Archivum Mathematicum

Václav Polák; Naděžda Poláková
 Notes on game theory equilibria

Archivum Mathematicum, Vol. 3 (1967), No. 4, 165--176

Persistent URL: http://dml.cz/dmlcz/104642

Terms of use:

© Masaryk University, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NOTES ON GAME THEORY EQUILIBRIA

Václav Polák and Naděžda Poláková (Brno)

Received April 19, 1967

One approximation theorem on simplicial inclusive multivalued transformation, two versions of Brouwer's fixed-point theorem, following of B. Peleg's result [9] and L. S. Shapley's one [11] the independence of Nash cquilibrium of polyhedral cones preferences, but dependence of stability in cooperative games and certain computational remark, are settled in § 1. § 2 follows L. S. Shapley's [10] results about non-existence of saddlepoints of special matrices and partially studies a structure of A 's submatrices with saddlepoints if A has no such point.

First a word about denotations: a point $x \in \mathrm{E}^{n}$ is an n by 1 matrix (i.e. a column), ${ }^{T} A$ means a transpose of A (i.e. $x, y \in \mathrm{E}^{n},{ }^{T} x y$ is an inner product of x and y), A_{S} or A^{L} means a submatrix of an m by n matrix A, indices of its columns or rows form the set $S \subset N=$ $=:\{1,2, \ldots, n\}$ or $L \subset M=:\{1,2, \ldots, m\}$ respectively, $A_{\vartheta(S)}=$ $=: A_{N-S}, A^{\mathfrak{\Re}(L)}=: A^{M-L}$ (i.e. $\left.A=A_{N}^{M}\right)$, for $X \subset \mathrm{E}^{n} C X$ is the convex hull of $X, A \leqq B$ means $a_{i j} \leqq b_{i j}$ for all i, j and $A \leqq B$ means $A \leqq B$ but not $A=B$.

§ 1

By S_{n} one denotes an n-dimensional simplex in Euclidean space E^{n}, $\mathscr{C}\left(S_{n}\right)$ the set of all its nonvoid convex subsets and $\mathscr{S}\left(S_{n}\right)$ the set of all its nonvoid sides (i.e. all its vertices, edges, $\ldots,(n-1)$-sides and S_{n} itself). A simplicial partition \mathcal{S} of S_{n} is such its partition on n-dimensional simplices that any two $\Delta^{\prime} s$ from \mathfrak{S} are either disjoint or have only one side (of any dimension) in common. A point-set transformation Φ of S_{k} into $\mathscr{S}\left(S_{l}\right)$ is called simplicial inclusive according to \mathfrak{S} if \mathcal{S} is a simplicial partition of S_{k}, any two points have the same transform if they belong to the interior of the same side of $\Delta \in \mathcal{G}$ and have their transforms in the inclusive relation if the sides of $\Delta \in \mathbb{S}$ to the interiors of which they belong are in the inclusive relation (not necessarily in the same sense; the interior of 0 -side is the vertex itself). Evidently Φ is simplicial inclusive according to any \mathfrak{S}^{\prime} which is a refinement of \mathfrak{S}.
\mathfrak{G} is called primitive if for any $\Delta \in \mathbb{S}$ the set of images of all $\Delta^{\prime} s$ vertices forms the inclusive chain (i.e. any two transforms are in inclusive relation). Without loss of generality one can suppose Φ has primitive \mathbb{G}.
(If \mathbb{S} is not primitive, choose for every $\Delta \in \mathbb{S}$ its interior point and construct convex hulls of it with Δ 's $(k-1)$-sides. The union of all such $k+1$ simplices forms the siplicial division $\mathbb{E}^{(1)}$ of $S_{l i}$. For every $\Lambda^{(1)} \in \mathbb{S}^{(1)}$ all points have the same transform except those which belong to certain "distinguished" $(k-1)$-side. Deviding $\Delta^{(1)}$ into k simplices (by means of a similar operation with distinguished ($k-1$)-side) one obtains $\mathbb{S}^{(2)}$ etc. Evidently $\Delta^{(k)} \in \mathbb{S}^{(k)}$ has for all its points (except a distinguished ($k-1$)-side) the same image, all points of the distinguished ($k-1$)-side have (except of a distinguished ($k-2$)-side) the same image, \ldots, all points of the distinguished edge have (except of a distinguished vertex) the same transform. Denote ${ }^{0} x$, ${ }^{1} x, \ldots,{ }^{k} x$ the vertices of $\Delta^{(k)}$ in such a way that ${ }^{0} x,{ }^{1} x, \ldots,{ }^{s} x(0 \leqq s<k)$ is the distinguished s-side of $\Delta^{(k)}$ and let ${ }^{i} x,{ }^{j} x, i<j$ be any two vertices. Choose ${ }^{i} y,{ }^{i} y$ arbitrarily in the interiors of sides $C\left({ }^{0} x, \ldots,{ }^{i} x\right), C\left({ }^{0} x, \ldots,{ }^{i} x\right)$. As the first one is a subset of the second and ${ }^{i} y_{\Phi}={ }^{i} x_{\Phi},{ }^{j} y_{\Phi}={ }^{i} x_{\Phi}$ it must be either ${ }^{i} x_{\Phi} \subset{ }^{j} x_{\Phi}$ or ${ }^{i} x_{\Phi} \supset{ }^{j} x_{\Phi}$. Hence $\Theta^{(k)}$ is primitive.)

We call a point-set transformation F continuous if F transforms S_{k} into $\mathscr{C}\left(S_{l}\right)$ and if $y \in x_{F}$ when ${ }^{n} x \rightarrow x,{ }^{n} y \rightarrow y,{ }^{n} y \in{ }^{n} x_{F},{ }^{n} x, x \in S_{k}$, where the convergence is in the sense of the usual metric topology (see [4]).

Remark 1. Let F or P be a continuous transformation of S_{k} into $\mathscr{C}\left(S_{l}\right)$ or S_{l} into $\mathscr{C}\left(S_{l}\right)$. Then F and P have a coincidence (i.e. $x \in S_{k}$, $y \in S_{l}$ exist such that $y \in x_{F}, x \in y_{P}$). Proof: The transformation R of cartesian product $S_{k} \otimes S_{l}$ into $\mathscr{C}\left(S_{k} \otimes S_{l}\right):(x, y) \rightarrow y_{p} \otimes x_{F}$ is evidently continuous and hence a fixed point exists $(\bar{x}, \bar{y}) \in(\bar{x}, \bar{y})_{n}=$ $=\bar{y}_{P} \otimes \bar{x}_{F}$ (see [4]). Hence $\bar{x} \in \bar{y}_{P}, \bar{y} \in \bar{x}_{F} ;$ Q.E.D.

Theorem 1. Let Φ be a simpliciad inclusive point-set transformation. of S_{k} into $\mathscr{S}\left(S_{l}\right)$ according to primitive \mathfrak{S}. Then a continuous transformation F of S_{k} into $\mathscr{C}\left(S_{l}\right)$ exists so that $\Phi=F$ on the vertices of \mathbb{S}.

Proof: Let ${ }^{0} x,{ }^{1} x, \ldots,{ }^{k} x$ be the vertices of $\Delta \in \sigma$. Let among $\left\{{ }^{i} x_{\Phi}\right\}_{i=0}^{k}$ be r different ones ($1 \leqq r \leqq k+1$). Without loss of generality one can suppose the existence of a sequence $\left\{i_{3}\right\}_{s=0}^{r},-1=i_{0}<i_{1}<i_{2}<\ldots<$ $<i_{r}=k$ of integers such that $1 \leqq s^{\prime}<s \leqq r, i_{s^{\prime}-1}<i \leqq i_{s^{\prime}}, i_{s-1}<$ $<j \leqq i_{s}$ implies ${ }^{i} x_{\Phi} \subset{ }^{i} x_{\Phi}$ and ${ }^{i} x_{\Phi}={ }^{i} x_{\Phi}$ holds only if $s^{\prime}=s$ (it follows from the primitivity of \subseteq immediately). Construct x_{F} for arbitrary $x \in \Delta, x=\sum_{i=0}^{k} \lambda_{i}{ }^{i} x$ as follows

$$
\begin{equation*}
x_{F}=\left\{y: y=\sum_{j=0}^{t_{r}} v_{j}^{j} y, \quad \sum_{j=0}^{t_{r}} v_{j}=1, \quad v_{j} \geqq 0\right. \tag{1}
\end{equation*}
$$

$$
\left.\sum_{j=0}^{t_{1}} v_{j} \geqq \mu_{1}, \quad \sum_{j=0}^{t_{2}} v_{j} \geqq \mu_{1}+\mu_{2}, \quad \ldots, \quad \sum_{j=0}^{t_{r}} v_{j} \geqq \sum_{s=1}^{r} \mu_{8}\right\}
$$ where ${ }^{0} y,{ }^{1} y, \ldots,{ }^{{ }^{s} y}$ are vertices of ${ }^{i_{s}} x_{\Phi}(s=1,2, \ldots, r)$ and $\mu_{s}=: \sum_{s=1} \lambda_{i}$.

The last inequality is superfluous for $\sum_{s=1}^{r} \mu_{s}=1$. Evidently x_{F} is a convex polyhedron. Even it is $x_{F} \neq \emptyset$ (For $0 \leqq t_{1}<t_{2}<\ldots<t_{r}$ it suffices $\mu_{s}(1 \leqq s \leqq r)$ to explain as a sum of $t_{s}-t_{s-1}(\geqq 1)$ non-negative numbers ($t_{0}=:-1$). In this case in (1) equalities only hold.). We have ${ }^{i} x_{F}={ }^{i} x_{\Phi}\left(\right.$ For $x={ }^{i} x \lambda_{i}=1$ and $\lambda_{j}=0$ for $j \neq i$. Hence for $i_{s-1}<i \leqq i_{s}$ it is $\mu_{s}=1$ and $\mu_{s^{\prime}}=0$ for $s^{\prime} \neq s$. Thus $\sum_{j=0}^{t_{0}} v_{j}=1$ and it results $v_{j}=0$ for $j>t_{s}$. Since $\sum_{j=0}^{t_{s}^{\prime}} v_{j} \geqq \sum_{l=1}^{s^{\prime}} \mu_{l}$ with $s^{\prime}<s$ is in (1) superfluous, we have $x_{F}=C\left({ }^{\circ} y, \ldots,{ }^{t} y\right)$, q.e.d.).
(2) x_{F} depends only on $\left\{{ }^{i} x_{\Phi}\right\}_{\}_{x \in A_{v}}}$ by the rule (1) if x lies in the interior of v-dimmensional side Δ_{v} of Δ. (Let $x_{F^{\prime}}$. depend on $\left\{{ }^{i} x_{\Phi}\right\}_{i x \in \Lambda_{z}}$ by the rule (1) and suppose $x \in \Delta_{z-1}=C\left({ }^{j_{o}} x, \ldots{ }^{j_{u-1} x},{ }^{j_{u+1} x}, \ldots,{ }^{j_{z} x}\right.$), ($n o t$ necessarily in its interior), where ${ }_{j u} x \in \Lambda_{z}, i_{s-1}<j_{u} \leqq i_{s}$. We have finished in the case $i_{s-1}<i_{s}-1$ because there exists $j \neq j_{u},{ }^{\quad} x \in \Delta_{z}$ such that ${ }^{j} x_{\Phi}={ }^{j_{u}} x_{\Phi}$ and hence all inequalities in (1) remain. Thus let $i_{s-1}+\mathbf{l}=$ $=i_{s}=j_{u}$. Then ${ }^{j_{u}} x_{\mathscr{D}} \notin\left\{{ }^{i} x_{\phi}\right\}^{t}{ }_{x \in 1_{z-1}}$ and hence $\mu_{s}=0$. It results $\sum_{=0}^{t_{s}} v_{j} \geqq \mu_{1}+\ldots+\mu_{s}$ is superfluous and it follows $x_{F^{\prime}}$ depends on $\left\{{ }^{i} x_{\Phi}\right\}^{t_{x \in} \in d_{z-1}}$ by the rule (1).).

Hence F defined according to (1) on Δ and on $\Delta^{\prime}, \Delta, \Delta^{\prime} \in \mathbb{S}$ is the same on $\Delta \cap \Delta^{\prime}$. Thus F transforms S_{k} into $\mathscr{C}\left(S_{l}\right) . F$ is continuous (Let ${ }^{n} u \rightarrow u^{n} v \rightarrow v^{n} v \in{ }^{n} u_{F}$. Without loss of generality one can consider all ${ }^{n} u$ lie in a certain $\Delta \in \mathbb{G}$. For each $j, 0 \leqq j \leqq t_{r},{ }^{n} v_{j} \rightarrow v_{j}$, where ${ }^{n} v=\sum_{j=0}^{t_{r}}{ }^{n} v_{j}{ }^{j} y$ and $v=\sum_{j=0}^{t_{r}} \nu_{j}{ }^{j} y$. As for each $i, 0 \leqq i \leqq k$ it is ${ }^{n} \lambda_{i} \rightarrow \lambda_{i}$ where ${ }^{n} u=\sum_{i=0}^{k}{ }_{n} \lambda_{i}{ }^{i} x, u=\sum_{i=0}^{k} \lambda_{i}{ }^{i} x$, we have ${ }^{n} \mu_{s} \rightarrow \mu_{s}$ for each $s, 1 \leqq s \leqq r$. $v \in u_{F}$ is now a consequence of (1) and ${ }^{n} v \in{ }^{n} u_{F}$.); Q.E.D.

Remark 2. Since x_{F} is a subset of the greatest simplex among $\left\{{ }^{i} x_{\mathscr{Q}}\right\}_{{ }_{x \in A_{0}},}, x \in \Delta_{v}$ (it follows from (2) immediately), F has this property: if x lies in the interior of Δ_{v} and x_{F} contains an inner point of any side S of S_{l}, then for one ${ }^{i} x \in \Delta_{v}$ it is ${ }^{i} x_{\Phi} \supset S$.

Theorem 2. Let Φ or Ψ be a simplicial inclusive transformation of S_{k} into $\mathscr{S}\left(S_{l}\right)$ or S_{l} into $\mathscr{S}\left(S_{k}\right)$. Then Φ and Ψ have a coincidence.

Proof: Let \mathbb{S}_{k} or \mathbb{S}_{l} be a primitive simplicial partition of S_{k} or S_{l} belonging to Φ or Ψ respectively and F or P the corresponding continuous transformation mentioned in the Theorem l.F and P have a coincidence, i.e. $x \in S_{k}, y \in S_{l}$ exist such that $y \in x_{l}, x \in y_{i}$. Evidently the sides
U, V, A_{u}, Δ_{v} (not necessarily all of the same dimension) exist with these properties: U is a side of S_{k}, V of S_{l}, Δ_{u} of a certain $\Delta^{(1)} \in \mathbb{G}_{l}$, Δ_{v} of $\Delta^{(2)} \in \mathbb{S}_{l}$ and x lies in the interiors of U and Δ_{u}, v in the interiors of V and Λ_{v}. As $\widetilde{\Xi}_{k}$ is a simplicial division of S_{k}, we have $U \supset \Delta_{u}$. For the same reason it is $V \supset \Delta_{v}$. According to Remark 2 a vertex ${ }^{i} x \in \Delta_{u}$ exists such that ${ }^{i} x_{\Phi} \supset V$ and a vertex ${ }^{j} y \in \Delta_{v}$ with ${ }^{j} y_{\psi} \supset U$. Hence ${ }^{i} x \in \Delta_{u} \subset U \subset{ }^{i} y_{I T},{ }^{i} y \in \Lambda_{v} \subset V \subset{ }^{i} x_{\Phi}$ and Φ and Ψ^{\prime} have a coincidence; G.E.D.

Remark 3. Note that the coincidence takes place even for the vertices ${ }^{i} x,{ }^{j} y$ of $\mathfrak{\Xi}_{1}, \mathcal{S}_{l}$.

Remark 4. Theorem 2 can be characterized as a simplicial-inclusivecoincidence version of Brouwer's fixed-point theorem. Other coincidence versions see [3], [6].

Remark 5. It can be settled also two-sphere-collision version of Brouwer's theorem: Let S^{1}, S^{2} be two disjoint $(n-1)$-spheres of E^{n}, F a continuous transformation of S^{1} onto S^{2}. Let during a unit time interval S^{1} be in quiet (i.e. ${ }^{t} S^{1} \equiv S^{1}$ for all $t \in[0,1]$) but S^{2} continuously changes (i.e. it moves and deforms; the set of points of S^{2} in the time t we denote ${ }^{t} S^{2}$) as far as ${ }^{1} S^{2} \subset S^{1}$ (hence the continuous transformation F^{t} of ${ }^{t} S^{1}$ onto ${ }^{t} S^{2}$ is defined: $x \in S^{1},{ }^{t} x=x, y=: x_{F}$, ${ }^{t} x_{F^{t}}=:{ }^{t} y \in{ }^{t} S^{2}$, i.e. a homotopy $\left\{F^{t}\right\}_{t \in[0,1]}$ is defined). Then $\bar{t} \in[0,1]$ and $\bar{x} \in S^{1}$ exist such that $\overline{\bar{x}} \overline{\bar{x}}=\overline{\bar{x}}_{F^{\bar{i}}}$.

Proof: Let S be an $(n-1)$-sphere having the same center o as S^{1} and containing S^{2}. Denote \bar{S} the union of S with its interior. Let $\left\{P^{t}\right\}_{t \in[0,1]}$ be the set of homotheties with the center o representing the continuous change of S^{1} into S and such that $S_{P^{t}}^{1} \cap S_{P^{t}}^{1}=\emptyset$ for $t \neq t^{\prime}$. Since $\left\{F^{t}\right\}_{t \in[0,1]}$ is a continuous set of continuous transformations (i.e. ${ }^{t} \bar{F}_{F^{t}}={ }^{t} S^{2}$), one can choose S such great that ${ }^{t} S_{P^{t}}^{2} \subset \bar{S}$ for all $t \in[0,1]$. For $x \in S^{1}$ define $x_{f}=x_{F}$ and prolong f on the whole \bar{S}^{1} that f may continuously transform \bar{S}^{1} onto \bar{S}^{2}. For $x \in \bar{S}-\bar{S}^{1}$ let us choose $t \in(0,1], x \in S_{P^{t}}^{1}$ (such t exists unique) and define $x_{f}=x_{\left(P^{t}\right)^{-1} F^{t} P^{t}}$. Since f continuously transforms \bar{S} into itself (it is in fact a continuous transformation between two flows), f has a fixed point $x, x_{f}=x$, i.e. $x=x_{\left(P^{\bar{t}}\right)^{-1} F^{t} \bar{P}^{\bar{t}}}, x \in S_{P^{t}}^{1}$. Hence for $\bar{x}=: x_{(P \bar{y})^{-1}}$ we have $\bar{x} \in S^{1}={ }^{\bar{t}} S^{1}$, $\bar{x}=x_{\left(P^{\bar{t}}-1 F^{i} P^{\bar{t}}\left(P^{\bar{t}}\right)^{-1}\right.}=x_{\left(P^{i}\right)^{-1} F^{\bar{t}}}=\bar{x}_{F^{\bar{t}}}$, i.e. ${ }^{\bar{t}} \bar{x}=\bar{t}_{\bar{x}_{F^{\bar{t}}}}$; Q.E.D.

Lst us consider a set $N=\{1,2, \ldots, n\}$ of players, each player i has a finite set \mathscr{S}_{i} of strategy possibilities and a sharp polyhedral convex cone $K_{i} \subset \mathrm{E}^{p}$ as its preference relation (i.e. i finds a^{\prime} better than a if $a^{\prime} \neq a$ and $a^{\prime} \in a+K_{i}\left(\equiv a^{\prime}-a \in K_{i}\right)$. Let n transformations f_{i} be given of $\mathscr{S}_{1} \otimes \ldots \otimes \mathscr{S}_{n}$ into E^{p} such that $f_{i}(x)$ means a payoff to the player i if x are players' choices. By a natural way let us define f_{i} as transformations of $S=S_{s_{1}} \otimes \ldots \otimes S_{s_{n}}\left(s_{i}=: \operatorname{card} \mathscr{S}_{i}-1\right.$ and $S_{s_{i}}$
is the $i^{\text {th }}$ probability simplex) into \mathbf{E}^{p} prolonging f_{i} 's given above on the vertices of S. Such a situation is called an n-person non-cooperative game $\Gamma\left(N, S, f_{i}, K_{i}\right)$. For $x \in S x^{5 i}$ let us denote such a point of $S^{i}=: S_{s_{1}} \otimes \ldots \otimes S_{s_{t-1}} \otimes S_{s_{t+1}} \otimes \ldots \otimes S_{s_{n}}$ which is the orthrogonal projection of x on S^{i}. For a convex polyhedron P in E^{p} and a sharp convex polyhedral cone $K P^{\max K}=\{x: x \in P$ and it does not exist y in P so that $y \neq x, y \in x+K\}$. Evidently $P_{i}(z)=: C\left(f_{i}[(1,0, \ldots, 0), z], \ldots\right.$, $\left.f_{i}[(0, \ldots, 0,1), z]\right)$ is the set of possible i^{\prime} s payoffs for other players' choices $z \in S^{i}$. Hence the optimal i^{\prime} s play in this case is to have his payoff in $P_{i}(z)^{\text {max }} \boldsymbol{K}_{i}$. We call $\bar{x} \in S$ a Nash equilibrium if for each $i \in N \int_{i}(\bar{x}) \in P_{i}^{\max K_{i}}\left(\bar{x}^{S_{i}}\right)$.

Theorem 3. For each $\Gamma\left(N, S, f_{i}, K i\right)$ a Nash equilibrium exists.
Remark 6. For $p=1$ it is the well known Nash's theorem (see [7]). For general p but K_{1} positive and K_{2} negative cones we have L. S. Shapley's result published in [11]. For different than our preference relations (but in a very general form) the theorem is proved by B. Peleg in [9]. We shall give two proofs. First as a trivial corollary of the Nash's theorem, the second (independent of the Nash's one but for $n=2$) by means of our Theorem 2.

Proof 1 . Let c 's be vectors of unit lengths lying in the interiors of corresponding $K_{i}^{\text {danls. }}$. Define new payoffs $\varphi_{i}(x)=:{ }^{T} c_{i} f_{i}(x)$. Hence we have $p=1$ and a Nash equilibrium \bar{x} exists for payoffs φ_{i}. But \bar{x} is the Nash equilibrium for f_{i}^{\prime} 's, too, for c_{i} lies in the interior of $K_{i}^{\text {ditor }}$ all i and K_{i} is sharp; Q.E.D.

Proof 2 . Let us consider $n=2$. Change the denotations $a_{i j}=: f_{1}(i, j)$, $b_{i j}=: f_{2}(i, j)$ for $i \in \mathscr{S}_{1}, j \in \mathscr{S}_{2}$ and $k=: s_{1}-1, l=: s_{2}-1 . \mathscr{A}=:$ $=:\left(a_{i j}\right), \mathscr{B}=:\left(b_{i j}\right)$ are vector matrices, $\mathscr{A}_{j}=\left(a_{1 j}, \ldots, a_{k+1 j}\right)$ a $(k+1)$ by p and $\mathscr{A}^{i}=\left(a_{i 1}, \ldots, a_{i l+1}\right)$ a p by $(l+1)$ matrices of real numbers $\left(\mathscr{B}_{j}, \mathscr{B}^{i}\right.$ are defined analogously). For $x \in S_{k}$ define $x_{\Phi}=\left\{y: y \in S_{l},\left({ }^{T} c_{2} \mathscr{B}_{1} x, \ldots,{ }^{T} c_{2} \mathscr{B}_{l^{+1}} x\right) y=\max \left\{{ }^{T} c_{2} \mathscr{B}_{j} x\right\}\right\}$. Evidently x_{Φ} is not a nullset and it is a convex hull of all such vertices ${ }^{j} y$ of S_{l} for which ${ }^{T} C_{2} \mathscr{B}_{j} x$ is maximal. Hence Φ transforms S_{k} into $\mathscr{S}\left(S_{l}\right)$. Φ is simplicial inclusive (In E^{k+2} denote first $k+1$ coordinates of a point as x^{1}, \ldots, x^{k+1} and the last one as t. Consider $l+1$ closed halfspaces $t \geqq{ }^{T} C_{2} \mathscr{B}_{j} x$ and orthogonally project the boundary of their intersection into the space \mathbf{E}^{k+1} of x-axis. The projection is a polyhedral partition \mathfrak{G} (with some sides being unbounded) of \mathbf{E}^{k+1} because each halfspace has an inner normal with positive $t^{\text {th }}$ coordinate (the dimension of any boundary side and its projection is the same). If one corresponds to the interior of any side λ of \mathfrak{S} such a side of S_{l} vertices ${ }^{j} y$ of which are all ${ }^{j} y$'s with j having this property: the boundary of the above considered halfspace j contains the side its projection being λ, then this correspon-
dence is inclusive. Evidently \mathfrak{G} defines a polyhedral partition on S_{k} which we refine on simplicial one. The above considered inclusive correspondence between interiors of sides of \subseteq and $\mathscr{S}\left(S_{l}\right)$ defines our Φ.). Analogously one obtains a simplicial inclusive transformation Ψ of S_{l} into $\mathscr{S}\left(S_{1}\right): y_{d}=\left\{x: x \in S_{k},\left({ }^{T} c_{1} \mathscr{A}^{1} y,{ }^{T} c_{1} \mathscr{A} \mathscr{A}^{2} y, \ldots,{ }^{T} c_{1} \mathscr{A}^{k+1} y\right) x=\right.$ $\left.=\max \left\{{ }^{T} c_{1} \mathscr{A}^{i} y\right\}\right\}$. According to Theorem 2Φ and Ψ have a coincidence $1 \leq i \leq k+1$
(\bar{x}, \bar{y}). Since y_{Ψ} (or x_{Φ}) is a part of best replies of the first (second) player to the strategy $y(x)$ of the second (first) one (because $K_{1}^{\text {had }}, K_{2}^{\text {dud }}$ are sharp and c_{1}, c_{2} lie in their interiors), (\bar{x}, \bar{y}) is our required equilibrium; Q.E.D.

Remark 7. Evidently the set of the best i 's replies $x, z_{\Phi}=\left\{x: f_{i}(x, z) \in\right.$ $\left.\in P_{i}^{\max K_{i}}(z)\right\}$, to other players' choices z is the union of some $S_{s_{i}}$'s sides. $\Phi_{\text {need not to be inclusive: }}$ Let $n=2, p=2, s_{1}=1, s_{2}=2, K_{2}$ a positive cone (i.e. the set of points in E^{2} with all coordinates non-negative), denote $S_{1}=C\left(X_{1}, X_{2}\right), S_{2}=C\left(Y_{1}, Y_{2}, Y_{3}\right), f_{2}\left(X_{1}, Y_{1}\right)=\left\{\left(\frac{1}{2}, 0\right)\right\}$, $f_{2}\left(X_{1}, Y_{2}\right)=\left\{\left(0, \frac{1}{2}\right)\right\}, f_{2}\left(X_{1}, Y_{3}\right)=\{(0,0)\}, f_{2}\left(X_{2}, Y_{1}\right)=\left\{\left(-\frac{1}{2}, 0\right)\right\}$, $\left.\left.f_{2}\left(X_{2}, Y_{2}\right)=\left\{\left(0, \frac{1}{2}\right)\right\}\right)\right\}, f_{2}\left(X_{2}, Y_{3}\right)=\{(0,1)\}$ and for $Z=: \frac{1}{2} X_{1}+\frac{1}{2} X_{2}$ define $\Xi_{1}=\left\{\Delta_{1}, \Delta_{2}\right\}, \Delta_{1}=C\left(X_{1}, Z\right), \Delta_{2}=C\left(X_{2}, Z\right)$. Evidently $x_{\Phi}=$ $=C\left(Y_{1}, Y_{2}\right)$ for $x=X_{1}$ and x in the interior of $\Delta_{1}, x_{\Phi}=C\left(Y_{2}, Y_{3}\right)$ for $x=Z$ and $x_{\mathscr{D}}=\left\{Y_{3}\right\}$ for x in the interior of A_{2} and $x=X_{2}$. Hence Φ is not inclusive according to \mathfrak{S}_{1} and even it cannot be inclusive according to any other $\mathfrak{\Im}_{1}$; Q.E.D.

Remark 8. The independence of the game theory on cones preferences fails in this question of an n-person cooperative game Γ with a characteristic vector-function $v(S) \in \mathrm{E}^{p}, S \subset N$, where $N=\{1,2, \ldots, n\}$ is a set of players and $v(S) \geqq o, v(\{i\})=o, i \in N$: Such an (X, B) (where X is a p by n matrix, $X \geqq 0, \mathbf{B}=\left\{B_{1}, \ldots, B_{l}\right\}$ is a partition of N and $\sum_{i \in B_{j}} X_{i}=v\left(B_{j}\right)$) is called stable (see [2], [8] where the stability for $p=1$ is defined) if for each $\mu \in N \mu$ is not weaker than any other player of $B_{i}, \mu \in B_{i}$, i.e. each objection Y_{C} against $\mu\left(C \subset N-\{\mu\}, Y_{C}\right.$ is a p by card C matrix, $\sum_{k \in C} Y_{k}=v(C), \quad Y_{C} \geqq X_{C}$ and such $v \in C \cap B_{j}$ exists that $Y_{v} \geqslant X_{v}$) can be countered (i.e. there exist such D and Z_{D} that $\mu \in D \subset N-\{\nu\}, Z_{D}$ a p by card D matrix, $Z_{D} \geqq X_{D}, \sum_{k \in D} Z_{k}=v(D)$ and $Z_{D \cap C} \geqq Y_{D \cap C}$). The following example shows a game Γ (with $p=2$, $n=3$) for which for a given \mathbf{B} no stable (X, \mathbf{B}) exists (compare the result of B. Peleg, M. Davis, and M. Maschler, see [8], [2], for $p=1$):

Example 1. $N=\{1,2,3\}, \quad \mathbf{B}=\{(1,2), 3\}, \quad v(1,2)=\binom{1}{3}, \quad v(1,3)=$ $=\binom{2}{4}, v(2,3)=\binom{5}{2}$.
It is $X=\binom{x_{11} x_{12} o}{x_{21} x_{22} o}, x_{i j} \geqq 0, x_{11}+x_{12}=1, x_{21}+x_{22}=3$. If $0 \leqq x_{21}<1$
it is $2<x_{22} \leqq 3$. There cxists an objection $Y_{(1,3)}=\left(\begin{array}{l}x_{11}+\varepsilon_{1} 2-x_{11}- \\ x_{21}+\varepsilon_{2} 4-x_{21}\end{array}\right.$ $\left.\begin{array}{l}-\varepsilon_{1} \\ -\varepsilon_{2}\end{array}\right)$ where $\binom{\varepsilon_{1}}{\varepsilon_{2}} \geqslant 0$ of the player 1 against 2 . It cannot be countered by 2 because 2 cannot get $\binom{z_{22}}{\geqq x_{22}>2}$ in the coalition $(2,3)$ due to $v(2,3)=\binom{\mathbf{0}}{2}$. If $x_{21} \geqq 1$ it is $x_{22} \leqq 2$ and an objection $Y_{(2,3)}=$ $=\binom{x_{12}+\varepsilon_{1} 5-x_{12}-\varepsilon_{1}}{x_{22}+\varepsilon_{2} 2-x_{22}-\varepsilon_{2}}, \varepsilon_{1}>0, \varepsilon_{2} \geqq 0$ of 2 against 1 exists. Since $\binom{x_{11}}{x_{21}} \geqslant 0$ it cannot be countered by 1 if, say, $\varepsilon_{1}=\frac{1}{10}$ because 3 will get at least $\binom{39 / 10}{-}$ in the coalition $(2,3)$ whereas in $(1,3)$ he will get at most $\binom{2}{0}$.

Two other added examples may have an interest, too.
Example 2. $N=\{1,2,3,4\}, \quad \mathbf{B}=\{(1,2),(3,4)\}, \quad X=\left(\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0\end{array}\right)$, $v(2,3)=\binom{4}{1}, v(1,3)=\binom{0}{3}, v(1,2)=\binom{1}{1}, v(3,4)=\binom{1}{1}, v(S)=\binom{0}{0}$ otherwise. This game has the property that (X, B) is not stable but $\left(x_{11}, x_{12}, x_{13}, x_{14} ;(1,2),(3,4)\right),\left(x_{21}, x_{22}, x_{23}, x_{24} ;(1,2),(3,4)\right)$ are stable.

Example 3. N, \mathbf{B}, X as in the Example 2. $v(2,3)=\binom{0}{2}, v(1,2)=$ $=\binom{1}{1}, v(1,3)=\binom{3}{0}, v(3,4)=\binom{1}{1}, v(S)=\binom{0}{0}$ for other S. It shows, on the other hand, that (X, \mathbf{B}) is stable whereas the single parts are not stable.

Remark 9. Let $C(A)$ mean the convex hull of columns of a matrix A, $P=\left\{x: x \in \mathbb{E}^{n}, B x \geqq b\right\}$ a convex polyhedron lying in $C(A)\left(b \in \mathbf{E}^{k}\right.$, B is a k by n matrix, A an n by l matrix). Evidently $Y=\left\{y: y \in S_{l^{-1}}\right.$,
$B A y \geqq b\}$ is a convex polyhedron. Denote for $y \in Y K(y)$ (or $L(y)$) a set of all indices j such that $B^{j} x=b^{j}$ (or $y^{j}>0$) and write $k(y)=$: $=:$ card $K(y) \quad(l(y)=:$ card $L(y))$. Being inspired by an explicite formulas for basic optimal strategies solving a two-person zero-sum matrix game (see [5]) one can settle this necessary and sufficient condition for $y \in Y$ to be a vertex of Y (for a free eligibility of A one may find it useful from numerical point of view):
(3) $C\left(B^{K . y)} A_{L(y)}\right)$ is an $(l(y)-1)$-dimensional simplex.

Proof: I. Let y be a vertex of Y and (3) be not true i.e. either two columns of $B^{K(y)} A_{L(y)}$ are equal or all are different but in (3) mentioned polyhedron is at most $l(y)-2$ dimensional. According to Radon's theorem (see[1]) two disjoint sets L_{1}, L_{2} of indices exist such that $C\left[\left(B^{K: y} A_{L(y)}\right)_{L_{1}}\right] \cap C\left[\left(B^{K(y)} A_{L(y)}\right) L_{2_{2}}\right] \neq 0$ i.e. a vector $z \in \mathrm{E}^{l}$ exists such that ${ }^{T} e z=0, z^{L(y)} \neq 0, z^{i}=0$ for $i \in L(y)$ and $B^{K(y)} A_{i,(y} z^{L^{\prime}(y)}=0$. As $y^{L(y)}>o$ two points $y_{1,2}=y \pm \varepsilon z$ (for a suitable small $\varepsilon>0$) lie in S_{l-1} and (for $\left.i=1,2\right) B^{K(y)} A y_{i}=b^{K(y)}$ and, evidently, ε can be chosen such small that $B^{j} A y_{i}>b^{j}$ for $j \notin K y, i=1,2$. Hence $y \neq y_{1,2} \in$ $\in Y$ and y is not a vertex. II. Let $y \in Y$ and (3) is true. Suppose y is not a vertex of Y i.e. $y_{1}, y_{2} \in Y$ exist, $y_{1} \neq y_{2}$ such that $y=\frac{1}{2} y_{1}+\frac{1}{2} y_{2}$. It results for $i=1,2 j \notin L(y), y_{i}^{j}=0$ and $B^{K i y)} A y_{i}=b^{K(y)}$. As ${ }^{T} e y_{i}=1$ for $i=1,2$ we have $B^{K(y)} A_{L(y)}\left(y_{1}-y_{2}\right)^{L(y)}=0,{ }^{T} e\left(y_{1}-y_{2}\right)^{L \cdot(y)}=0$, $\left(y_{1}-y_{2}\right)^{L \cdot y} \neq o$ which contradicts to (3); Q.E.D.

§ 2

If $A=\left(a_{i j}\right)$ is an m by n matrix and r, s integers, $1 \leqq r \leqq m-1$, $1 \leqq s \leqq n-1$, then the sets of saddlepoints of matrices $A, A_{\vartheta\left(q_{1} \ldots q_{s}\right)}$, $A^{\vartheta\left(p_{1} \ldots p_{r}\right)}, A_{\vartheta\left(q_{1} \ldots q_{s}\right)}^{\forall\left(p_{1} \ldots p_{r}\right)}$ are denoted by $\mathscr{S}, \mathscr{S}_{q_{1} \ldots q_{s}}, \mathscr{S}^{p_{1} \ldots p_{r}}, \mathscr{S}_{q_{1} \ldots q_{s}}^{p_{1} \ldots p_{s}} \cdot\left(a_{i_{0} j_{0}}\right.$ is the saddlepoint of A if for all $\left.i, j, a_{i j_{0}} \leqq a_{i_{0} j_{0}} \leqq a_{i_{j} j}\right)$. The row p or the column q means the $p^{\text {th }}$ row or the $q^{\text {th }}$ column in A.
Lemma 1. Let $A=\left(a_{i j}\right)$ be an m by n matrix, $m \geqq 1, n \geqq 3$ and let every m by $(n-1)$ submatrix has a saddlepoint. Then $\mathscr{S}=0$ iff there exists a column, q, with two maximal elements $x, y, x \in \mathscr{S}_{q_{1}}, y \in \mathscr{S}_{q_{2}}$ for $q_{1} \neq q_{2}$ and $\mathscr{S}_{q_{1}}, \mathscr{S}_{q_{2}}$ have no common element in q.

Proof: I. Necessity. At least two columns $q_{1}, q_{2}, q_{1} \neq q_{2}$ exist so that $\mathscr{S}_{q_{1}}, \mathscr{S}_{q_{2}}$ have a common column. (Otherwise \mathscr{S}_{r} for $r=1,2, \ldots, n$ is a k_{r} by 1 matrix. Let $a=a_{l l}$ be the maximal element in A. There exists exactly one column, l^{\prime}, such that $a \in \mathscr{S}_{l^{\prime}}$. It is $a_{k i}=a$ for all $i=1, \ldots, n, i \neq l^{\prime}$ and $a_{k l^{\prime}}<a$. Then for every $s \neq l^{\prime}$ it is $a_{k s} \in \mathscr{S}_{l^{\prime}}$ which contradicts to the above result.) Further $\mathscr{S}_{q_{1}}, \mathscr{S}_{q_{2}}$ have disjoint sets of rows (in another case any common element of $\mathscr{S}_{q_{1}}, \mathscr{S}_{q_{2}}$ would be a saddlepoint of A). From this it follows the rest of the assertion.
II. Sufficiency. Let the assumptions be satisfied and $\mathscr{S} \neq \emptyset$. Let $a_{11} \in \mathscr{S}_{q_{1}}, \quad a_{21} \in \mathscr{S}_{q_{2}}, \quad a=a_{i 2} \in \mathscr{S}$. Evidently $a_{i 2}=a_{11}=a_{21} \quad$ (since $a \in \mathscr{S}_{q_{1}} \cup \mathscr{S}_{q_{2}}$ and $a_{11}=a_{21}$). As $a_{1 q_{1}} \leqq a_{11}$ (since $a_{11} \notin \mathscr{S}_{q_{2}}$) and $a_{2 q_{2}}<a_{21}$ we have $i>2$. At least one of integers q_{1}, q_{2} is >2; let $q_{1}>2$. Then $a \in \mathscr{S}_{q_{1}}$ and $a_{\text {i1 }}=a=a_{11}=a_{21}$. Evidently $a_{i 1} \in \mathscr{S}$ and from this it follows $a_{\text {i1 }} \in \mathscr{S}_{q_{1}} \cap \mathscr{S}_{q_{2}}$-a contradiction; Q.E.D.

Remark 10. The assumption of $\mathscr{S}_{q_{1}}, \mathscr{S}_{q_{2}}$ in q is substantial as this example shows: For the matrix

$$
A=\left(\begin{array}{rrr}
-1 & 0 & 1 \\
1 & 0 & -1 \\
2 & 0 & 2 \\
2 & -1 & 3
\end{array}\right)
$$

it is: every $\mathscr{S}_{q} \neq \emptyset, a_{32} \in \mathscr{S}, x=a_{12}, \quad y=a_{22}$ and $a_{32} \in \mathscr{S}_{q_{1}} \cap \mathscr{S}_{q_{2}}$ for $q_{1}=1, q_{2}=3$.

Remark 11. The similar assertion holds for ($m-1$) by n submatrices but the word "column" and "maximal" must be substituted by "row" and "minimal".

Theorem 4. Let $A=\left(a_{i j}\right)$ be an m by n matrix, $m \geqq 3, n \geqq 3$. For given integers $r, s, 1 \leqq r \leqq m-3, \mathbf{l} \leqq s \leqq n-\mathbf{3}$ let every $m-r$ by $n-s$ submatrix of A have a saddlepoint. Then $\mathscr{S}=\emptyset$ iff there exist integers $1 \leqq r_{0} \leqq r, \mathbf{l} \leqq s_{0} \leqq s, \mathbf{l} \leqq p_{1}<p_{2}<\ldots<p_{r_{0}} \leqq m, \mathbf{l} \leqq$ $\leqq q_{1}<\ldots<q_{s_{0}} \leqq n$ such that $1^{\circ} A$ has no saddlepoint in rows $p_{1}, \ldots, p_{r_{。}}$ and columns $q_{1}, \ldots, q_{s_{0}}$ and either 2° a) there exists a column, q, with two equal elements $x, y, x \in \mathscr{S}_{q_{1} \ldots q_{o_{0}-1}}^{p_{1} \ldots r_{0}}, y \in \mathscr{S}_{q_{1} \ldots q_{v_{0}-2} q_{s_{0}}}^{p_{1} \ldots p_{r_{2}}}$ and $\mathscr{S}_{q_{1} \ldots q_{0_{0}-1}}^{p_{1} \ldots r_{r_{0}}}$, $\mathscr{S}_{q_{1} \ldots p_{r_{0}-2} q_{g_{0}}}^{p_{1} \ldots p_{r_{0}}}$ are disjoint in q, or 2° b) there exists a row, p, with two minimal elements $u, v, u \in \mathscr{S} p_{1} \ldots p_{r_{0}-1}, v \in \mathscr{S} p_{1} \ldots p_{r_{0}-2} p_{r_{0}}$ and $\mathscr{S} p_{1} \ldots p_{r_{0}-1}$ $\mathscr{S} p_{1} \ldots p_{r_{0}-2} p_{r_{0}}$ are disjoint in p.

Proof. I. Necessity. Since every $(m-r)$ by $(n-s)$ submatrix has a saddlepoint and $\mathscr{S}=\emptyset$ one of two cases will appear:

1. There exists $k, 1 \leqq k \leqq s$ so that every $(m-r)$ by $(n-k)$ submatrix has a saddlepoint but at least one $(m-r)$ by $(n-k+1)$ submatrix, $B=A_{\vartheta\left(q_{1} \ldots q_{k-1}\right)}^{\vartheta\left(p_{1} \ldots p_{r}\right)}$ has no saddlepoint (let k be maximal with this property). According to Lemma 1 there exists a column, q, of B with two maximal elements $x, y, x \in \mathscr{S}_{q_{1} \cdots q_{k}}^{p_{1} \ldots p_{r}}, y \in \mathscr{S}_{q_{1} \ldots q_{k-1}}^{p_{1} \ldots p_{r+1}}$ and $q \cap \mathscr{S}_{q_{1} \ldots q_{k}}^{p_{1} \ldots p_{r}} \cap \mathscr{S}_{q_{1} \ldots q_{k-1}}^{p_{1} \ldots p_{k+1}}=\emptyset$ i.e. 2° a) holds where $r_{0}=r$, $s_{0}=k+1$.

If 1 . doesn't work then there exists $l, \mathbf{l} \leqq l \leqq r$ (maximal one) with the following property: every $(m-l)$ by n submatrix has a saddlepoint but there exists an $(m-l+1)$ by n submatrix, $C=A^{\vartheta\left(p_{1} \ldots p_{l-1}\right)}$
with no saddlepoint. According to remark 11 there exists a row, p, of C with two minimal elements $u, v, u \in \mathscr{S} p_{1} \ldots p_{l}, v \in \mathscr{S} n_{1} \ldots p_{l-1} p_{l+1}$ and $\mathscr{S} p_{1} \ldots p_{l}, \mathscr{S} p_{1} \ldots p_{l-1} p_{l+1}$ are disjoint in the row p, i.e. it holds 2° b) for $r_{0}=l+1$. The property 1° is clear (as $\mathscr{S}=\emptyset$).
II. Sufficiency. Suppose, on the contrary, $\mathscr{S} \neq \emptyset, a_{i j} \in \mathscr{S}$. Then $i \neq p_{1}, \ldots, p_{r_{0}}, j \neq q_{1}, \ldots, q_{s_{0}}$. As $a_{i j} \in \mathscr{S}_{q_{1} \ldots q_{s_{0}-1}}^{p_{1} \ldots p_{r_{0}}} \cup \mathscr{S}_{q_{1} \ldots q_{s_{0}-2} q_{s_{0}}}^{p_{1} \ldots p_{r_{0}}}$ in 2° a) or $a_{i j} \in \mathscr{S} p_{1} \ldots p_{r_{0}-1} \cup \mathscr{S} p_{p_{1}} \ldots p_{r_{0}-2} p_{r_{0}}$ in $\left.2^{\circ} \mathrm{b}\right)$ it is $a_{i j}=x=y$ or $a_{i j}=$ $=u=v$ resp. From this it follows $a_{i q} \in \mathscr{S}_{q_{1} \ldots q_{s_{0}-1}}^{p_{1} \ldots p_{r_{0}}} \cap \mathscr{S}_{q_{1} \ldots q_{s_{0}-2} q_{s_{0}}}^{p_{1} \ldots p_{r_{0}}}$ or $a_{p j} \in$ $\in \mathscr{S} p_{1} \ldots p_{r_{0}-1} \cap \mathscr{S}_{p_{2}} \ldots p_{r_{0}-2} p_{r_{0}}$ resp.-a contradiction with 2°; Q.E.D.

Theorem 5. Let $A=\left(a_{i j}\right)$ be an m by n matrix, $\mathscr{S}=(1$ and (4) no column have two maximal elements.

The maximal number of m by $(n-1)$ submatrices of A with saddlepoints. equals two.

Proof. Let there exist three such submatrices, e.g. A_{1}, A_{2}, A_{3}. Then some saddlepoints of A_{1}, A_{2}, A_{3} lie (after suitable denotation) in their turn also in the column $2,3,1$; denote s_{i} these points, i.e. $s_{i} \in \mathscr{S}_{i}$ for $i=1,2,3, s_{i}=a_{j_{i} k_{i}}, k_{1}=2, k_{2}=3, k_{3}=1$. (Let it be not the case. Thus there exists $i \in\{1,2,3\}$ such that $k_{i} \neq\{1,2,3\}-\{i\}$. Let, for example, it be $i=1$; then $k_{1}>3$. For at least one $l \in\{2,3\}$ it is $k_{l} \neq 1$ [due to (4)]. We can assume $l=2$. Then $j_{1} \neq j_{2}$ (in another case it would be $s_{1}=s_{2}$ and $s_{1} \in \mathscr{S}$ - a contradiction). From this it follows $s_{i} \in \mathscr{S}_{12}$ for $i=1,2$ and also $a_{j_{2} k_{1}} \in \mathscr{S}_{12}$. Hence $s_{1}=s_{2}=a_{j_{2} k_{1}}$, which contradicts to (4). Thus $s_{3} \leqq a_{j_{3} k_{1}} \leqq s_{1} \leqq a_{j_{1} k_{2}} \leqq s_{2} \leqq a_{j_{3} k_{3}} \leqq s_{3}$, i.e. only equality holds. It follows [from (4)] $j_{1}=j_{2}=j_{3}$ and we have a contradiction with $\mathscr{S}=0$; Q.E.D.

Theorem 6. Let $A=\left(a_{i j}\right)$ be an m by n matrix, $m \geqq 1, n \geqq 3 \mathscr{S}=\emptyset$ and (4) hold. Then the maximal number of m by $(n-2)$ submatrices with saddlepoints is equal to $2 n-3$.

The assertion follows immediately from the following lemmas.
Lemma 2. Let for a matrix $A=\left(a_{i j}\right)$ (4) hold and $\mathscr{S}=1$. Then there doesn't exist four distinct elements being saddlepoints in their turn of four distinct submatrices of type $A_{\vartheta(p q)}$ such that none of them is a saddlepoint of any two submatrices $A_{\vartheta\left(p q_{1}\right)}, A_{\vartheta\left(p q_{2}\right)}, q_{1} \neq q_{2}$.

Proof. Let four such saddlepoints s_{1}, \ldots, s_{4} exist and $A_{p_{i} q_{i}}$ for $i=$ $=1, \ldots, 4$ be the corresponding submatrices. At most two saddlepoints of $\left\{s_{1}, \ldots, s_{4}\right\}$ can lie in the same row. (Let s_{1}, s_{2}, s_{3} be three such points in a row i. Let $s_{1} \leqq \min \left\{s_{2}, s_{3}\right\}$. Then there exists $p_{1}, 1 \leqq p_{1} \leqq n$ such that $a_{i p_{1}}<s_{1}$. From this it follows that the corresponding submatrices of points s_{1}, s_{2}, s_{3} are of type $A_{p_{1} q_{1}}, A_{p_{1} q_{2}}, A_{p_{1} q_{3}}$ where $q_{1} \neq q_{2} \neq q_{3} \neq q_{1}$. Then there exist $j, k \in\{1,2,3\}$ so that $s_{1} \in \mathscr{S}_{p_{1} q_{j}} \cap \mathscr{S}_{p_{1} q_{k}}$-a contradiction.) We can assume $s_{i}=a_{u_{i} i}, i=1,2,3,4$. For s_{1} let k be the
smallest integer, $1 \leqq k \leqq n$ with the property $k \neq 1, p_{1}, q_{1}$. Thus it is $k \leqq 4, s_{1} \leqq a_{l, k} \leqq s_{k}$. Further for s_{k} let $l, 1 \leqq l \leqq n$ be the minimal index with the property $l \neq k, p_{k}, q_{k}$. Evidently $l \leqq 4$ and $s_{k} \leqq a_{u_{k} l} \leqq s_{l}$. If we continue this process, then after at most four steps we get some s_{i} previously had been obtained, say for instance s_{1}, i.e. $s_{r} \leqq a_{u_{1} 1} \leqq s_{1}$, $1 \neq r, p_{r}, q_{r}$ and hence $s_{1}=a_{u_{1} k}=s_{k}=a_{u_{k} l}=s_{l}=\ldots=s_{r}=a_{u_{r} 1}$. If $u_{1}=u_{k}$ then $l \neq 1$ (in another case it would be $s_{1} \in \mathscr{S}_{p q} \cap \mathscr{S}_{p q^{\prime}}$ for $q \neq q^{\prime}$ or $s_{1} \in \mathscr{S}$) and thus it must be (from the above result) $u_{1} \neq u_{1}$, $a_{u_{1} l}=a_{u_{l} l}$ which contradicts to (4). If $u_{1} \neq u_{k}$ then $a_{u_{1} k}=a_{u_{k} k}$ and it is the contradiction, too; Q.E.D.
Remark 12. Three such saddlepoints can exist; see the following example:
For $A=\left(\begin{array}{ccccc}4 & 0 & 0 & 5 & 6 \\ 3 & 2 & 1 & 0 & 3 \\ 2 & 1+2 \varepsilon & 1+\varepsilon & 1 & 0\end{array}\right), \varepsilon>0$ sufficiently small, it is $\mathscr{P}=\emptyset$,
$a_{11} \in \mathscr{S}_{23}, a_{22} \in \mathscr{S}_{34}$ and $a_{33} \in \mathscr{S}_{45}$.
Lemma3. Let an m by n matrix $A=\left(a_{i i}\right)$ have no saddlepoint and (4) hold. Then at most two distinct columns p_{1}, p_{2} of A and columns $p_{i}^{\prime} \neq p_{i}, i=1,2, p_{1}^{\prime} \neq p_{2}$ exist so that for all $q, r, 1 \leqq q, r \leqq n, q \neq p_{1}$, $p_{1}^{\prime}, r \neq p_{2}, p_{2}^{\prime}$ the submatrices $A_{\vartheta\left(p_{1} q\right)}$ and/or $A_{\vartheta\left(p_{2} q\right)}$ have the common saddlepoint in the column p_{1}^{\prime} or p_{2}^{\prime} respectively.

Proof. Assume the existence of three such columns p_{1}, p_{2}, p_{3}. Denote s_{1}, s_{2}, s_{3} the corresponding sadalepoints; $s_{i}=a_{k_{4} p_{i}}$ for $i=1,2,3$. Without loss of generality we can suppose $p_{1}=1, p_{1}^{\prime}=2$ and $p_{3}=3$. Then $p_{3}^{\prime}=1$ (in another case (4) or $\mathscr{S}=\emptyset$ would be failed). From the same reason it must be $p_{2}=2, p_{2}^{\prime}=3$. Then it is $s_{1} \leqq a_{k_{1} 3}<s_{2} \leqq$ $\leqq a_{k_{2} 1}<\varepsilon_{3} \leqq a_{k_{3} 2}<s_{1}-\mathrm{a}$ contradiction: Q.E.D.

Lemma 4. Let $\mathscr{S}=0$ and (4) hold. Let there exist columns $p_{1}^{\prime}, p_{2}^{\prime}, p_{1}^{\prime} \neq 1, p_{2}^{\prime} \neq 2, p_{1}^{\prime} \neq p_{2}^{\prime}$ of A such that all submatrices of type $A_{\vartheta(1 q)}, q \neq 1, p_{1}^{\prime}$ and/or $A_{\vartheta(2 r)}, r \neq 2, p_{2}^{\prime}$ have the common saddlepoint s_{1} or s_{2} in the column p_{1}^{\prime} or p_{2}^{\prime} respectively. Then $\mathscr{S}_{u v}=\emptyset$ for every $\{u, v\} \neq\left\{p_{1}^{\prime}, p_{2}^{\prime}\right\},\{1, q\},\{2, r\}$.

Proof. First of all it is $p_{2}^{\prime}=1, p_{1}^{\prime}=2$ or $p_{2}^{\prime}=1, p_{1}^{\prime} \neq 1,2$ (the case $p_{1}^{\prime}=2, p_{1}^{\prime} \neq 1,2$ is the same as the last one). In another case either (4) or $\mathscr{S}=\emptyset$ would be failed. Let it be $\mathscr{S}_{u v} \neq \emptyset$, i.e. there exists $s=a_{k l}, s \in \mathscr{S}_{u v}$ for at least one couple $\{u, v\}$ satisfying the condition of the Lemma. Then it is $u, v \neq 1,2$. Let $s_{i}=a_{k_{1} p_{i}^{\prime}}$. If $k=k_{2}$ it is $s=a_{k_{2} 2}$ and $s \in \mathscr{S}$-a contradiction. If $k \neq k_{2}$ then for the column 1 (4) doesn't hold, because $s_{2}=a_{k_{2} 1}=a_{k 1}$; Q.E.D.

Lemma 5. Let A be an m by n matrix, $n \geqq 4$. If there exist s, p, $q_{1}, q_{2}, q_{1} \neq q_{2}$ so that $s \in \mathscr{S}_{p q_{1}} \cap \mathscr{S}_{p q_{2}}$ then $s \in \mathscr{S}_{p_{1}}$ for each $q \neq q_{0}$. (It is evident.)

Remark 13. The maximal number $2 n-3$ of submatrices appears when there exist columns $p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}, p_{1} \neq p_{2}$ such that for every $p \neq p_{1} A_{p_{1} p}$ has a saddlepoint in p_{1}^{\prime}, for every $p \neq p_{2} A_{p_{2} p}$ has a sadpoint in p_{2}^{\prime} and $\mathscr{S}_{p_{1}^{\prime} p_{2}^{\prime}} \neq \emptyset$.

REFERENCES

[1] L. Danzer, B. Grünbaum, V. Klee. Helly's theorem and its relatives. Proceedings of Symposia in Pure Math., Vol. VII. Convexity.
[2] M. Davis, M. Maschler. Existence of stable payoff configurations for cooperative games. Bull. Amer. Math. Soc. 69 (1963), 106-108.
[3] S. Eilenberg, D. Montgomery. Fixed point theorems for multi-valued transformations. Amer. J. Math. 68 (1946), 214-222.
[4] S. Kakutani. A generalization of Brouwer's fixed point theorem. Duke Math. J. Vol. 8, (1941), 457-459.
[5] S. Karlin. Mathematical methods and theory in games, programming and economics. London-Paris 1959.
[6] S. Lefschetz. Algebraic topology. New York 1942.
[7] J. F. Nash. Non-cooperative games. Ann. of Math. 54 (1951), 286-295.
[8] B. Peleg. Existence theorem for the bargaining set $M_{1}^{(i)}$ Bull. Amer. Math. Soc. 69 (1963), 109-110.
[9] B. Peleg. The independence of game theory of utility theory. Bull. Amer. Math. Soc. 72 (1966), 995-999.
[10] L. S. Shapley. Some topics in two-person games. Ann. Math. Studies 52 (1964), 1-28.
[11] L. S. Shapley: Equilibrium points in games with vector payoffs. Naval Research Logistic Quarterly 6 (1959), 57-61.

