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AN O R D E R I N G OF T H E SET OF N A T U R A L N U M B E R S 
B A S E D ON P E A N O A X I O M S 

VLADIMIR D E V I D E , Zagreb 

Received November 14, 1966 

1. The set N of natural numbers is defined by Peano by requiring 
that there exists a mapping ' of N into itself such that 

1° l e N 
2° (V xeN)x' ^ 1 
3° (V x, y e N) x' = y' => x = y 
4° (V P c N) {[1 e P & (V xeN)(xeP=>x'eP)]=>P = N}.1) 

The order-relation < in N is usually introduced only after the binary 
operation of addition is defined (and investigated to some extent) by the 
definition 

(V x.yeN) [x < y <=> (3 z e N) x + z = y]. 

In this paper we give a definition of order ^ which does not presuppose 
addition.2) 

2. First we derive some properties of (N/) as defined by 1. 1°—4°. 
2.1 (iy e N) {[(Vx e N) x' ^ y] => y = 1} i.e. 1 is the only element 

of N with the property 2°. 
Suppose the contrary and let N B a =5-= 1 &(V# e N) x' =£ a. Then for 

M = N\{a} it would hold l e i and (Vx e N) (x e M => x' e M), hence 
by 1.4° M = N, a contradiction. 

2.2. (VP c N) {[(Vs G N) (a? G P => x e P') => P = 0}3) i.e. no non-
void subset of N is contained in its '-image. 

Let PCF and denote N\P = M. 1 G M since, because of 2° and the 
supposition P cz P' ,\$P. Furthermore, if x e M then x$P, hence 
by 1.3° x' $ P', hence x' $ P, i.e. x' G M. By 1.4° M = N and P = 0. 

3. A binary relation R in N (i.e. a subset R of N2) will be called re
gular if 

(i) (VxeN) R(x,x) 

(ii) (Vx,yeN)(R(x,y)=>R(x,y')). 

*) Throughout this paper we use logical symbols informally. 
2) An introduction of order (related to this one) into the set of natural numbers 

based on another axiom-system was given in [1], 
3) P' ={y\ (Zx e P) x' = y). 
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E.g. N2 is regular. Let Q be the intersection of all regular B, i.e. Q(X, y) 
if and only if for all regular B, B(x, y) . Q itself is regular. 

We shall show that Q(X, y) is a relation of (total) order (and even of 
well order) of N. 

4. We prove first some properties of Q. Let 

(VxeN)(Qx = {y\Q(x,y)}). 
Df 

4.1. (VXEN) QX = {X}[) (QX)'. 

Proof. By (i) x e QX. By (ii) y G QX => y' e QX i.e. (QX)' C QX. Hence 

(1) QX => {x} U (QX)'. 

Let the binary relation B0 be defined by 

(Vx, yeN) (B0(x, y)oye{x}[) (QX)'). 
Df 

Obviously, B0 satisfies (i). B0 satisfies (ii) too, for, if B0(x, y) then 
ye{x}[) (QX)' hence by (1) y e QX and y' e (QX)' hence B0(x, y'). B0 is 
regular and by (1) and the definition of Q, B0 == Q. 

4.2. (VXEN)Q(X') = (QX)'. 
Proof. By 4.1. 

Q(X') = {X'} [) (QX')' = ({X} U (QX'))', 
(QX)' = ({X} U (QX)')'. 

Since Q(X')\(QX)' => ({x}[) Q(X'))\({X}[) (QX)'), so fe(a:')\(Da;)']' ^ [({x} 
U g(-r '))\(W U (QX)')]' = ({x} U e ( * ' ) ) ' \ ( M U (QX)')' = Q(X')\(QX)' hence 
by 2.2. Q(X')\(QX)' = 0 i.e. (QX)' => Q(X'). Similarly 

[(e*)'\e(*')r => [({*} u (QX)')\({X) u Q(x'))Y = 
({x}[) (QX)'Y\({X}[) Q(X'))' = (QX)'\Q(X') hence by2.2. (o#)'\e(*') = 0 
i.e. Q(X') => (QX)'. 

4.3. By 4.1. and 4.2. 
(Vx 6 N) QX = {x} U Q(X'). 
4.4. (Vx, yeN) xe\Qy\lyegx. 
Proof by induction on x. Let the predicate P be defined by P(x) <> 

o (Vy eN)[xeQy\Jye QX]. D/ 
Df 

Induction basis. 1 e Q 1 by 3 (i) and k e Q 1 => k' e QI by 3 (--)» hence 
by 1.4° gl = N, hence (Vy e N) y e QI and a fortiori P(l). 

Induction step. Suppose for fixed x = keN: P(k), i.e. (^2/eN) 
ke Qy V y e gk. In case k e Qy by 3 (ii) &' e Qy; in case yeQ^ by 4 j 
2/ G{&} U (£&)', hence either a) y = k or b) y e (gfc)'. If t/ = k tneH ^' _. 
= k' G £(&') hence by 4.3 k' G £k = gy, and if y G (@k)' then by ^ 2 . 
y e Q(k'). So in either case k' G Qy V 1/ G @(fc'), i.e. P(k'). 
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5. Now we can prove that o is a (total) ordering (and even a well-order
ing) of N. 

5.1. (Vx,yeN)[Q(x,y) v Q(y, x)] by 4.4. 
5.2. Q is reflexive, since by 3(i) (VxeN) Q(X, x). 
5.3. Q is antisymmetric, i.e. (V#, y e N) Q(X, y) & Q(y, x) => x = y. 
Proof by induction. Let the predicate P be defined by P(x) <=> 

<-> (Vy e N) [Q(X, y) & Q(y, x) => x = y]. Df 
Df 

Induction basis. If Q(y, 1) then by 4.1.1 e{y} U (Qy)' hence by 1.2° ^ = 
= V i.e. P(l). 

Induction step. Suppose for fixed x = ke N: P(k), i.e. (first induction 
hypothesis) (Vy e N) o(ft, y) & o(y, k) => k = y and suppose o(ft', ^) & 
& Q(y, k'). 

Second induction basis. o(k', 1) & o(l, k') => k' = 1 is trivially true: 
by the (first) induction basis Q(\, k') & o(ft', 1) => 1 = k' i.e. o(ft', 1) & 
& g(l, k') => k' = \, and since ft' = 1 is impossible by 1.2°, so o(k', 1) & 
& o(l, ft') is also impossible. 

Second induction step. Suppose for any fixed m Q(k',m) & Q(m, ft') => 
=> ft'=ra and suppose o(ft',ra') & o(ra',k ').Thenby4.1. k' e{m'} u (o(ra'))' 
&m' e {k'} u (o(k'))'. If k' = m' the second induction step (and therefore 

the first inductions step, too) is proved, so suppose k' e (o(m'))' & m' 
e (o(ft'))'. Then by 1.3° k e Q(m') Seme o(ft'), hence by 4.3. ft e (o m)' & 
& w e (o ft)' hence by 4.L ft e Q m & m e o ft, hence by the first induc

tion hypothesis k =m, hence k' = m' again. 
5.3.1. Another variant of the proof of 5.3.1) Let 

(2) M = {x\(lye N) [Q(X, y) & Q(y, x) & x ^ 2/]}. 
Df 

If x e M, then for some y e N it is x e Qy = {y} U (Qy)' and x ^ y, 
i.e. # G (o^)'. Hence there is a u e Qy such that x = w'. Similarly y e QX = 
= {x} U (o#)', y e (QX)'. i.e. there is a v e QX such that y = #'. But then 
u e Q(V') and by 4.3. ue QV and similarly v e Q(U') and by 4.3 v e QU. 
Hence Q(U, V) & Q(V, U); but u = v is impossible since u = v => u' = 
= v' i.e. # = y. In other words, if x G M then a; = ^' with ue M, i.e. w' = 
= .r G ilI'- Hence M' => M and by 2.2. M = 0, i.e. 5.3. holds good. 

5.4. o is transitive, i.e. 
(V#, y,zeN) Q(X, y) & o(^, z) => o(a, z). 
Proof. Let 

M = {x\ (ty, zeN) [Q(X, y) & Q(y, z) & o(z, x) & non (# = y = z)]}. 

o(x, y) & Q(y, z) & o(z, x) & non (# = y = z) yields x^y &y ^ z & z ^ 

1 For 5.З.—-5. cf. [1]. 
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7̂  x, since e.g. x = y and o(y, z) & Q(Z, X) would imply (by 5.3.) that y = 
= z. 

Suppose xeM. Then there are elements y, zeN such that x ^ 
z^z y & y ^ z &, z ^ x and y e QX &ze ay & xe QZ i.e. by 4.1. ye {x} U 
U (QX)' &ze{y}\) (Qy)' & x e{z} u (02)'. Hence 2/ G (OZ)' & z e (Qy)' & 
a: e (QZ)', i.e. there are elements u, v, we N such that ue QX & v e 
Qy & w e QZ and y = u' & z = v' & x = w' i.e. w G Q(W') & v e Q(U') & 
&w G o(v'). u = v y v = w v w = ^ is impossible since this would 
imply u' = v' v i/ = 10' y w' = u' and hence by 5.3. x = y =z. By 4.3. 
u e QW & v e QU & w e QV. Thus for u e N with w' = x there exist ele
ments v, w e N such that o(u, v) & Q(V, w) & Q(W, U) & non (w = v = 
= w), i.e.ue M. In other words, xe M implies ue M hence x = u' e M' 
i.e. M' -=> M. By 2.2. M = 0 and therefore 
(non 3 x e N) (3y, z e N) [Q(X, y) & Q(y, z) & Q(Z, X) & non (x = y = 
= z)] hence 

(V#, y, ze N) [Q(X, y) & o(y, 2) => (non Q(Z, X)) y x = y = z]. Since 
by 5.1. non Q(Z, X) => Q(X, Z) and by 5.2. x = y = z => o(#, z), 5.4 is proved. 

5.1.—4. express that o is a relation of (total) ordering of N. 
5.5. Proof that o is a relation of well-ordering of N. 
Let M be a subset of N with the property 
(Vy G M) (3 xe M) [Q(X, y) & x ^ y]. 

Let 
Mx = (J QZ. 

zeM 

By 4.1. Mx -=> M. If yxe Mx, there is an ^ G M such that 2/t G 0^ i.e. 
o(#, 2/x). By the supposition on M, there is an x, x ^ ^, such that o(#, y). 
Because of 5.4. Q(X, yx), i.e. yxeqx = {x} U (o#)'. But yx = xis impossible, 
for then we would have Q(y, x) and this, together with the supposition 
Q(X, y) by 5.3. yields x = y, contrary to the supposition that x ^ y. 
Hence x ^ yt and therefore yx e (QX)' or yx = y'z with y2 e QX C MX. 
In other words, if yx e Mx then yx = y2' e M\ i.e. M[ -̂  Mx. By 2.2. 
M! = 0 and a fortiori M = 0. Hence 
M 7*-= 0 ==> non {(Vy e M) (Ix e M) [Q(X, y) & x ^ y]}, i.e. 
M =-r- 0 => (3^ G M) (V# G M) [non o(z, y) y x = y]. 
Since by 5.3. non Q(X, y) implies Q(y, x) and by 5.2 x = y implies Q(y, x) 
it follows 

M ^0=>(lyeM) (Vx e M) Q(y, x) 

i.e. N is well-ordered. 

[1] D e v i d e V l a d i m i r , An Axiom System for Natural Numbers and their Ordering, 
Period, mat.-phys. astr. 15 (1960), p . 153—159. 
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