Archivum Mathematicum

Véaclav Polak; Nadézda Polakova

Notes on game theory equilibria

Archivum Mathematicum, Vol. 3 (1967), No. 4, 165--176

Persistent URL: http://dml.cz/dmlcz/104642

Terms of use:

© Masaryk University, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/104642
http://project.dml.cz

165

NOTES ON GAME THEORY EQUILIBRIA

VAicrav Pordx AND NapizZpa PorirovA (Brno)

Received April 19, 1967

One approximation thcorem on simplicial inclusive multivalued
transformation, two versions of Brouwer’s fixed-point theorem, following
of B. Peleg’s result [9] and L. S. Shapley’s one [11] tho lnd(p(‘n-
dence of Nash oqulhbrlmn of polyhedral cones preferences, but de-
pendence of stability in cooperative games and certain computational
remark, are settled in §1. § 2 follows L. S. Shapley’s [10] results
about non-existence of saddlepoints of special matrices and partially
studies a structure of A4’s submatrices with saddlepoints if 4 has no
such point.

First a word about denotations: a point x € E* is an » by 1 matrix
(i.e. a column), 74 means a transpose of 4 (i.e. x, y € E*, Tay is an
inner product of x and y), 4 or A” means a submatrix of an m by n
matrix A4, indices of its columns or rows form the set SCN =

=:{l, 2, ..., n} or LCM = :{1, 2, ..., m} respectively, A,y =
AN_Q AP = AM-L (e, A = AM) for X CE” CX is the convex
hull of X, A £ B means a; < b forallz,jand 4 < B means 4 < B
but not 4 = B.
§1

By 8, one denotes an n-dimensional simplex in Euclidean space E”",
%(8,) the set of all its nonvoid convex subsets and &(S,) the set of
all its nonvoid sides (i.e. all its vertices, edges, ..., (n — I)-sides
and §, itself). A simplicial partition & of S, is such its partition on
n-dimensional simplices that any two A’s from & are either disjoint
or have only one side (of any dimension) in common. A point-set trans-
formation @ of S, into F(8,;) is called simplicial inclusive according to S
if & is a simplicial partition of S, any two points have the same trans-
form if they belong to the interior of the same side of 4 € & and have
their transforms in the inclusive relation if the sides of 4 € & to the
interiors of which they belong are in the inclusive relation (not necessarily
in the same sense; the interior of 0-side is the vertex itself). Evidently @
is simplicial inclusive according to any &’ which is a refinement of &.
S is called primitive if for any 4 € & the set of images of all A's vertices
forms the inclusive chain (i.e. any two transforms are in inclusive
relation). Without loss of generality one can suppose @ has primitive &.
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(If S is not primitive, choose for every 4 € & its interior point and
construct convex hulls of it with A’s (k — 1)-sides. The union of all
such k + 1 simplices forms the siplicial division & of S,. For every
AV e GW all points have the same transform except those which
belong to certain ““distinguished” (k — 1)-side. Deviding AV into
k simplices (by means of a similar operation with distinguished
(k — 1)-side) one obtains &S@? etc. Evidently A% e &* has for all
its points (except a distinguished (k— 1)-side) the same image, all
points of the distinguished (k — 1)-side have (except of a distinguished
(k — 2)-side) the same image, ..., all points of the distinguished edge
have (except of a distinguished vertex) the same transform. Denote %z,

1z, ..., *x the vertices of A'") in such a way that %, 1z, ...,% (0 £ s < k)
is the distinguished s-side of A% and let i, iz, 1 < j be any two vertices.
Choose iy, 7y arbitrarily in the interiors of sides C(%x, . . .,%), C(°x, . . .,7x).

As the first one is a subset of the second and fy, = 'z, Ty, = iz, it
must be either ‘x, C iz, or ‘xy D ix,. Hence S% is primitive.)

We call a point-set transformation F continuous if F transforms S,
into 4(S,) and if y ex, when " —2, "y—>y, "yex,, "r, vel,,
where the convergence is in the sense of the usual metric topology
(see [4]).

Remark 1. Let F or P be a continuous transformation of §, into
%(S,) or S, into €(S,). Then F and P have a coincidence (i.e. x €8,
y €8, exist such thka% y ex,, ® €yp). Proof: The transformation R
of cartesian product S, ® 8, into €(S, ® ) : (x, y) = yp Q@ xp is
evidently continuous and hence a fixed point exists (Z, y) € (%, y), =
= Yp Q ZTp (see [4]). Hence Z € yp, y € T); Q.E.D.

Theorem 1. Let @ be a simplicial inclusive point-set transformation
of S, into L(S,) according to primitive S. Then a continuous transformation
F of S, into €(S,) exists so that @ = F on the vertices of .

Proof: Let %, , ..., k& be the vertices of A € 0. Let among {%z,}¥_,
be r different ones (1 < r < &k 4 1). Without loss of generality one can
suppose the existence of a sequence {1.};_o, —1 = ¢, < 1) <y < ... <
< i, = k of integers such that 1 = s’ <s = r, 1,_, <t <3, by <
< Jj £ 1, implies ‘x, Ciz, and @, = iz, holds only if &' = s (it follows
from the primitivity of & immediately). Construct z, for arbitrary

k
zed, x=>y Aix as follows
=o

{r tr
1 xp ={y :y= v -
( ) F {J y 7:20 i Z:ﬂ 'U?» = 1’ vj g 0’
4 fy 7 .
= i ] Y2
where %, 1y, . . ., by are vertices ofi-xqj (s=19 j=0 8=1M8
bt BRI

,r)and,ua:;_ Z Ai'
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'

The last inequality is superfluous for ) u, = 1. Evidently x, is a convex
s=1

polyhedron. Even it is ap = 0 (For 0 £ ¢; <t, < ... <t it suffices

#(l < s=<r) to explain as a sum of ¢, —¢,_, (= 1) non-negative

numbers (t, = : —1). In this case in (1) equalities only hold.). We have

zp = ", (Fora = v A; = land ; = 0 forj 7 4. Hence for i, <t < 4,

ts
itis g, = 1and g, = 0 for s’ % s. Thus ) »; = 1 and it results »; = 0
i=o

ts'

5
for j > t,. Since ) = Y py with 8" < s is in (1) superfluous, we have
; =

j=0 1
xp = C(%, ..., by), q.e.d.).

(2) zp depends only on {#xg}i,e 4, by the rule (1) if  lies in the interior of
v-dimmensional side 4, of 4. (Let z;, depend on {#x,}i,c 4, by the rule (1)
and suppose xze€d, ; = O(ex, ... fuwg, fonz, ..., Jx), (not necessarily
in its interior), where sz €4,, i,_; <j, < 1,. We have finished in the
case 1, ; <t,— 1 because there exists j #%j,, x €4, such that
izg = vz, and hence all inequalities in (1) remain. Thus let ¢,_; + 1 =
=14, =j,. Then 7w, é¢{x,} ycy,, and hence u, =0. It results

ts
Yov; 2w+ ... +p, is superflaous and it follows z, depends on
=0

{@p}ire s, by the rule (1).).

Hence F defined according to (1) on 4 and on A’, 4, A’ € € is the
same on AnA4’. Thus F transforms S, into %(S;). F is continuous
(Let "y — u ™ — v "0 € "up. Without loss of generality one can consider
all ™y lie in a certain 4 € €. For cach j,0 £ j = t,, "v;—>v;, where

i t
EDY "y and v = Z vJy. As for each i, 0 < ¢ < k it is "4, — 4,
j=0 i=0
k k

where "y = Z "0, u = Z Az, we have "y, — u, for eachs,1 < s < 7.
i=0 i=0
© € up is now a consequence of (1) and "0 € "up.); Q.E.D.

Remark 2. Since z, is a subset of the greatest simplex among
{%p}ize s, €4, (it follows from (2) immediately), F' has this property:
if « lies in the interior of A, and z, contains an inner point of any side 8
of S,, then for one wed, it is ‘iz, D 8.

Theorem 2. Let @ or ¥ be a simplicial inclusive transformation of S,
into L(8;) or 8, into F(8S,). Then P and ¥ have a coincidence.

Proof: Let &, or &, be a primitive simplicial partition of §, or §,
belonging to @ or ¥ respectively and F or P the corresponding continuous
transformation mentioned in the Theorem 1. F and P have a coincidence,
ie. x €8, y €l exist such that y ex,., x e y,,. Evidently the sides
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U, V, d,. 4, (not necessarily all of the same dimension) exist with
these properties: U is a side of S,. V of §,, 4, of a certain AV e G,
4, 0of A% € G, and « lies in the interiors of U and 4, v in the interiors
of Vand 4,. As €, is a simplicial division of S,, we have U D 4,.
For the same rcason it is ¥V O 4,. According to Remark 2 a vertex
iz €A, exists such that ‘x, O V and a vertex 7y e A, with 7y, D U.
Hence ived, CU Cly,, iyed, CV Cix, and @ and ¥ have
a coincidence; G.E.D.

Remark 3. Note that the coincidence takes place even for the ver-
tices fz, 7y of G,, G,.

Remark 4. Theorem 2 can be characterized as a simplicial-inclusive-
coincidence version of Brouwer’s fixed-point theorem. Other coincidence
versions see [3], [6].

Remark 5. It can be settled also two-sphere-collision version
of Brouwer’s theorem: Let S, S? be two disjoint (» — 1)-spheres
of E*, F a continuous transformation of S* onto S2. Let during a unit
time interval S* be in quiet (i.e. !St = S for all ¢ € [0,1]) but S? conti-
nuously changes (i.e. it moves and deforms; the set of points of S?
in the time ¢ we denote !S2) as far as 152 C S! (hence the continuous
transformation F? of ¢St onto !S? is defined: x e S, x =z, y =
tepe = : ty €182, i.e. a homotopy {F'}ico1; is deﬁned) Then £ e [O 1]
and T € 8! exist such that 'z = tz,:.

Proof: Let S be an (n — 1)-sphere having the same center o as S*
and containing S2. Denote S the union of § with its interior. Let
{P'}ic(0,1; be the set of homotheties with the center o representing the
continuous change of 8 into S and such that Sk.n She = ¢ for ¢ #~¢'.
Since {F}icr0,17 is a continuous set of contlnuous transformations
(i.e. '3} = 8?%), one can choose S such great that !S3. C g for all
t € [0,1]. For z € S define ;, = x,, and prolong f on the whole S! that f
may continuously transform S! onto §%. For x € § — St let us choose
t€(0,1], xeSh (such ¢ exists unique) and define x; = xpy-1pep:.
Since f continuously transforms S into itself (it is in fact a continuous
transformation between two flows), f has a fixed point x, ; =, i.e.

x = wEi-1pipi, * €Spi. Hence for z = x(pz) . we have 7 e 8! = {91,
= I(pi)-1 pipi(ph-1 = x(pt')—lp_: = ilﬂ, ie. tl, = xjt, QED

Lot us consider a set N = {1,2, ..., n} of players, each player i has
a finite set %, of strategy possibilities and a sharp polyhedral convex
cone K; C EP as its preference relation (i.e. 7 finds a’ better than a if
a #a and a' €a + K;(=a —a e K,). Let n transtormations f; be
given of ¥, ® ... ®F, into EP such that f;(x) means a payoff to the
player 1 if x are players’ choices. By a natural way let us define f,
as transformations of § =8, ® ... ® 8,,(s; = : card ¥; — 1 and 8,
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is the 3™ probability simplex) into E? prolonging f,” s given above on the
vertices of §. Such a situation is called an m-person non-cooperative
game I'(N, 8, f;, K;). For x €S «¥ let us denote such a point of
S=:8,8... 08 ,®8,®... ®S,, which is the orthrogonal
projection of & on St For a convex polyhedron P in E? and a sharp
convex polyhedral cone K P""* K — {z : x € P and it does not exist y in P
sothat y # 2,y e x + K}. Evidently P;(z) = : C (f,[(1,0, ...,0),2], ...,
fL0, ..., 0,1), 2]) is the sct of possible ¢" s payoffs for other players’
choices z € §*. Hence the optimal ' s play in this case is to have his
payoff in P,(z)mxK:. We call ¥ €S a Nash equilibrium if for ecach
t €N f,(x) € PPasKi (S,

Theorem 3. For each I'(N, S, f;, Kt) a Nash equilibrium exists.

Remark 6. For p =1 it is the well known Nash’s theorem (see
[7]). For general p but K, positive and K, negative cones we have
L. S. Shapley’s result published in [11]. For different than our prefe-
rence relations (but in a very gencral form) the theorem is proved by
B. Peleg in [9]. We shall give two proofs. First as a trivial corollary
of the Nash’s theorem, the second (independent of the Nash’s one but
for n = 2) by means of our Theorem 2.

Proof 1. Let ¢’s be vectors of unit lengths lying in the interiors of
corresponding K‘;ﬂ‘%. Define new payoffs ¢;(x) = : T¢;f;(x). Hence we
have p = 1 and a Nash equilibrium 7 exists for payoffs ¢,. But Z is the
Nash equilibrium for f,” s, too, for ¢, lies in the interior of K*5r alli and K,

is sharp; Q.E.D. l

Proof2. Let us consider n = 2. Change the denotations a; = : f;(3,)),
by =:foli,j) for ie Sy, jeFand k=8 —1, 1 =:5—1.o =:
= : (ai)-), B = : (b,.].) are vector matrices, ;= (@5 oo Wiy i)

a(k-+1) byop and o/ — (@, -+, @;111) & p by (I + 1) matrices of

real numbers (Z%;, #° are defined analogously). For xz €S, define

2o ={y :yesS,, (", B, ..., TceB1x) y = max {Tc,Hx}}. Evidently z,
1<j<I41

is not a nullset and it is a convex hull of ail_such vertices 7y of S, for
which "¢, %2 is maximal. Hence @ transforms S, into #(8,). @ is simpli-
cial inclusive (In E*+2 denote first k 4+ 1 coordinates of a point as
xl, ..., «*+1 and the last one as ¢. Consider I + 1 closed halfspaces
t = "c,%;x and orthogonally project the boundary of their intersection
into the space E*+1of z-axis. The projection is a polyhedral partition &
(with some sides being unbounded) of E¥+! because each halfspace has
an inner normal with positive ™ coordinate (the dimension of any
boundary side and its projection is the same). If one corresponds to the
interior of any side 4 of & such a side of S, vertices 7y of which are all
Jy’s with j having this property: the boundary of the above considered
halfspace j contains the side its projection being A, then this correspoz.-
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dence is inclusive. Evidently & defines a polyhedral partition on 8,
which we refine on simplicial one. The above considered inclusive
correspondence between interiors of sides of € and #(S,;) defines our @.).
Analogously one obtains a simplicial inclusive transformation ¥ of S,
into £(8,): y,={x:z€e8,, Te, Ay, Te,l?, ..., Tel*ly) & =
= max {Tc;o/%}}. According to Theorem 2 @ and ¥ have a coincidence
1<igk4-1
(@, y). Since y, (or x,) is a part of best replies of the first (second) player

to the strategy y (x) of the second (first) one (because K, K, are sharp
and ¢, ¢, lie in their interiors), (¥, ) is our required equilibrium; Q.E.D.

Remark 7. Evidently the set of the best i’srepliesz, z,, = {x : fi(v, 2) €
€ PMaxKi ()}, to other players’ choices z is the union of some 8,’s sides.
@ nced not to be inclusive: Let n = 2, p = 2,5, =1, s, = 2, K, a positive
cone (i.c. the set of points in E? with all coordinates non-negative),

1
donote 8, = C(X;. X,), 8, = C(Y,, Y. ¥y), fulX,, ¥y) = {<E , o)}

fulXy. Yy :{(0, %)} Tl Xy Yy) = {000}, fulXy. Ty) = {(— 1 ,0)},

1 1 1
fo( X3, Y) = {(0,- 72—)} )} fo( Xy, Yg) = {(0,1)} and for Z = : 3 X, + 5 X,
define G, = {4, 4,}, 4, = C(X,, Z), A, = C(X,, Z). Evidently x, =
= C(Y,, Y,) for ¥ = X; and « in the interior of 4,, x4, = C(Y,, Y,)
for x = Z and z, = { Y} for z in the interior of 4, and = X,. Hence @
is not inclusive according to &, and even it cannot be inclusive according

to any other S;; Q.E.D.

Remark 8. The independence of the game theory on cones preferences
fails in this question of an n-person cooperative game I" with a character-
istic vector-function »(S) e E?, § C N, where N = {1,2, ..., n} is a set
of players and v(S) = o, v({i}) = 0, i € N: Such an (X, B) (where X is
a p by » matrix, X 2 0, B={B,, ..., B;} is a partition of N and

Y X, = v(B;)) is called stable (see [2], [8] where the stability for p = 1

1€ B

is éeﬁned) if for each u € N u is not weaker than any other player

of B;, u € B, i.e. each objection ¥, against u(C C N —{u}, Y isa p by

card € matrix, ) ¥, =v(C), Y,z X, and such v€C n B; exists
ke

that Y, > X,) can be countered (i.e. there exist such D and Z,, that

ueD CN—{v}, Z,ap by card Dmatrix, Z, 2 X, Y Z, = (D) and
keD

Zpne 2 Ypac). The following example shows a game I' (with p = 2,
n = 3) for which for a given B no stable (X, B) exists (compare the
resylt of B. Peleg, M. Davis, and M. Maschler, see [8], [2], for p = 1):
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Example 1. N = {1,2,3}, B ={(1,2), 3}, »(1,2) (1) , v (1,3) =

3
— (2 5
= (i) vea = (3)

ItisX = (inil?Z),xU 20,2, + 23 =1,y 4255 =3.1fO0 = 25, <1
2122

£y 2 —Xyy —
itis 2 < ,, < 3. There cxists an objection Yous = (;: i :: 1 —rz -
~8,) where (61) > o of the player 1 against 2. It cannot be counter-
— &

2,

ed by 2 because 2 cannot get( -

)in the coalition (2,3)
Zp2 Z Tyq > 2

due to v(2.3) = (;) Iy, = litiszy,y < 2 and an objection Y3 =

= (x12 +oe b —a, — 81) , & >0,6 2 0 of 2 against 1 exists. Since
Top + 8,2 — Ty — &
. 1 .
iu > 0 it cannot be countered by 1 if, say, ¢ = 10 because 3 will
21

get at least (3.9/10) in the coalition (2,3) whereas in (1,3) he will get

at most (2) .
®

Two other added examples may have an interest, too.

Example 2. N={1,2 3,4}, B={(2), 34}, X:((l)(l)ig),

2(2,3) — (‘1‘) L 0(1,3) = (g) , (1, 2) = (i) L 0(3,4) = (i) , 0(8) = (g)

otherwise. This game has the property that (X, B) is not stable but
(xlla Xyg, Xy3, X145 (1,2), (3,4)), (121’ Tag, Loz, Lag; 1, 2)’ (3, 4)) are
stable.

Example 3. N, B, X as in the Example 2. v(2, 3) = ,0(1,2) =

0

2
1 3 1 0

== = ) 4: = = h .
(1),0(1,3) (O) ,v(3,4) (1),0(8) (0) for other S. It shows,

on the other hand, that (X, B) is stable whereas the single parts are
not stable.

Remark 9. Let C(A) mean the convex hull of columns of a matrix 4,
= {z: 2 € E", Bx 2 b} a convex polyhedron lying in C(4) (b € E*,
B is a k& by n matrix, , Aann by ! matrix). Evidently ¥ = {y : y € §;—,,
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BAy z b} is a convex polyhedron. Denote for y € ¥ K(y) (or L(y ))
a set of all indices j such that Bix = b/ (or 4/ > 0) and write k(y) =

= :card K(y) (l(y) = : card L(y)). Being inspired by an explicite
formulas for basic optimal strategies solving a two-person zero-sum
matrix game (see [5]) one can settle this necessary and sufficient condition
for 4y € Y to be a vertex of ¥ (for a free eligibility of A one may find it
useful from numerical point of view):

(3) C(BEwA4, ) is an (I(y) — 1)-dimensional simplex.

Proof: I. Let y be a vertex of ¥ and (3) be not true i.e. either two
columns of B’“J)A,( , are equal or all are different but in (3) mentioned
polyhedron is at most l(y)—2 dimensional. According to Radon’s
theorem (see[l]) two disjoint sets L;, L, of indices exnst such that
ClUBEY Al N O[(B"V’A,(,,) JF 0 de a vector ze B! exists
such that Tez = 0, 2"% 3£ 0, 2 = 0 for 1 € L(y) and BEwA, 210 = o,
As y" >0 two pomt% e =1y -+ e (for a suitable xmall g > 0)
lie in S, ; and (for ¢ = 1, 2) BX¥" Ay, = bK¥ and, evidently, & can be
chosen such small that B/Ay > biforj¢ Ky, i =1, 2. Hence Y F Y12 €
€ Y and y is not a vertex. IL. Let y € ¥ and (3) is true. Suppose ¥ is not
a vertex of ¥ i.e. y,,y, € Y exist, y; 7 g, such that y == = ?/1 + _i_ Y-
It results for ¢ = 1,2 j ¢ L(y), y; = 0 and BE¥ Ay, = blw) Ag Tey, = 1
for 1 =1,2 we have B"‘V’A,(,,,(yl Ya)" =0, Te(y, — y,)lv = 0,
(Y, — yo)™ W) £ o which contradicts to (3); Q.E.D.

§2

If A = (a;;) is an m by n matrix and r, s integers, 1 £ » < m — 1,
l1<s=sn—1, then the sets of saddlepoints of matrices 4, A4
A PP Ag{,’,’; ) are denoted by L, L4 g ST LA (a,
is the qaddlepomt of A if for all 4, j, am S @i, < a,,),)'lh(s row "p
or the column g means the p'h row or the ¢** column in 4.

Lemma 1. Let 4 = (a;;) be an m by n matriz, m z 1, n = 3 and let
every m by (n — 1) submatriz has a saddlepoint. Then £ = ) iff there
exists a column, q, with two maximal elements x, y, we Sy, yeF,,
for gy # q, and Ly, Sy, have no common element in q. )

Proof: I. Necessity. At least two columns ¢,, ¢,, ¢; 7 ¢, exist so
that&’q , &g, have a common column. (Otherwise S forr=1,2, ..., n
isak byl ‘matrix. Let a = a,; be the maximal element in 4. There
exists cxactly one column, I, such that ¢ €% . It is «,; = a for 2all
t=1, ..., n, 1%l and a;p <a Then for evexvsil it is a;, €%
which contradicts to the above result.) Further &, , &,, have dlS]Olnt
sets of rows (in another case any common element of &, , &, would
be a saddlepoint of 4). From this it follows the rest of the assertion.

"‘(’11 O
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II. Sufficiency. Let the assumptions be satisfied and & # (J. Let
ay €%y, Gy €Ly, a=ayeS. Evidently a, =ay, = ay (since
a €S U p,and ay = ay). Asay, < ay (since ay ¢F,,) and dy, <ay
we have ¢ > 2. At least one of integers ¢,, g, is> 2; let ¢; > 2. Then
ae¥, and a; =a = a; = ay. Evidently a;, €% and from this
it follows a;; €y, NS g, —a contradiction; Q.E.D.

Remark 10. The assumption of &, , &,, in q is substantial as this
example shows: For the matrix

—1 0 1
1 0-—-1
A =
2 0 2
2 —1 3

it is: every &, # 0, ap e, ¥ =ay, Yy =ay and a3 €S, NSy,
for ¢, =1, ¢, = 3.

Remark 11. The similar assertion holds for (m —1) by n submatrices
but the word “column” and “maximal” must be substituted by ‘“row”
and “minimal”.

Theorem 4. Let A = (a;;) be an m by n matriz, m =2 3, n = 3. For
gwen integers r, s, 1 Sr=m—3,1 < s n—3 let every m—r by
n—s submatrix of A have a saddlepoint. Then & = () iff there exist

integers 1 Srgsr, 1288 1Sp,<pp<... <p,=m, 125
S ¢ < ... <gs S nsuchthat 1° A has no saddlepoint in rows p,, . . .,Dp,,
and columns q,, ..., g;, and etther 2° a) there exists a column, q, with

two equal elements z,y, x €SP P e P Pro and F7r P
q ’ y’ q1-. ~q‘°—l’ y q1- - ~4It°-|Qso q1- - Qsy-1 ’

.5”5"":'0 .. are disjoint in g, or 2° b) there exists a row, p, with two
1. Psg-2 s,

minimal elements u, v, u €L PP, v €FPre Pry2Pry gqud FP1--Pry
Frr--Pry-2Pry are disjoint in p.

Proof. I. Necessity. Since every (m —r) by (n — s) submatrix has
a saddlepoint and & = (J one of two cases will appear:

1. There exists k, 1 < k < s so that every (m — r) by (n —k)
submatrix has a saddlepoint but at least one (m —r) by (n —k + 1)

submatrix, B = Ag&’,’l‘j.‘jfxl) has no saddlepoint (let ¥ be maximal

with this property). According to Lemma 1 there exists a column, g,

of B with two maximal elements z, y, x €Sy 77, yeSR: b

and gn FPE NS RN g, = O 10 2% 8) holds where 1o =,
so=~F + 1.

If 1. doesn’t work then there exists I, 1 < I < r (maximal one) with
the following property: every (m — 1) by n submatrix has a saddlepoint

but there exists an (m—1I 4 1) by » submatrix, C = 4%®---p-)
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with no saddlepoint. According to remark 11 there exists a row, p, of ¢
with two minimal elements u, v, w e P11, p € Fr---~-1ln and
Fpr--p Pt are disjoint in the row p, i.e. it holds 2° b) for
ro = I + 1. The property 1° is clear (as & = (J).

II. Sufficiency. Suppose, on the contrary, & 0, a; E.V Then

. . P1- - -Di 7’ i
THE Py, ooy Prgs JF Qs o O AS a5 ey‘ q' y‘ in
34-1 (ho 208,
2° a) or a; e P Prg-1 |J SFPr - Prg-2Pry in 2 b) 1t, 1@(1’ =z =yora;=
=u=" resp From this it follows a; eSf”‘ n y”* T ora, e
qc -1 Qr- - dsg=2 s, P

€ F P Pro-1 | PPa- - Pro-2Pry rESP.—A contradletlon with 2°; Q.E.D.
Theorem 5. Let A = (a;;) be an m by n matrix, & = () and
(4) - no column have two maximal elements.

The maximal number of m by (n — 1) submatrices of A with saddlepoints
equals two.

Proof. Let there exist three such submatrices, e.g. 4,, 4;, A,.
Then some saddlepomts of A,, A,, Ay lie (after suitable denotatlon)
in their turn also in the column 2, 3, 1; denote s; these points, i.e. s; e&;
fori=1, 2,3, s, =a;s,, by =2, ky = 3, ks = 1. (Let it be not the
case. Thus there exists ¢+ €{1, 2, 3} such that k; ¢{1, 2, 3} — {i}. Let,
for example, it be 4 = 1; then k, > 3. For at least one le{2, 3} it is
k, # 1 [due to (4)]. We can assume ! = 2. Then j, # j, (in another
case it would be 8y = 8 and s, €Y — a contradiction). From this it
follows s; € %, for 4 = 1, 2 and also A, €S 13- Hence s; = s, = ajp,,
which contra(hcts to (4). Thus s5 < aj, £ 8 = (z,; < 8 < g, S 83,
i.e. only equality holds. It follows [from (4)] j; == J, = j; & ad we have
a contradiction with & = ¢; Q.E.D.

Theorem 6. Let A = (@;;) be an m by n matric, m = 1, n 23S =0
and (4) hold. Then the maximal number of m by (n — 2) submatrices with
saddlepoints is equal to 2n — 3.

The assertion follows immediately from the following lemmas.

Lemma 2. Let for a matrix 4 = (a;;) (4) hold and & = ). Then
there doosnt exist four distinct elements being saddlepoints in their
turn of four distinct submatrices of type A ,,, such that none of them
is a saddlepoint of any two submatrices 4y, Aopa)s T 7 92

Proof. Let four such saddlepoints s,, ..., s, exist and A, for ¢ =
=1, ..., 4 be the corresponding submat-ricPS At most two saddlepoints
of {31, ..., 8} can lie in the same row. (Let s, 85, 83 be three such points

in a row 4. Let s; < min {s;, s3}. Then there exists p;, 1 £ p; < n such
that a;, << s;. From this it follows that the correspondmg submatrices
of points s,, s,, s3are of type 4, ., A, ., Apq, Where q1 F gy Yy F Q-
Then there exist j, k£ €{l, 2, 3} so that s, € ¥, ,, NFp,—a contra-
diction.) We can assume 8; = a,,, 1 = 1, 2, 3, 4. For s, let k be the
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smallest integer, 1 < k¥ < n with the property % =1, p,, ¢;. Thus
itisk < 4,8 < Gur < 8- . Further for s letl,1 £ 1 £ n be the minimal
index with the propertyl *k,p;,q;. EVlduntlyl < 4and 8 S Ayy = 8-
If we continue this process, then after at most four steps we get some s;
previously had been obtained, say for instance s;, i.e. s, £ ayg £ 84,
157 p,q and hence s =@y =8, =y =8 = ... =8, = Uy,1.
If w; = w, then I 1 (in another case it would be s, e, NS, for
q # ¢ or s; €¥) and thus it must be (from the above result) «, # u,,
Gyy = @, which contradicts to (4). If u; # u, then a,; = @, and
it is the contradiction, too; Q.E.D.

Remark 12. Three such saddlepoints can exist; see the following
example:

4 0 0 5 6\
Ford =13 2 1 0 31, e > Osufficiently small, it is & == ()
21421461 0/

Uy €S a3, gy €F g and agg € F 5.

Lemma3. Let an m by n matrix 4 = (a,;) have no saddlepoint and (4)
hold Then at most two distinct columns Py, P of A4 and columns
11)1 #p;, 1 = 1,2, p] 5 p, exist so that forallg, 7,1 £ ¢, 7 £ n, q # p,,
P1, T F Pgs pz tho submatrices A,,(m) and/or Aap,g ‘have the common
saddlepoint in the column p] or p, respectively.

Proof. Assume the existence of three such columns p,, Py, p3- Denote
81, Sy, 83 the corresponding saddlepoints; s, = a; »y for i =1, 2, 3.
Without loss of generality we can suppose p, = 1, p; = 2 and p, = 3.
Then pg = 1 (in another case (4) or & = () would be failed). From the
same reason it must be p, = 2, p; = 3. Then it is s; < az3 <8 <
S gy < & S age < s;—a contradiction: Q.E.D.

Lemma 4. Let &% = (0 and (4) hold. Let there exist columns
P1s Pgs 1 # L, pé # 2, py # py of A such that all submatrices of type
Asnpr 4 # L 1y and/or Al,, »> © # 2, py have the common saddlepoint
8; or 8, in the column p; or p, respectively. Then &, = () for every
{w, v} # {p1, P} {1, ¢}, {2. 7}

Proof. First of all it is p; =1, p; =2 or py =1, p; # 1, 2 (the
case p; = 2, p; % 1, 2 is the same as the last one). In another case
either (4) or & == () would be failed. Let it be &, 7~ 0, i.e. there exists
8§ = ay,, s €S, for at least one couple {u, v} satisfying the condition
of the Lemma. Then it is u, v % 1, 2. Let s; = ap,,. If k =k, it is
s = ay,2 and s e ¥—a contradiction. If k& 5 k, then for the column 1 (4)
doesn’t hold, because s, = ay,1 = a;;; Q.E.D.

Lemma 5. Let 4 be an m by n matrix, n = 4. If there exist s, p,

91> 92> 91 7 ¢e SO that 8§ €S pg, NS pg, then sey for each g # g¢,.
(It is evident.)
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Remark 13. The maximal number 2n — 3 of submatrices appears
when there exist columns p;, Py, P1, Py, Py 7 Py such that for every
P # p; A, has a saddlepoint in p;, for every p # p, A4,,, has a sad-
point in p; and Fpip # 0.
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