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S O M E G E O M E T R I C R E M A R K S A B O U T D I S P E R S I O N S 

by H. GuaoENttiSiMEB,*) Brooklyn 

Received July 15, 1908 

1.0. Boruvka has developed a very interesting theory of second order 
linear differential equations based on the distribution of the zeros of the 
solutions. We refer to the monograph [1] for all definitions. Professor 
Boruvka's book contains a number of geometric interpretations and 
applications of the theory, based on centroaffine differential geometry. 
In this Note, we interprete a number of results on oscillatory equations 
within the framework of unimodular centroaffine differential geometry. 

We consider an arc x{r) = [u(r), v(r)] in the plane. The variable r 
belongs to some interval / cr JR. The coordinate functions u(r), v(r) are 
supposed to be of class C2. Furthermore, we suppose that there exists 
a continuous determination of the angle 

<X(T) = arctan u(r)/v(r) 

which is monotone increasing and that the Wronskian 

u(r) v(r) n 

n \ n \ > v. 
u (r) v (r) 

Then the radius vector of the point on the curve turns about the origin 
in a monotone and continuous way and the curve is concave towards 
the origin in the neighborhood of any of its points. 

The unimodular centroaffine parameter is chosen so that the Wron
skian becomes a constant. The usual choice is a parameter t defined 
(up to an additive constant) by 

u(t) v(t) 
du/ái áv/át *- 1. 

By definition, t\ — i0 is twice the area covered by the radius vector in 
its motion from x(tQ) to x(t\). The two vectors %(t), x'(t) are linearly 
independent and can serve as a frame for the curve. The Frenet equa
tions of this frame are 

_d_ 
dť (*') (-*(«) 0/VJ 

*) Research partially supported by tfSF Grant GP-8176. 
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q(t) is the unimodular eentroaffine curvature. The curve x(t) is solution 
of the differential equation 

x" + q(t) x = 0, q(t) > 0, #(0) = x0. 

The unimodular eentroaffine curvature is easily expressed in terms of 
euclidean quantities. Let 0 be the oriented angle of the tangent line to 
the curve and the x-axis, h(0) the distance of the tangent line from the 
origin (the support function) and Q the radius of curvature. Then 0 = 
= 0(t) and q(t) =;{Q(0) h3(0)}~x. Also, the curve x'(t) is the image of 
the polar reciprocal of the tangents to x(t) in a rotation of angle +^/2 . 
The unimodular eentroaffine parameter t* of x' (twice the area) is given 
by &t* =zq(t)dt. 

2. Let us consider now an equation 

(1) x" + Xq(t)x = 0 

where q(t) > 0 is periodic of period n and X > • 0 is a parameter. By 
q>jc(X, t) we denote the &-th dispersion of the first kind [1] for the para
meter value X. The k4h interval of instability of (I) [7] collapses to a point 
if and only if there exists a value X = Xjc for which 

(2) <Pk(h,i) = t + it. 

We have to show that (2) implies that the coordinate functions u(t), 
v(t) of x(t) both are &-th eigenfunctions of the Liapounoff boundary 
value problem 

X(TI) = —x(0) k odd 
x(n) — x(0) k even. 

Since the order of an eigenfunction of a Sturm-Liouville equation is 
given by the number of its zeros in the interval in question, we only 
have to show that the functions satisfy the boundary value condition. 
Choose #(0) = (1, 0), x'(0) = (0, 1). For k even, the monotonicity of 
a(t) and the condition (2) together imply u(n) > 0, v(n) = 0. Now, if 
u(n) =fc 1, the fact that t is twice the area implies that the curve x(t), 
t > n, cuts the t/-axis for the first time at a point that is nearer to 

^farther from) the origin than the point at which x(t)\ t > 0, cuts for 
the first time if u(n) > \[U(TI) < 1]. Hence, there is a first point of 
intersection of the two arcs in the first quadrant. By (2), the points 0, 
x(t), x(t + n) are collinear for all t. Hence, x(t0) = x(t0 + n) at the point 
of intersection. For the areas covered by the radius vector we have 

/ 

\u v 

' Idм dv 
= fo 
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and 
t0 + n 

2A: 

/

l u v 
I du dv 

= to-

This is a contradiction since A2 — Ax ^ 0 (fig. 1). Hence, u(n) = L 
The proof for k odd proceeds along the same lines. 

У(èв) * УC^-fT, 

Fig. 1. 

3. Since Q(0) = h(0) + h"(0) (see, e.g. [3]), the equations (1) which 
satisfy (2) can be constructed in the following way. 

Let h(0) be a C2 periodic function of period ifor, subject to 

(a) 

(b) 

(o) 

Һ( ) > 0 

Һ( ) + Һ"( ) > 0 
kn 

j {ҺҢ ) — h'Ц )}å = л. 

The integral to the left hand side of (c) represents twice the surface 
area covered by the radius vector of a curve of support function h(@). 
The area element in terms of the support angle is 1/2A ds(0) = 
= l/2h(0) Q(0) d0. Hence, the equation in 0 

(A + h") hx" — [(A + h") A]' x' + (A + A")2 x = 0 
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can be transformed into the form (1) with fa = I by choosing as independent 
variable 

t= f (h + h") h d<9 
o 

and all equations (1) which satisfy (2) for fa = 1 can be obtained in that 
way; at least for continuous q(t). For the transformed equation, 

It is an interesting open problem to construct the functions q(t) for 
which there exists an increasing sequence Xjx < A;2 < ... such that 
<pjH(Xja, t) satisfies (2). The only known results in this direction are due 
to Hochstadt; see, e.g., [7]. 

4. In LiapounofTs theory of stability, the integral 

n 

1(1) = In / q(t) dt 
o 

plays an important role. If q>\(X, t) = t + n> it is known [4] that 

(3) 8 < I(X) < n2 

In particular, for A = 1 is follows from [1], p. 139, that 

f(t)=f(t + n), feC2, f(c) = f'(c) = 0, 

e x p [ - 2 / ( c / ) ] - l 

/ sin2 (a — c) 
o 

implies 

(4) 

-dö- = 0 

0 ^ / {/'2W + 2 / 'W c o t (t — c)}dt<n ^ 0.595. 

The left hand side of (4) follows from the analytic conditions without 
much trouble. Similarly, the right hand side of (3) can be established 
analytically by known inequalities concerning the eigenvalues of (1). 
Geometrically, the upper bound for /(A) is a classical inequality of 
Santalo [8]. On the other hand, the left hand side of (3) says that the 
areas A of a symmetric oval and A* of its polar reciprocal with respect 
to the center of symmetry satisfy 

AA* > 8 
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with equality only for the parallelogram (for which q(t) is not a function 
but a point-mass distribution). No analytic proof is known for this 
inequality. 

The inequality (3) shows the extraordinary strength of the result 
([1], p. 136, 138) that for cp(l, t) = t + n we have at least four solutions 
to q(t) = 1 in (0, n). In fact, it is possible to approximate the parallelo
gram by convex, analytic curves and in that way to find Ow periodic 
functions q(t) for which 99(1, t) = t + n and 

n 

0.81 ~ \ < q = - / q(t) dt < - ~ + e. 
nL n J nl 

0 

For such a function, the minimal deviation from the mean is over 20 %. 
Usually, one expects theorems that a certain function takes on its mean 
value at least four times [3]. 

5. The unimodular centroaffine curvature presents some interesting 
problems connected with the so-called "vertex theorems''. A vertex of 
a curve in a geometry is a point where the corresponding curvature has 
a relative extremum. 

For a smooth oval (a closed, convex curve), the existence of two 
vertices follows from the Weierstrass theorem. This number two can 
occur as the number of unimodular centroaffine vertices, e.g., for the 
circle referred to any interior point other than its center. If the origin 
is at the centroid of a curve or at the centroid of the polar reciprocal, 
the number of vertices is > 6. For a symmetric oval referred to its 
center, the number of vertices is > 8 [6]. The characterization of all 
interior points for which the number of unimodular centroaffine vertices 
is > 2 is an open question. The result in [1], p. 136, can be interpreted 
as a theorem on relative vertices of a type encountered also in Minkowski 
geometry (cf. [2], p. 324, 3). Consider two arcs x(t), y(t) of the type 
described in sec. 1. Let x(t*) be the point of smallest parameter value 
t* > t collinear with 0 and x(t) and denote by yx(t) ==' \j2(t* —t) the 

area of the convex domain bounded by the arc x(t) x(t*) and the segment 
x(t) x(t*). The result of [1] can be reformulated as: 

If <Pz(t) = (fy(t + 0) for t0 ^ t < t*, then the unimodular centroaffine 
curvature ofx(t) is equal to that ofy(t + c) at least four times in t0 < t < t*. 

As a special case, we consider a smooth, oriented oval C and a point P 
in the interior of C. The Grassmann space of the oriented lines I through P 
is homeomorphic to a circle JP of center P. We denote by (I 0 (7)«, 
i == 1, 2, the i-th point of intersection of I and C in the direction of I. 
The surface area of the part of the interior of C bounded by by the 
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segment (I n 0)i (I (1 C)2 and the arc of C pointing from (I n O)i towards 
(I f| C)2 is denoted by <pc(l). The surface area of the sector cut out from C 
by the rays from P to points (h f) O)i and (l2 f) C)i is denoted by 
A(l\, l2). The unimodular centro-affine curvature, for the origin at P, of C 
&tQ eC is denoted by Hctp(Q). Then we have: 

Given two C2, oriented ovals C\, C2 and points P$ (i = 1 , 2 ) in the 
interior of Cj. If there exists a homeomorphism f: JHi —> F2 of the oriented 
lines through Pi to the oriented lines through P2 such that 

A(l,lo) = A[f(l),f(l0)] 

<pcx(l) = (Pelf (I)] 

for all le T\ and a fixed lo e A , then, for at least eight different lines 

xCl,ptl(i n oi),] = 

*c2,/>2{[/(l) n C&) 

and the ratio of the two unimodular centroaffine curvatures has at least 
eight relative extrema. 

In particular, such a map / exists (by parallelism) between the lines 
through the center of a centrally symmetric oval of surface area A and 
those through the center of a circle of radius (A fa)112: 

The unimodular centroaffine curvature of a centrally symmetric oval of 
surface area A computed for the center of symmetry is equal to n2\A2 at at 
least eight different points. 

A 

By (3), the average x = (I I A) J H dt of the unimodular affine curva-
o 

ture of a symmetric oval satisfies 

8 ^ ^ n% 
< x < — 

A2 A2' 

In all cases known today, the centroaffine unimodular curvature of 
an oval has either 2 or > 6 extrema. This seems to be connected with 
the fact that the curvature appears as coefficient in a Hill equation [5]. 

I thank Professor Boruvka for an interesting exchange of letters 
about his theory. 
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