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N O T E S O N G A M E T H E O R Y E Q U I L I B R I A 

VÁCLAV POLÁK AND NADĚŽDA POLÁKOVÁ (Brno) 

Reeeived April 19, 1967 

One approximation theorem on simplicial inclusive multivalued 
transformation, two versions of Brouwer's fixed-point theorem, following 
of B. Peleg's result [9] and L. S. Shapley's one [11] the indepen­
dence of Nash equilibrium of polyhedral cones preferences, but de­
pendence of stability in cooperative games and certain computational 
remark, are settled in § 1. § 2 follows L. S. Shapley's [10] results 
about non-existence of saddlepoints of special matrices and partially 
studies a structure of A's submatrices with saddlepoints if A has no 
such point. 

First a word about denotations: a point x e E n is an n by 1 matrix 
(i.e. a column), TA means a transpose of A (i.e. x, y e~En, Txy is an 
inner product of x and y), As or AL means a submatrix of an m by n 
matrix A, indices of its columns or rows form the set S C N = 
= : {1, 2, . . ., n} or L CM = : {I, 2, . . . , m} respectively, A^H) = 
= : AN-S, A^L) = : AM~L (i.e. A = AM), for X C E n CX is the convex 
hull of X, A <; B means a{- S b^ for all i, j and A ^ B means A ^ B 
but not A = B. 

§1 
By Sn one denotes an ^-dimensional simplex in Euclidean space E n , 

^(Sn) the set of all its nonvoid convex subsets and S^(Sn) the set of 
all its nonvoid sides (i.e. all its vertices, edges, . . . , (n — l)-sides 
and Sn itself). A simplicial partition S of Sn is such its partition on 
^-dimensional simplices that any two A's from S are either disjoint 
or have only one side (of any dimension) in common. A point-set trans­
formation 0 of Sk into <Sf(St) is called simplicial inclusive according to S 
if S is a simplicial partition of Sk. any two points have the same trans­
form if they belong to the interior of the same side of A e S and have 
their transforms in the inclusive relation if the sides of A e S to the 
interiors of which they belong are in the inclusive relation (not necessarily 
in the same sense; the interior of 0-side is the vertex itself). Evidently 0 
is simplicial inclusive according to any S ' which is a refinement of S . 
S is called primitive if for any A e S the set of images of all A's vertices 

forms the inclusive chain (i.e. any two transforms are in inclusive 
relation). Without loss of generality one can suppose 0 has primitive S. 
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(If © is not primitive, choose for every A e © its interior point a n d 
construct convex hulls of it with A's (k — l)-sides. The union of all 
such k + 1 simplices forms the siplicial division © a ) of S,.. For every 
Aa) e © ( 1 ) all points have the same transform except those which 
belong to certain "distinguished" ( k — l ) - s i d e . Deviding Aa) into 
k simplices (by means of a similar operation with distinguished 
(k — l)-side) one obtains © ( 2 } etc. Evidently A{1'} e ©u*} has for all 
its points (except a distinguished (k — l)-side) the same image, all 
points of the distinguished (k — l)-side have (except of a distinguished 
(k — 2)-side) t h e same image, . . ., all points of the distinguished edge 
have (except of a distinguished vertex) the same transform. Denote °x, 
%, . . ., kx the vertices of AKk) in such a way t h a t °x, 1x, . . . ,sx(0 _\ s <k) 
is the distinguished s-side of A{k) and let {x, J'x, i <j be any two vertices. 
Choose ly, iy arbitrarily in the interiors of sides C(°x, . . ., {x), C(°x, . . .Jx). 
As the first one is a subset of the second and iy(P — ix0, iy0 = ix0 i t 
must be either lx0 C ix0 or {x0D

 jx0. Hence © a ; is primitive.) 
We call a point-set transformation F continuous if F transforms Sk 

into ^(St) a n d if y exF when nx -> x, ny -> y, ny e nxF,
 nx, x e Sk, 

where the convergence is in the sense of the usual metric topology 
(see [4]). 

R e m a r k 1. Let F or P be a continuous transformation of Sk into 
^(Sj) or St into &(Sk). Then F and P have a coincidence (i.e. x e Sk7 

y e Sl exist such t h a t yexF, xeyP). Proof: The transformation R 
of cartesian product Sk (g) St into %?(Sk (x) Sf) : (x, y)->yP ® xp is 
evidently continuous and hence a fixed point exists (x, y) e (x, y)n = 
= yP (x) xF (see [4]). Hence x e yP, y e xF\ Q.E.D. 

Theorem 1. L/et 0 be a simpliciai inclusive jpoint-set transformation 
of Sk into^(St) according to primitive ©. Then a continuous transformation 
F of Sk into ^(St) exists so that 0 = F on the vertices of ©. 

P r o o f : Let °x, xx, . .., kx be the vertices of A e a. Let among {*#4>}*=o 
be r different ones (1 _\ r Sl k + 1). Without loss of generality one can 
suppose the existence of a sequence {i j j= 0 , — 1 = i0 < i± < i2 < . . . < 
< ir = k of integers such t h a t 1 g s' < s <l r, i8,_x < i _l i8,, i8_x < 
< j <\ i8 implies (x0 C jx0 and *a?0 == ix0 holds only if s' = s (it follows 
from the primitivity of © immediately). Construct xp for arbi trary 

x e A, x = ^ Xfa as follows 
i-=0 

(1) a * = { У : y = £ ф , £ r . = 1, Ъ Ł 0, 
k 

/=o 7.Гo ' - = 

;=o i=o ••> Lvj^Y[i8} 
where °y, ly, . . ., tsy are vertices of tV* to — i 9 7 ' = 0 «=l 

"~ 1'2'"-'-)»nd/i i=- : I k-
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The last inequality is superfluous for £ JU8 =-= 1. Evidently xF is a convex 
*-=i 

polyhedron. Even it is % =£ 0 (For 0 _\ tx < t2 < . . . < tr i t suffices 
/ ^ ( l ^ s _\ r) to explain as a sum of ts — ts_x(_z 1) non-negative 
numbers (t0 = : —1). In this case in (1) equalities only hold.). We have 
iXp = {x0 (For x = {x Xt == 1 and A;- -= 0 for j =£ i. Hence for is_x < i _\ is 

it is fxs = 1 and fig, = 0 for s' ^ s. Thus £ i>;- = 1 and it results y • = 0 

W 8' 

for J > ts. Since ]T *\ = X A7* with s' < s is in (1) superfluous, we have 
j=o i-~-i 

*F = C(°y, . . . , f*H), q.e.d.). 
(2) xF depends only on {ix0}ixeJo by the rule (1) if a; lies in the interior of 

v-dimmensional side A v of A. (Let xF depend on{ix(p}ixeAz by the rule (1) 
and suppose x eAz_x = C(i°x, . . . *«--#, *«+-a;, . . . , % ) , (not necessarily 
in its interior), where % eAz, is_x <ju _\ is. We have finished in the 
case is_i < is — 1 because there exists jj^zju, ixeAz such t h a t 
?x0 = ^x0 and hence all inequalities in (1) remain. Thus let i8_y + 1 = 
= is=ju. Then % ^ { % } ^ 6 j M and hence ^ = 0. I t results 

t, 

]T Vj•, _i /ux + . . . + fig is superfluous and it follows xF depends on 
= 0 

W ' * 6 j M by the rule (1).). 
Hence F defined according to (1) on A and on A', A, A' e © is the 

same on Ad A'. Thus F transforms Sk into ^(St). F is con t inuous 
(Let nu->unv ->v nv e nuF. Wi thou t loss of generality one can consider 
all nu lie in a certain A e ©. For each j , 0 S\ j _\ tr,

 nv^ - > ^ - , where 
tr tr 

nv = YJ nv/y and v = £ ? jy. As for each i, 0 ^ i _\ k it is nXi -> Ar-
/=o ?-o 

k k 

where nu = £ wA/x, ^ = J ] V # , w e bave w/^s -> jus for each 8 , l ^ g f . 
i - 0 i = () 

v e uF is now a consequence of (1) and nv e nuF.)\ Q.E.D. 
R e m a r k 2. Since xF is a subset of the greatest simplex among 

W'ae .d , , , x eAv (it follows from (2) immediately), F has this proper ty : 
if a; lies in the interior of Av and xF contains an inner point of any side S 
of St, then for one lx eAv it is {x0 D S. 

Theorem 2. Let 0 or W be a simplicial inclusive transformation of Sk 

intoSf^i) or ST into£f(Sk). Then 0 and W have a coincidence. 
Proof : Let <&k or ©^ be a primitive simplicial parti t ion of Sk or St 

belonging to 0 or ^ respect ive ly and F or P the corresponding continuous 
transformation mentioned in the Theorem 1. F and P have a coincidence, 
i.e. xeSk, y e St exist such tha t y_xF> xGyJt. Evidently the sides 
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U, V, AH,AV (not necessarily all of the same dimension) exist with 
these properties: U is a side of Sk, V of Sp zl u of a certain Aa) e © ;,, 
zip of A(2) e ©z and # lies in the interiors of U and Au, v in the interiors 
of V and Av. As ©A. is a simplicial division of Sk., we have U D Au. 
For the same reason it is V D Av. According to Remark 2 a vertex 
{x eAu exists such that ix(P D V and a vertex % ezl?, with iyv D U. 
Hence lxeAu C U C jyw, }y eAv C V C (x0 and 0 and W have 
a coincidence; G.E.D. 

R e m a r k 3. Note that the coincidence takes place even for the ver­
tices (x, hj of © / ;, ©j . 

R e m a r k 4. Theorem 2 can be characterized as a simplicial-inclusive-
coincidence version ofBrouwer's fixed-point theorem. Other coincidence 
versions see [3], [6]. 

R e m a r k 5. I t can be settled also tw^>-sphere-collision version 
of Brouwer's theorem: Le t S1, S2 be two disjoint (n — l)-spheres 
of E n , F a continuous transformation of S1 onto S2. Le t during a uni t 
time interval S1 be in quiet (i.e. 'S1 == S1 for all t e [0,1]) bu t S2 conti­
nuously changes (i.e. it moves and deforms; the set of points of S2 

in the time t we denote *S2) as far as 1S2 C S1 (hence the continuous 
transformation Ff of ^S1 onto *S2 is defined: x e S1, lx = x, y = : xF, 
*xFt = : ly elS2, i.e. a homo topy {F'}«e[o,i] l s defined). Then t e [0,1] 
and x e S1 exist such that lx = lxFt. 

P roo f : Le t S be an (n — l)-sphere having the same center o as S1 

and containing S2. Denote S the union of S with its interior. Le t 
{P*}je[o,i] be the set of homotheties with the center o representing the 
continuous change of S1 into S and such that Spt ft Spt> = 0 for t ^ t'. 
Since {F'}*e[o,i] i s a continuous set of continuous transformations 
(i.e. fSFt = lS2), one can choose S such great that lSpt C S for all 
t e [0,1]. For x e S1 define xf =_xF and p r o l o n g / on the_whole S1 that/ 
may continuously transform S1 onto S2. For a; eS — S1 let us choose 
t e (0,1], x e Spt (such t exists unique) and define xf = X(j>ty\FtPt. 
Since / continuously transforms S into itself (it is in fact a continuous 
transformation between two flows), / has a fixed point x, xf = x, i.e. 
x = X(pi)-x FtP~t, x e Spt. Hence for x = : x^-i we have x e S1 = ^S1, 
x = x^ptyiF~tpf(p~t)-i = x^piyipi = xjft, i.e. fx = ^pi; Q.E.D. 

L^t us consider a set N == {1,2, . . ., n} of players, each player i has 
a finite set S?t of stra tegy possibilities and a sharp polyhedral convex 
cone K. C E p as its preference relation (i.e. i finds a' be t ter t han a if 
a' =fi a and a' ea + K{(= a' — a e K{). Let n transformations fi be 
given of Sfx ® . . . ®£fn into E? such tha t ft(x) means a payoff to the 
player i if x are players' choices. By a natura l way let us define fi 

as transformations of S = SSl® . . . (x) SSn(s{ = : card 9?
i — 1 and SSi 
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is the ith probability simplex) into E p prolonging / / s given above on the 
vertices of S. Such a situation is called an ^-person non-cooperative 
game F(N, S, fi,Ki). For xeS xsi let us denote such a point of 
Si = : SSl ® . . . (x) SS{_t (x) S8t+l ® . • . ® SSn which is the orthrogonal 
projection of x on S\ For a convex polyhedron P in E^ and a sharp 
convex polyhedral cone K Pmax K = {x : x e P a n d it does not exist y in P 
so t h a t y ^ x, y e x + K}. Evidently Pt(z) = : C (/;[(1,0, . . . , 0), z], .. ., 
/•[(O, . . ., 0,1), z]) is the set of possible i' s payoffs for other players ' 
choices z e S\ Hence the optimal i' s play in this case is to have his 
payoff in Pf[z)maKK*. We call xeS a Nash equilibrium if for each 

SЛ ieN/^)GPf-^( 
Theorem 3. For each F(N, S, /•, Ki) a Nash equilibrium exists. 
R e m a r k 6. For p = 1 it is the well known Nash's theorem (see 

[7]). For general p but Kx positive a n d K2 negative cones we have 
L. S. Shapley ' s result published in [11]. For different t h a n our prefe­
rence relations (but in a very general form) the theorem is proved b y 
B. Peleg in [9]. We shall give two proofs. First as a trivial corollary 
of the Nash's theorem, the second (independent of the Nash's one but 
for n = 2) b y means of our Theorem 2. 

P r o o f 1. Let c-'s be vectors of unit lengths lying in the interiors of 
corresponding ICf%. Define new payoffs q?{(x) = : Tcifi(x), Hence we 
have p = 1 a n d a Nash equilibrium x exists for payoffs <p{. But x is the 
Nash equilibrium for// s, too, for ci lies in the interior of Kftor all i and Kt 

is sharp; Q.E.D. 
P r o o f 2. Let us consider n = 2. Change the denotations a^ = : fi(i,j), 

b{j = : /2(i, j) for i e Sfx, j e<$f?t and k = : sx — 1, I = : s2 — 1. <$/ = : 
== : (ct{j), L2% = : {b;j) are vector matrices, s/j = (aXj, . . ., ak+x ?-) 
a (k + 1) by p and s/* = (aix, . . ., a- t+x) a p by (I + 1) matrices of 
real numbers (SS^ffi are defined analogously). For xeSh define 
x0 = {y '• y e-/S-, (Tc2&xx,. .., Tc2£%l+Xx) y = max {Tct&•#}}. E v i d e n t l y ^ 

is not a null set and it is a convex hull of all such vertices iy of St for 
which Tc1SSfc is maximal. Hence 0 transforms Sk into S^(Sj). & is simpli-
cial .inclusive (In E^+2 denote first k + 1 coordinates of a point as 
x1, . . , , x^1 and the last one as t. Consider I + 1 closed halfspaces 
t ^ Tc2^-x and orthogonally project the boundary of their intersection 
into the space E7r+1 of a>axis. The projection is a polyhedral part i t ion © 
(with some sides being unbounded) of E^+ 1 because each halfspace has 
an inner normal with positive tth coordinate (the dimension of any 
boundary side and its projection is the same). If one corresponds to the 
interior of any side A of © such a side of S( vertices % of wiaich are all 
ty's with j having this property: the boundary of the above considered 
halfspace j contains the side its projection being X, then this correspon-
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dence is inclusive. Evidently © defines a polyhedral partition on Sk. 
which wre refine on simplicial one. The above considered inclusive 
correspondence between interiors of sides of © and S^(St) defines our 0.). 
Analogously one obtains a simplicial inclusive transformation W of St 

into &>(Sk): y,={x : xeSk, (Tcxs#^y, Tcxs?2y, ... , Tcvtf
k^y) x = 

= max ^c^stfty}}. According to Theorem 2 0 and ̂ Phave a coincidence 
l^i^fr+l 

(x, y). Since yw (or x0) is a part of best replies of the first (second) player 
to the strategy y (x) of the second (first) one (because K^yK^%re sharp 
and cl9 c2 lie in their interiors), (x, y) is our required equilibrium; Q.E.D. 

R e m a r k 7. Evidently the set of the best i's replies x, z0 = {x : ft(x, z) e 
e P[}lRxEi (z)}, to other players' choices z is the union of some S8i'8 sides. 
0 need not to be inclusive: Let n = 2, p = 2, sx =1, s2 = 2, K2 a positive 
cone (i.e. the set of points in E2 with all coordinates non-negative), 

denote Sx = C(XX, X2), S2 = C(YX, Y2, Y3), f2(Xx, Yx) = J ( I , o j } , 

f2(Xx, Y2) = {(o, I ) } , f2(Xx, Y3) = {(0,0)}, f2(X2, Yx) = { ( - I ,o)}, 

/2(K2, Y2) = {(o, i j j )},f2(X2, Y3) = {(0,1)} and for Z = : 1 Xx + I K2 

define ©x = {zJl5 J 2 } , /lx = C(XX, Z), A2 = C(X2, Z). Evidently x0 = 
= G(,YV Y2) for x = Xx and x in the interior of Av x0 = C(Y2, Y3) 
for x = Z and x0 = { Y3} for # in the interior of zl2 and # = X2. Hence 0 
is not inclusive according to ©x and even it cannot be inclusive according 
to any other ©x; Q.E.D. 

R e m a r k 8. The independence of the game theory on cones preferences 
fails in this question of an ^-person cooperative game F with a character­
istic vector-function v(S) e Ep, S C N, where N = {1,2, . . ., n} is a set 
of players and v(S) > o, v({i}) = o, i e N: Such an (X, B) (where X is 
a, p by n matrix, X ^ 0, B = {Bx, . . . , Bt} is a partition of N and 
YJ %i — v(Bj)) is called stable (see [2], [8] where the stability for^? = 1 

ieBj 

is defined) if for each ju e N /u is not weaker than any other player 
of Bp /u e Bp i.e. each objection Yc against ju(G C N — {ju}, Yc is a p by 
card G matrix, ]T Yk = v(G), Yc ^ Xc and such v eC 0 i?; exists 

JceC 

that Yv ^. Xv) can be countered (i.e. there exist such D and ZD that 
ju 6 D C N — {*>}, ZD a # by card D matrix, ^ ;> XD, £ ^ = v(D) and 

£eD 
ZDriC ^ -T/>nc)* ̂ n e following example shows a game _T (with jp = 2, 
n =̂  3) for which for a given B no stable (X, B) exists (compare the 
result of B. Peleg, M. Davis, and M. Maschler, see [8], [2], for p = 1): 
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E x a m p l e 1. JV = {1,2,3}, B = {(1,2), 3}, »(1,2) = A ) , v (1,3) = 

-©••*" - (•)• 
It hX = (xnxu°\x.. s> o, a,u + xu = 1, z21 + *„ = 3. If 0 g *„< 1 

it is 2 < x22 S 3. There exists an objection 7 ( M ) = P 1 1 + e i 2 — ^ i ~~~ 
\#2l ~f" 82 * #21 — 

1 ) where r 1 > o of the player 1 against 2. I t cannot be counter-
£2/ \s2/ 

ed by 2 because 2 cannot get I * in the coalition (2,3) 
\z22 d: x21 > 2/ 

due to i>(2.3) = 1*1 . If x21 ^ 1 it is x22 g 2 and an objection Y(2y3) = 

=_ (#12 + ^ ^ - ^ 2 - £ i J , £l > 0, e2 ;> 0 of 2 against 1 exists. Since 
\#22 ~"t~ £2 2 %2 £ 2/ 

ix I 1 
I u I j> 0 it cannot be countered by 1 if, say, sx = —— because 3 will 
\X2lI ' 10 

get at least j ^ / l u j i n the coalition (2,3) whereas in (1,3) he will get 

a t most ( I . 

W 
Two other added examples may have an interest, too. 
E x a m p l e 2. N = {1, 2, 3, 4}, B = {(1, 2), (3, 4)}, X = / j J J jj) , 

v(2, 3) = (^) , v(\, 3) = Q , »(1, 2) = ( } ) , v(3, 4) = ( } ) , v(S) = ( ^ 
otherwise. This game has the property t h a t (X, B) is not stable bu t 
(xn, x12, x13, x14; (1,2), (3,4)), (x21, x22, x23, xM; (1,2), (3,4)) are 
stable. 

E x a m p l e 3. N, B, X as in the Example 2. v(2, 3) = ( J , v(l, 2) = 

= ( |Vt>( l ,3 ) = fi\ ,0(3,4) = (}V»(5) = ( j j j for other S. I t shows, 

on the other hand, tha t (X, B) is stable whereas the single par ts are 
no t stable. 

R e m a r k 9. Let C(A) mean the convex hull of columns of a matrix A, 
P = {x : x G E n , Bx ^ b} a convex polyhedron lying in C(A) (b e E*, 
B is a k b y n matrix, Al an n b y I matr ix) . Evident ly Y = {y : y e fl---., 



172 

BAy ^ b} is a convex polyhedron. Denote for ye Y K(y) (or L(y)) 
a set of all indices j such that B^x = V (or yi > 0) and write k(y) = : 
= : card K(y) (l(y) = : card L(y)). Being inspired by an explicite 
formulas for basic optimal strategies solving a two-person zero-sum 
ma tr ix game (see [5]) one can settle this necessary and sufficient condition 
for y e Y to be a ver tex of Y (for a free eligibility of A one may find it 
useful from numerical point of view): 

(3) C(BK{y)AUlJ)) is an (l(y) — l)-dimensional simplex. 
Proo f : I . Le t y be a ver tex of Y and (3) be no t true i.e. either two 

columns of BK{^AL(y) are equal or all are different bu t in (3) men t ioned 
polyhedron is a t most l(ij)—2 dimensional. According to R a d o n ' s 
theorem (see[l]) two disjoint sets Lx, L2 of indices exist such that 
C[(BK*\4L(y))Lx] n C[(BK^AL(V))LJ ^ 0 i-e- a vector z e El exists 
such that Tez = 0, z1^ ^ o, zl = 0 for i $ L(y) and BK{y)AwzL[y) = O. 
As yUy) > O two points yX2 = y -£- sz (for a suitable small s > 0) 
lie in Srt and (for i = 1, 2) BK^)Ayi = &*w> and, evidently, e can be 
chosen such small that B^Ayt > b'forj ^ K?/, i = 1. 2. Hence u- ^ y12e 
e Y and «/ is not a vertex . I I . Let y e Y and (3) is true. Suppose y is no t 

a vertex of Y i.e. yx,y2e Y exist, yx •=£ y2 such that y = — yx-\ y2. 

I t results for i = 1, 2 j <£ L(y), y\ = 0 and BK^Ayl = bK^\ As yeu . == 1 
for i = V2 we have BKKy)AL{y)(yx — y2)

uv) = o, Te(yx — y2)
L ?j>'^ 0, 

(^i — 2 /2 )^ T-= ° which contradicts to (3); Q.E.D. 

§2 

If A = (a,--) is an m by n- matr ix and r, s integers, 1 ^ r ^ m — 1, 
1 <; «$ 5i n — 1, then the sets of saddlepoints of matrices A, Aih{q q }, 
A^->"\ A»fc;;$ are denoted b y ^ , ^ , . . . , . , ^ ' - ^ , ^ ; ; ^ l ' ^ , 
is the saddlepoint of A if for all i, j , aih g aioJo g O,o/).The row <p 
or the column q means the pth row or the qth column in A. 

Lemma 1, Let A = (aih) be an m by n matrix, m ^ 1, n ^ 3 and let 
every m by (n— 1) submatrix has a saddlepoint. Then Sf = 0 iff there 
exists a column, q, ^vith two maximal elements x, y, x e,9p

qx, y eSfq 

for qx # q? and S^qx, S?q2 have no common element in q. 
P r o o f : I. Necessity. At least two columns qx, q2, qx -=£- q% exist so 

t h a t - 9 ^ , - $ ^ a have a common column. ( O t h e r w i s e ^ for r = \,2, . . ., n 
is a hr by 1 matrix. Let a = aH be the maximal element in A. There 
exists exactly one column, V, such that a eSf^. I t is aH = a for all 
i = 1, . . ., n, i -7-= V and akl> < a. Then for every s =£ V it is aks eSf^ 
which contradicts to the above result.) Fur ther Sfqx, Sfqz have disjoint 
sets of rows (in another case any common element of SPqx, S?q2 would 
be a saddlepoint of .A). From this it follows the rest of the assertion. 



173 

II. Sufficiency. Let the assumptions be satisfied and Sf ^ 0- Let 
au e ^ , , a2l eS?q_, a = ai2 eS?. Evidently ai2 = an = a21 (since 
a eS?q_ \)S?q_a,ndan = a21). Asalq_ <£ a__ (since an $Sfq_) and a2q_ < a2l 

we have i > 2. At least one of integers q_, q2 i s> 2; let qx > 2. Then 
a eS?qi and a u = a = an = a21. Evidently aix eSf and from this 
it follows aix GS^q_(]S^q_—a contradiction; Q.E.D. 

R e m a r k 10. The assumption of S?q_, S?q_ in q is substantial as this 
example shows: For the matrix 

A = 

it is: every S?q ^ 0, a_2eS?, x = a12, y = a22 and aB2eS^q_0S^q_ 
for qx = 1, q2 = 3. 

R e m a r k 11. The similar assertion holds for (m — 1) by n submatrices 
but the word "column" and "maximal" must be substituted by "row" 
and "minimal". 

Theorem 4. Let A = (a{j) be an m by n matrix, m __ 3, n __ 3. For 
given integers r, s, 1 __ r __ m — 3, 1 __ s __ n — 3 let every m — r by 
n — s submatrix of A have a saddlepoint. Then S? = 0 iff there exist 
integers 1 t_ r0 __ r, 1 t_ s0 __ s, 1 __ p_ < p2 < . . . < pH __\ m, 1 __ 
__ qx < . . . < qSo __ n such that 1° A has no saddlepoint in rows px, . . . , pr_ 
and columns qx, ..., qSo and either 2° a) there exists a column, q, with 
two equal elements x, y, x eS?Vl'''Vr° , y eS?Pl'''Pr° and S?Vl'"Vr° , 

* ' * ' ?i. . . .?.0-- ^i . . .« . 0 -a?. 0 ? i . . . ? . 0 - i > 

cf>Vi...vr0 disjoint in q, or 2° b) there exists a row, p, with two 

minimal elements u, v, u e«$^-•••-%--, v eS^Pl-"Pro^Pro and «$^-•••-%--
£fv\ •• -vr0-2 Pr0 are disjoint in p. 

Proof. I. Necessity. Since every (m — r) by (n — s) submatrix has 
a saddlepoint and S? = 0 one of two cases will appear: 

1. There exists k, 1 __ k __ s so that every (m —- r) by (n — k) 
submatrix has a saddlepoint but at least one (m — r) by (n — k + 1) 
submatrix, B = A^\[][q^__) has no saddlepoint (let k be maximal 
with this property). According to Lemma 1 there exists a column, q, 
of B with two maximal elements x, y, x &£?%_'.'l^, y eSfvq\'"

Pr__k+1 

a n d g n ^ : : . t n^£: : :£ l f c + 1 = 0 i e - 2° a) h°Ws where%0 = T! 
s0 = k + I. 

If 1. doesn't work then there exists I, 1 __ I g r (maximal one) with 
the following property: every (m — I) by n submatrix has a saddlepoint 
but there exists an (m — I + 1) by n submatrix, C = A^?*•••?»--> 
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with no saddlepoint. According to remark 11 there exists a row, p, of G 
with two minimal elements u, v, ueSfvi-.-v^ v e.yrr---PI-IPI+I and 
^?Pi...pi^pi-..p\-iPi^i are disjoint in the row p, i.e. it holds 2° b) for 
r0 = I + 1. The property 1° is clear (as <? = 0). 

I I . Sufficiency. Suppose, on the contrary , Sf 4=- 0, a>j &SP. Then 

T ~ / a > » .rro> .7 * 1 ' ' **o JJ ? i . . . « » 0 - i Qi...QsQ-2<ls0 

2° a) or a^ e ^ - ^ U ^ - V ^ in 2° b) it is atj = a; = y or ai} = 

= u = ?;resp. From this it follows aineSfVx'"Vr^ n ^ P l ' , ? ? r o or a_. e 

E ^ i - ' - P v i n ^ - ' V ^ resp.—a contradiction with 2°; Q.E.D. 

Theorem 5. Ljet A = (a^-) be an m by n matrix, Sf = 0 and 

(4) no column have two maximal elements. 

The maximal number of m by (n — 1) submatrices of A with saddfepoints 
equals two. 

Proof . Let there exist three such submatrices, e.g. Ax, A3, A3. 
Then some saddlepoints of Ax, A2, A3 lie (after suitable denotation) 
in their tu rn also in the column 2, 3, 1; denote s{ these points, i.e. s,t eS^t 

for i = 1, 2y 2, si = a-jiki, kx = 2, k2 = 3, k3 = 1. (Let it be not the 
case. Thus there exists i e { l , 2, 3} such tha t fef ^ { 1 , 2, 3}—{ i} . Let, 
for example, it be i = 1; then kx > 3. For at least one I e{2, 3} it is 
kt ^ 1 [due to (4)]. We can assume I = 2. Then j x ^j2 (in another 
case it would be sx = s2 and sxeSf — a contradiction). From this it 
follows si eSfx2 for i = 1, 2 and also aj^eS^^. Hence sx = s2 = a7afcl, 
which contradicts to (4). Thus s3 ^ a7- fcl ̂  «x S «j^2 ^ s2 S. ajzi<% ^ s

3 , 
i.e. only equality holds. I t follows [from (4)1 j x = j 2 = j 3 and we have 
a contradiction with 5^ = 0; Q.E.D. 

Theorem 6. Let A = (a{j) be an m by n matrix, m^l,n7>3Sf*=0 
and (4) hold. Then the maximal number of m by (n — 2) submatrices with 
saddlepoints is equal to 2n — 3. 

The assertion follows immediately from the following lemmas. 
Lemma 2. Let for a matr ix A = (a{j) (4) hold and Sf = 0. Then 

there doesn' t exist four distinct elements being saddlepoints in their 
tu rn of four distinct submatrices of type AMpq) such tha t none of them 
is a saddlepoint of any two submatrices A$(pqi), A^pq2), qx =£ q2. 

Proof . Let four such saddlepoints sx, . .., s4 exist and APiQi for i = 
= 1, . . . , 4 be the corresponding submatrices . At most two saddlepoints 
of {B1} . . ., <s4} can lie in the same row. (Let sx, s2, s3 be three such points 
in a row i. Let sx ^ min{s 2 , sB}. Then there exists px, 1 ^ px ^ n such 
t h a t aipi < sx. From this it follows tha t the corresponding submatrices 
of points sx, s2 ,ss are of type AMl, APxq%, APlU where qx ^ q2 ^ qz =£ Qi * 
Then there exist j , ke{l, 2, 3} so t ha t sx ^ ^Piqjf)S^Piqk—a contra­
diction.) We can assume s(• = aUii, i = 1, 2, 3, 4. For sx let k be t he 
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smallest integer, 1 <; k ^ n with the proper ty k 7-= 1, px, qx. Thus 
it is k 51 4, sx 5i alhk 5̂  sk. Fur ther for sk let I, 1 <> I <^ n be the minimal 
index with the proper ty I =£ k, pk, qk. Eviden t ly I S 4 and sk <; aUki g 5;. 
If we continue this process, then after a t mos t four steps we get some si 

previously had been obtained, say for ins tance sx, i.e. sr 5 aM|1 <I sx, 
1 =£ r, pr, q, and hence sx = attlfc = sk = aUki = st = . . . = sr = aWrl. 
If ?^ = uA, then l ^ 1 (in ano ther case it would be sx eSf vq{\Sf vq' for 
q zfc q' or 5X eSP) and thus it mus t be (from the above result) ut -/- ul9 

aUli = aUli which contradicts to (4). If ux =£ uk then aUik — aVlck and 
it is the contradiction, too; Q.E.D. 

R e m a r k 12. Three such saddlepoints can exist; see the following 
example: 

/4 0 0 5 6\ 

For .4 = 13 2 1 0 3 L > 0 sufficiently small, it is SP = 0, 

\ 2 1 + 2B 1 + e 1 0 / 
axi e^ 23> a22 e ^ 3 4 and a33 G ^ 4 5 . 

Lemma 3. Let an m by n matrix A = (atj) have no saddlepoint and (4) 
hold. Then at most two distinct columns px, p2 of A and columns 
Pi T^ Pi> i — V 2, p^ T-: p2 exist so tha t for all q, r, 1 <; g, r g n, q ¥" Pi> 
Pi> r 7^p2, Pz the submatrices A#(Piq) and/or A^Pzq) have the common 
saddlepoint in the column p[ or p'2 respectively. 

P roof . Assume the existence of three such columns pl, p2, p3. Deno te 
6'i> s2, s3 the corresponding saddlepoints; s{ = akiPl for i = 1, 2, 3 . 
Wi thou t loss of generality we can suppose px = 1, p[ = 2 and p3 = 3 . 
Then p3 = 1 (in ano ther case (4) or SP = 0 would be failed). From the 
same reason it mus t be p2 = 2, ^ = 3. Then it is sx 51 % l 3 < s2 g 
^ %2i < s3 ^ a*82 < «i—a contradiction: Q.E.D. 

Lemma 4. Le t ^ = 0 and (4) hold. Le t there exist columns 
Pi> P2> P\ ^ 1> P2 7^ 2, ??i 7^ p2 °f 4̂ such that all submatrices of type 
A#{Xq), q 7^ 1> Pi and/or -4,#f£r), f ^ 2, ^ have the common saddlepoint 
sx or B2 in the column p{ or p'2 respectively. Then SP uv = 0 for every 
{ ^ , ^ } ^ { P i , P 2 } , { V g } , { 2 , r } . 

P roof . First of all it is p'2 = 1, p[ = 2 or pg = V pi 7^ 1, 2 (the 
case f>J| = 2, pi 7^ V 2 is the same as the last one). I n another case 
either (4) or SP = 0 would be failed. Let it be SPUV 7^ 0, i.e. there exists 
s = akl, s eSPuv for at least one couple {u, v} satisfying the condition 
of the Lemma. Then it is u, v 7^ 1, 2. Let st = akiV[. If k = k2 it is 
s = ak22 and s eSP—a contradiction. If k 7^ k2 then for the column 1 (4) 
doesn' t hold, because s2 = akzl = akl; Q.E.D. 

Lemma 5. Let A be an m by n matrix, n ^ 4. If there exist s, p, 
Qi> £2* Si j^ #2 so tha t s eSPpqi(\SPpq% then s eSPpi for each q 7^ q0. 
(It is evident.) 
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R e m a r k 13. The maximal number In— 3 of submatrices appears 
when there exist columns px, P2» P\> P2 > Pi ^ #2 s u c n t n a t for every 
p ^ px AVlP has a saddlepoint in pj[, for every p -5-= p2 APiP has a sad-
point in p'2 and 5^^;^; ^ 0. 
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