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Consider a differential equation of the form
(1) y" + 9@y + r@)y = fl2)
with ¢(x) € C; {wo, ®), 7(x) € Co<{xo, ), f(x)€ Co{wy, ) and j [f(t)|dt < ©

where o € (—o0, o). Suppose further that

1 1
F(y(x)) = y(x)y"(z) + 3 q(x) y*(x) — 3 y':(x),

where y(z) is a solution of (1). Then we have
Theorem 1. (Theorem 4 in [3]). Let for any x € {xo, 00) the following condition hold:

q@) 20, 72) 2 ky > 0, 2r(@) — q'(@) —1 2k, >0, | [fit)dt| £ K < 0.
If y(x) is a solution of (1) such that )

F(y(xo)) + —12— J f2(t)dt < 0,
z°

then y(x) is oscillatory or lim y(x) = 0.

Z >

The following result is of the similar character
Theorem 2. For any x € {xg, o), let the following conditions hold:

g(x) 2 0 and 2r(z) — ¢'(x) — | f(x) | 2 0.
1f

@) §qydt = + oo,

then a solution y(x) of (1) which satisfies

P + 3 [ 17018 50

t8 oscillatory or lim y(z) = 0.

> 0
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Proof. Suppose that the hypotheses hold and that y(z) is not oscillatory. Thus
there exists a number z; = o such that y(x) % 0 for x € {x;, ©). Them from (1)
we have

Fu@) + [ [ —gr0—gis01|ro e s Puw) + 5 [0

and therefore

®) Y@ (@) — 3 472) S — 5 4@) ().
From (3) we get

1 1
Y(@) ¥ (x) — y'*(z) < y(x) y"(x) — 5 Yix) £ — 7 q(z) y*(x)
thus for z = z;
d (y'() 1
%(wﬂé‘fm)

(4) v gl 1 f g(t) dt.

z

and therefore

Since (2) holds, there exists z; = z; such that for x 2 z; from (4) we have

(6) y'(z)

< —k, where k > 0.
y(x)

Suppose that y(z) > 0 for x = z,. From (5) we have y'(z) < 0 for # = z,. There-
fore it is necessary that y(z) = C = lim y(x) 2 0 for any = z;. Let C > 0. Then

for 2 2 z;:
¥y _ ¥'E@)
S =—>= = —k,
C = ylx) ~
8o that y(x) - —oo for £ — oo which is a contradiction. Hence C = 0 and lim y(z) =
Z—+>©
= 0.

The following part of this paper is concerned with the oscillatory behaviour of
solutions of the differential equation

(6) Y9 + p)y” + 9(=) Yy’ + r(x) y = fl2),

with p(z) € Co (2o, ), g(z) € C1 {20, ™), 7(z) € Co {0, ), f(2) € Co (2o, ) and
_f | f(ty| dt < oo, where o € (—00, ). Suppose further that

4

Fily(e) = 9(2) 4@ — ¥'(e) ') + 5 9(2) 97(a),

where y(z) is a solution of (6). Then we have
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Theorem 3. Suppose that for all x € {(xo, )

q(x) 2 0, p@) | £ 2, 2r(@) — | p(2) | —q'(@) — | fl) | 2
If (2) holds, then a solution y(x) of (6) which satisfies

1 '
@) Filgeo) +5 [ 17018 50

18 oscillatory on {xy, o).
Proof. Suppose that a solution y(x) of (6) satlsﬁes (7) and that y(z) + O for
x € {x;, ©), ¥ = Zo. From (6) we get-

P+ [ [1—g 10 |0 a+ [ [o—5im01—z00 -

— 5101 |rod s Fn + 5 [ 101

and therefore

1
y(@) y" (@) — y'(x) y'(x) = — 5 @) y*(x)
thus for 2 > =,
d (y'(=)
a () = =51
and hence
8) :Z/((:))- —» —o0 for  — 0.

Suppose that y(z) > 0 for z = z;. From (8) we can see that y"(x) < O for
x € {x;, 00) with suitable x; 2 z;. Since y’(x) is monotonous, only the following
two cases are possible:

1)y'(x) > Oforallx > z,

2) there exists z3 = x, such that y'(x3) < 0.

Evidently in the second case there exists & = z, such that y(&) = 0 which contra-
dicts the hypothesis. Therefore let y'(z) > 0 for all # = x; thus y(z) is an increasing
function on <z,, o) and therefore

y@ _ y@
ylx) — yl@)
so that, owing to (8), lim y"(x) = —oo, which is agai contradictory to the assumption
Z —» 0
that y(x) > 0 for z = ;.
Analogously we prove that (6) has no solution y(x) satisfying (7) such that y(zr) < 0
for all z = 2, = xo.
This completes the proof.

for z € {x,, =),
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Remark. Theorem 3 is a generalization of certain theorems in [1] and [2] and of
Theorem 6 in [4] whick deal with equations

y@ + 24(x) y' + [b(z) + 4A'(z)]y = 0,
or

Y@ 4 q(2) ¥y’ + r(z) y = fl(2).
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