological space in which the topology is 
defined by taking the family consisting of all completely irreducible 
m-ideals and of all completely irreducible dual m-ideals of P as a sub-
basis for the open sets. Then rm(P) is called the m-ideal topology on P. 

5.2 Main Theorem. Let m be an infinite cardinal number, N a non-empty 
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set with \N\ < rrt, Pv a non-empty ordered set which is m-directed for every 
veN. Then 

n(p,,Tm(p r)) = ( i i p „ , T m ( n p j ) . 
veN veN veN 

Proof. Both topologies are defined on the set II Pv. We shall show 
veN 

that both have the same open sub-bases. According to the definition 
and to 4.2 an open sub-basis © of the topology Tm( II Pv) is composed 

veN 

of all sets of the form pr7 Iv where veN, and Iv is an arbitrary com
pletely irreducible m-ideal or a completely irreducible dual m-ideal of Pv. 

By definition, an open sub-basis of the space II (Pv, rm(Pv)) consists 
veN 

of all sets of the form II Jv where Jv = Pv for all but a finite number 
veN 

of indices veN; for these indices, J v is a completely irreducible m-ideal 
or a completely irreducible dual m-ideal of Pv. It is easy to see that 
every set of this form can be written as an intersection of a finite number 
of elements of © and that every element of © has this form. It follows 
that S is itself a sub-basis for the open sets of the topological space 
II (Pv, rm(Pv)). Since both topologies have the same sub-basis, they are 

veN 

identical. 
5.3 Definition. Let P be an ordered set. We denote by (P, T(P)) the 

topological space in which the topology is defined by taking the family 
consisting of all completely irreducible normal ideals and of all com
pletely irreducible normal dual ideals of P as an open sub-basis. Then 
T(P) is called the normal ideal topology on P. 

5.4 Corollary. Let N be a non-empty set, Pv a non-empty ordered set 
with a greatest and a least element for every veN. Then 

n ( p „ t t p , ) ) = ( n p „ i ( n p , ) ) . 
veN veN veN 

Proof. We take an infinite cardinal number m with m > | II Pv |, 
veN 

m > | N |. Then m > | Pv | for every veN.,The set Pv has a greatest 
and a least element, hence it is m-directed. Therefore the equality 
in 5.2 holds. But rm( II Pv) = r( II Pv) and rm(Pv) = r(Pv) for every 

veN veN 

veN. 
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6. PROBLEMS 

The following questions are among those raised by our results. 
6.1 Is it possible to construct for every pair of infinite cardinal 

numbersm < n an ordered set P such that Tm(P) =f= Titt(P)? 
6.2 Is it possible to construct for every cardinal number m > K-. 

such an m-directed set P, that for every pair of infinite cardinal numbers 
p < n < m the inequality T^(P) =j= Tn(P) holds? 
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