Archivum Mathematicum

Tran Duc Mai

Partitions and congruences in algebras. III. Commutativity of congruences

Archivum Mathematicum, Vol. 10 (1974), No. 3, 173--187

Persistent URL: http://dml.cz/dmlcz/104829

Terms of use:

© Masaryk University, 1974
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

PARTITIONS AND CONGRUENCES IN ALGEBRAS III. COMMUTATIVITY OF CONGRUENCES

TRAN DUC MAI, Brno
(Received August 15. 1973)

The basic information about the object of this paper is given in secs. $0-0.5$ [12]. Recall that a partition in a set G is a system (eventually empty) of nonempty mutually disjoint subsets in $G[1,2,3,4,6,7,10]$. On the ground of existence of a 1-1 correspondence between the set $P(G)$ of all partitions in G and the set of all symmetric and transitive relations (ST-relations) in G there is often made no difference between both the notions. The element of the partition is called a block and the union \cup_{A} of all the blocks of A is called a domain of the partition A. By a congruence in an algebra (G, Ω), is meant a stable ST-relation in the algebra (G, Ω). The block $A(0)$ of the congruence A in an Ω-group G containing the zero element 0 of the group G is called a null block.
3.0 The objects of our considerations in this paper are problems concerning the commutativity of partitions and congruences "in". The following results demonstrate that if we replace "on" by "in", then some of the known characteristics of the commutativity of partitions or congruences on a set or on an algebra, respectively (see e.g. $[10,11]$), will fail. The commutativity of congruences B, C in an algebra G is characterized by any of the following properties (see 3.3) : 1. $B C$ is a partition $2 . B C$ is a symmetric relation, $3 . B C$ is a congruence. The first two properties are the well known characteristics of commutativity of partitions on a set; they also characterize the commutativity of partitions in a set (3.1).

In case of congruences in an Ω-group G we may join to properties $1,2,3$ characterizing the commutativity of congruences B, C another one: 4. $B(0) \cup C(0) \subseteq$ $\subseteq U B \cap U C$ (3.9). The equalities $B C=B \vee_{P} C, B C=B \vee_{\mathscr{H}} C$ are mutually equivalent in any algebra (3.3.1(4)), they imply the commutativity of the congruences B and C, and in case of congruences "on" they characterize the commutativity of B and C (3.3.1(1)); in case of congruences in an Ω-group they characterize the relation $\mathrm{U} B=\mathrm{U} C$ (3.11). The commutativity of the nullblocks $B(0)$ and $C(0)$ is implied by the commutativity of the congruences B and C in an Ω-group, but it does not imply it (3.9.3, 3.9.4). The equality $B \vee_{P} C=B \vee_{\mathscr{H}} C$ is neither necessary nor sufficient for the commutativity of the congruences B and C in an Ω-group (3.3.1(6)). Some formal weakenings of definition requirement of the commutativity of congruences
give other criteria of the commutativity of the congruences B and C in an Ω-group: 5. $(B C)(0)=(C B)(0), 6 . U(B C)=U(C B)(3.8,3.10)$. On the other hand, analogous weakenings of the equality $B \vee_{P} C=B C$ (this equality implies the commutativity of B and C) are no longer sufficient for the commutativity (3.9.5). The above criteria of the commutativity of congruences B and C refer to its product $B C$. In 3.5.1 the relation $B C$ is described and on this ground there are constructed $U(B C)$ and $(B C)(0)$ (see Definition 3.5); the first set is equal to $B(0)+\cup B \cap U C$, the second one to $B(0)+U B \cap C(0)$. Both the assertions are the subject-matter of the main theorem 3.5.5 of this paper. From the fact that $(B C B C \ldots)(0)=(B C)(0)(3.5 .6),\left(B \vee_{P} C\right)(0)$ follows as the union of two Ω-subgroups $[B(0)+\mathrm{U} B \cap C(0)] \cup[C(0)+(\cup C \cap$ $\cap B(0)]$. In 3.6.3 and 3.7 there are characterized the equalities $\left(B \vee_{P} C\right)(0)=$ $=(B C)(0)$ and $\left(B \vee_{\mathscr{H}} C\right)(0)=\left(B \vee_{P} C\right)(0)$, in 3.7.5 and 3.7.1 the equalities $\mathrm{\cup}\left(B \vee_{P} C\right)=\mathrm{U}(B C)$ and $\cup\left(B \vee_{\mathscr{H}} C\right)=\cup\left(B \vee_{P} C\right)$.

3.1 For partitions B and C in a set G the following conditions are equivalent:

1. B and C commute $2 . B C$ is a partition in $G 3 . B C$ is a symmetric relation in G.

Proof. $2 \Rightarrow 3$ is evident.
$3 \Rightarrow 1: x B C y \Leftrightarrow y B C x \Leftrightarrow y B a C x \Leftrightarrow x C a B y \Leftrightarrow x C B y$.
$1 \Rightarrow 2$: The symmetry of the relation $B C: x B C y \Rightarrow x C B y \Rightarrow y B C x$. The transitivity of the relation $B C: x B C y B C z \Rightarrow x B C B C z \Rightarrow x B B C C z \Rightarrow x B C z$ since evidently $B B=$ $=B$ and $C C=C$).

3.1.1 Remarks

(1) For partitions B and C in a set G it holds: B and C commute $\Rightarrow B \vee_{P} C=$ $=B C \cup B \cup C$.

Proof. From the relation $x\left(B \vee_{P} C\right) y$ it follows: $x A_{1} x_{1} \ldots x_{n-1} A_{n} y$, where $A_{i}=B$ or $=C(i=1,2, \ldots, n), A_{i} \neq A_{i+1}(i=1,2, \ldots, n-1)$ hence we get the following six possibilities: for $n=1$ either $x B y$ or $x C y$, and for $n \geqq 2$ the following four ones: $x B x_{1} \ldots x_{n-1} B y$, or $x B x_{1} \ldots x_{n-1} C y$, or $x B x_{1} \ldots x_{n-1} B y$, or $x C x_{1} \ldots x_{n-1} C y$. From these four possibilities it follows respectively: $x(B C)^{m} B y$, or $x(B C)^{m} y$, or $x(C B)^{m} y$, or $x(C B)^{m} C y$ where the exponent m is a suitable positive integer. From the commutativity of B and C and from the obvious fact that $B^{m}=B, C^{m}=C$ we get in the first case
$x(B C)^{m} B y \Rightarrow x B^{m} C^{m} B y \Rightarrow x B C B y \Rightarrow x B B C y \Rightarrow x B C y$, in the second one $x(B C)^{m} y \Rightarrow$ $\Rightarrow x B^{m} C^{m} y \Rightarrow x B C y$. Similarly in the cases three and four. So $B \vee_{P} C \subseteq B C \cup B \cup C$ is proved. The reverse inclusion is evident.
(2) The reverse implication in (1) does not hold in general even for congruences in an Ω-group.

Examples. Let $G=R \dot{+}$, where R is the additive group of reals (in geometric meaning G is a plane), let the partition B the the set of all points on the axis X, and
the partition C the set of all straight lines in G parallel to the axis Y. The partitions B, C do not commute, but $B \vee_{P} C=B C \cup B \cup C$ is true. Indeed, let $T \in C, x \in T \backslash X$, $y \in T \cap X$. Then $x C y B y$ thus $x C B y$, while $x B C y$ is not true since $x \bar{\in} \cup B=X$. Thus $B C \neq C B$. Furthermore $B C$ is the set of all ordered pairs of points the first of which lies on the axis X and the second one on the parallel line with the axis Y which passes through the first point. Thus $B C \subseteq C$; as also $B \subseteq C$, it holds $B C \cup B \cup C=C=$ $=B \vee_{P} C$.
(3) For partitions B and C in a set it holds: $B \vee_{P} C=B C \Rightarrow B$ and C commute.

Indeed, from the condition follows that $B C$ is a partition and from 3.1 that B and C commute.
(4) The reverse implication in (3) does not hold in general even for congruences in an Ω-group.

This will be proved in 3.3.1 (2).
(5) For partitions B and C on a set there holds the following: B and C commute $\Leftrightarrow B C=B \vee{ }_{P} C([10,11])$.

The implication \Leftarrow follows from (3), the implication \Rightarrow from (1) and from that partitions on a set are contained in their product.
(6) For partitions B, C in a set there holds as follows: $B \vee_{P} C=B C \Rightarrow \cup B=\cup C$.

In fact, for $x \in \cup C \backslash \cup B$ there holds $x B \vee_{P} C x$, but $x B C x$ does not hold; thus $\cup B \supseteq \cup C$. By 3.1.1 (3) the condition is symmetrical with respect to B, C thus $\cup B=$ $=U C$.
3.2 The product of congruences in an algebra G is a binary relation preserving operations in G. The product of commutative congruences in G is a congruence in G.

Proof. If B and C are congruences in an algebra G, ω an n-ary operation in G and $x_{i} B C y_{i}(i=1,2, \ldots, n)$, then we get consecutively the following: $x_{i} B a_{i} C y_{i}, x_{1} \ldots x_{n} \omega$ $B a_{1} \ldots a_{n} \omega C y_{1} \ldots y_{n} \omega, x_{1} \ldots x_{n} \omega B C y_{1} \ldots y_{n} \omega$. If the congruences B and C are permutable, $B C$ is, by 3.1 , a partition and hence a congruence in G.
3.3 For congruences B, C in an algebra G the following conditions are equivalent:

1. B and C commute 2. BC is a partition in G 3. BC is a symmetric relation in G 4. $B C$ is a congruence in G.

Proof. The first three statements are mutually equivalent by $3.1 .4 \Rightarrow 2$ is obvious and $1 \Rightarrow 4$ follows from 3.2.

3.3.1 Remarks

(1) For congruences \boldsymbol{B} and \boldsymbol{C} on an algebra the following conditions are equivalent. 1. B and C commute 2. $B C=B \vee_{P} C$ 3. $B C=B \vee_{\mathscr{X}} C$.

Proof. $1 \Rightarrow 3: B C$ is a congruence in G by 3.2 and $B, C \leqq B \vee_{P} C=B C$ holds by 3.1.1 (5) thus $B \vee_{\mathscr{X}} C \leqq B C$. Hence and from the obvious relations $B C \leqq B \vee_{P} C \leqq$ $\leqq B \vee_{\mathscr{H}} C$ there follows $B C=B \vee_{P} C=B \vee_{\mathscr{X}} C$,
$3 \Rightarrow 2$ follows from the fact that $B C \leqq B \vee_{P} C \leqq B \vee_{\mathscr{K}} C$.
$2 \Rightarrow 1$ by 3.1.1 (5).
(2) For congruences B and C in an algebra there holds $2 \Rightarrow 1,3 \Rightarrow 1(1,2,3-$ see (1))
namely because of the fact that $B C$ is a partition in this case and B and C commute by 3.3 .
(3) The implication $1 \Rightarrow 2$ does not hold in general even for congruences in an Ω-group.

Example. Let B and C be the partitions in the plane $G=R \dot{+} R$ (see 3.1.1 (2)) as follows: B the set of all points on the axis X, C the set of all points on the axis Y. Then B and C are congruences in the group G which commute and therefore $B C$ is a congruence in G by 3.2; on the other hand $\cup\left(B \vee_{P} C\right)=X \cup Y \neq\{(0,0)\}=$ $=\mathrm{U}(B C)$ thus $B \vee_{P} C \neq B C$.
(4) For congruences B and C in an algebra G it holds: $B C=B \vee_{P} C \Leftrightarrow B C=$ $=B \vee_{\mathscr{X}} C$.

Proof. The implication \Leftarrow is obvious since $B C \leqq B \vee_{P} C \leqq B \vee_{\mathscr{H}} C$. In proving the reverse implication let us recall that by 3.2 the relation $B C$ preserves operations in G and by assumption it is a partition thus a congruence in G. Hence and from the relations $B, C \leqq B \vee_{P} C=B C$ there follows $B \vee_{\mathscr{H}} C \leqq B C$. The desired equality follows now from the relations $B C \leqq B \vee_{P} C \leqq B \vee_{\mathscr{H}} C$.
(5) The equality $B \vee_{P} C=B \vee_{\mathscr{C}} C$ holds always for congruences on an algebra ([12] 0.4).

It does not represent a characteristic of commutativity on an algebra since there exists an algebra G and congruences B, C on G which do not commute (see e.g. the example of noncommutative congruences on a quasi-group in [14]).
(6) The equality $B \vee_{P} C=B \vee_{\mathscr{H}} C$ (in contrast to the equalities $B C=B \vee_{P} C$ or $B C=B \vee_{\mathscr{K}} C$) is neither a) sufficient nor b) necessary for the commutativity of congruences in an Ω-group.

An example for a) is given in 3.1.1 (2) (the partitions B and C do not commute and at the same time $B \vee_{P} C=B \vee_{\mathscr{H}} C$ since $B \leqq C$), for b) in 3.3.1 (3) (the partitions B and C commute, but $B \vee_{P} C \neq B \vee_{\mathscr{K}} C$ since $U\left(B \vee_{P} C\right)=\mathrm{U} B \cup \cup C \neq G=$ $=\langle\mathrm{U} B, \mathrm{U} C\rangle=\mathrm{U}\left(B \vee_{\mathscr{K}} C\right)$.
(7) Comparable congruences in an Ω-group need not commute. Also in this case the congruences B and C in 3.1.1 (2) are used as an example.
3.4 If B and C are congruences in an Ω-group G, Q a subgroup of the additive group G, $Q \subseteq \cup B \cap U C$, then the congruences $B \sqcap Q$ and $C \sqcap Q$ commute.
(Recall that the partition $B \sqcap Q=\left\{B^{1} \cap Q: B^{1} \in B B^{1} \cap Q \neq \varnothing\right\}$ is called an intersection of the partition B with the set Q [3] I, 2.3, [4] 2.3, [12] 1.5.1). The
statement follows from the fact that $B \sqcap Q$ and $C \sqcap Q$ are congruences on the group Q.
3.4.1 If B and C are congruences in an algebra G, Q a subalgebra in $G, Q \supseteq$ $\supseteq \cup B \cap \cup C$, then $(B \sqcap Q)(C \sqcap Q)=(B C) \sqcap G$.

Proof. $x[(B \sqcap Q)(C \sqcap Q)] y \Rightarrow x(B \sqcap Q) a(C \sqcap Q) y \Rightarrow x, y, a \in Q, x B a C y \Rightarrow$ $\Rightarrow x B C y, x, y \in Q \Rightarrow x[(B C) \sqcap Q] y$, hence $(B \sqcap Q)(C \sqcap Q) \subseteq(B C) \sqcap Q$. Conversely, $x[(B C) \sqcap Q] y \Rightarrow x, y \in Q, x B C y$. From the latter there follows $x B a C y$ with $a \in \cup B \cap \cup C \subseteq Q$. Hence $x(B \sqcap Q) a(C \sqcap Q) y$ thus $x(B \sqcap Q)(C \sqcap Q) y$. In conclusion $(B C) \sqcap Q \subseteq(B \sqcap Q)(C \sqcap Q)$.
3.4.2 If $\left\{A_{\alpha}\right\}$ is a system of partitions in a set $G, Q \supseteq \bigcup_{\alpha \neq \beta}\left(\cup A_{\alpha} \cap \cup A_{\beta}\right)$, then it holds

$$
\bigvee_{\alpha}\left(A_{\alpha} \sqcap Q\right)=\left(\bigvee_{\alpha} A_{\alpha}\right) \sqcap Q .
$$

Proof. $x\left[\left(\bigvee_{P} A_{\alpha}\right) \sqcap Q\right] y=x, y \in Q, x A_{1} x_{1} \ldots x_{n-1} A_{n} y \Rightarrow x\left(A_{1} \sqcap Q\right) x_{1} \ldots x_{n-1}$ $\left(A_{n} \sqcap Q\right) y \Rightarrow{ }^{\alpha} x\left[\bigvee_{P}\left(A_{\alpha} \sqcap Q\right)\right] y$.

Conversely, $x\left[{\underset{\alpha}{\vee}}_{\alpha}^{\alpha}\left(A_{\alpha} \sqcap Q\right)\right] y=x\left(A_{1} \sqcap Q\right) x_{1} \ldots x_{n-1}\left(A_{n} \sqcap Q\right) y \Rightarrow x_{1}, \ldots x_{n-1} \in$ $\in Q, x A_{1} x_{1} \cdots x_{n-1} A_{n} y \Rightarrow x\left(\mathrm{~V}_{\alpha} A_{\alpha}\right) \sqcap Q y$.
3.4.3 If $\left\{A_{\alpha}\right\}$ is a system of congruences in an algebra G, Q a subalgebra of G, $Q \subseteq \bigcap_{\alpha} \cup A_{\alpha}$, then $\bigvee_{\alpha}\left(A_{\alpha} \sqcap Q\right)=\bigvee_{\alpha}\left(A_{\alpha} \sqcap Q\right)$ holds

The proof follows from the fact that $\left\{A_{\alpha} \sqcap Q\right\}$ is a system of congruences on the algebra Q.
3.4.4 If $\left\{A_{a}\right\}$ is a system of congruences in an algebra G, Q a subalgebra of $G, Q \supseteq$ $\supseteq \bigcup_{\alpha \neq \beta}\left(\cup A_{\alpha} \cap \cup A_{\beta}\right)$, then it holds

$$
\left(\mathrm{V}_{\alpha} A_{\alpha}\right) \sqcap Q=\left(\underset{\alpha}{\left.\mathrm{V}_{P} A_{\alpha}\right) \sqcap Q \Rightarrow\left(\underset{\alpha}{\mathrm{~V}_{\mathscr{K}}} A_{\alpha}\right) \sqcap Q=\mathrm{V}_{\mathscr{K}}\left(A_{\alpha} \sqcap Q\right)}\right.
$$

Proof. By 3.4.2 there holds
3.5 Definition. Let A be a binary relation in a set $G, x \in G$. Define

$$
A(x)=\{y \in G: y A x\}(\text { a row of } A-[5]),(x) A=\{y \in G: x A y\}
$$

(a column of $A-[5]$)

$$
\begin{aligned}
& \cup A=\{y \in G: \exists x \in G, y A x\}=\bigcup_{x \in G} A(x) \text { (Vorbereich, [7] p. 191), } \\
& A \cup=\{y \in G: \exists x \in G, x A y\}=\bigcup_{x \in G}(x) A \text { (Nachbereich, [7] p. 191). }
\end{aligned}
$$

Remark. If B, C are symmetric relations in G, then

$$
(B C)(x)=(x)(C B), \quad \cup(B C)=(C B) \cup .
$$

The first equality: $y \in(B C)(x) \Leftrightarrow y B C x \Leftrightarrow x C B y \Leftrightarrow y \in(x)(C B)$: The second equality follows from the first one on the basis of relations

$$
\mathrm{U}(B C)=\bigcup_{x \in G}(B C)(x), \quad(B C) \cup=\bigcup_{x \in G}(x)(B C)
$$

3.5.1 For congruences B and C in an Ω-group the following conditions are equivalent

1. $x B C y$
2. $x-y \in B(0)+C(0), x \in \cup B, y \in U C$
3. $-x+y \in B(0)+C(0), x \in \cup B, y \in U C$
4. $y-x \in C(0)+B(0), x \in \cup B, y \in U C$
5. $-y+x \in C(0)+B(0), x \in \cup B, y \in U C$.

Proof. $1 \Rightarrow 2: x B C y \Rightarrow x B a C y$ (with $a \in \cup B \cap U C) \Rightarrow x-a \in B(0), a-y \in$ $\in C(0) \Rightarrow x-y=(x-a)+(a-y) \in B(0)+C(0)$. Of course, it also holds: $x B C y \Rightarrow x \in \cup B, y \in \cup C$.
$2 \Rightarrow 1: x-y \in B(0)+C(0) \Rightarrow x-y=b+c$ for suitable $b \in B(0), c \in C(0) \Rightarrow$ $\Rightarrow-b+x=c+y$. Since, by hypothesis, $x \in \cup B, y \in U C$ holds, we have $x B(-b+x)=(c+y) C y$ thus $x B C y$.

The equivalence $1 \Leftrightarrow 3$ is proved in a similar way. The equivalence $2 \Leftrightarrow 4$ follows from the fact that $x-y \in B(0)+C(0) \Leftrightarrow y-x=-(x-y) \in C(0)+B(0)$. Similarly $3 \Leftrightarrow 5$.

3.5.2 For congruences B and C in an Ω-group there holds

$$
\begin{aligned}
& \mathrm{U}(B C)=\mathrm{U} B \cap[B(0)+\mathrm{UC}]=\mathrm{U} B \cap[\mathrm{UC}+B(0)], \\
& (B C) U=U C \cap[C(0)+U B]=U C \cap[U B+C(0)] \text {. }
\end{aligned}
$$

Proof. $x \in \cup(B C) \Rightarrow x B C y$ for some $y \in U \dot{C} \Rightarrow$ (by 3.5.1 (2)) $x-y \in B(0)+C(0)$, $x \in \cup B, y \in \cup C \Rightarrow x \in \cup B \cap[B(0)+C(0)+y] \subseteq \cup B \cap[B(0)+C(0)+\cup C]=$ $=\mathrm{U} B \cap[B(0)+\mathrm{UC}]$. Conversely, $x \in \cup B \cap[B(0)+\cup C] \Rightarrow x \in \cup B, x=b+c$, where $b \in B(0), c \in \cup C \Rightarrow-b+x=c \in[B(0)+x] \cap \cup B \cap \cup C \Rightarrow x B(-b+x)=$ $=c C y$ for some $y \in U C \Rightarrow x B C y \Rightarrow x \in U(B C)$. Hence the first expression of the set $\mathrm{U}(B C)$. The second one is got in a similar way (this time 3.5.1 (5) is used).

We get the expression of $(B C) \cup$ from above in consequence of Remark 3.5.
3.5.3 Let B and C be congruences in an Ω-group G, Q an Ω-sugbroup of $G, Q \supseteq$ $\supseteq \cup B \cap \cup C$. Then there holds

$$
(Q \cap U B) \cap[B(0)+C(0)]=U B \cap[Q \cap B(0)+Q \cap C(0)] .
$$

The equality remains preserved if we change $B(0)$ and $C(0)$ on one side of the equation.

Especially for $Q=\mathrm{U} B$ we get

$$
\begin{aligned}
\cup B \cap[B(0)+C(0)]= & B(0)+\cup B \cap C(0)=\cup B \cap[C(0)+B(0)]= \\
& =\cup B \cap C(0)+B(0) .
\end{aligned}
$$

Proof. By 3.4.1 $(B \sqcap Q)(C \sqcap Q)=(B C) \sqcap Q$ and by 3.5.1 (2) and (5) there holds

$$
\begin{gathered}
x[(B \sqcap Q)(C \sqcap Q)] 0 \Leftrightarrow x \in(Q \cap \cup B) \cap[Q \cap B(0)+Q \cap C(0)] \\
(=\cup B \cap[Q \cap B(0)+Q \cap C(0)]) \\
\Leftrightarrow x \in(Q \cap \cup B) \cap[Q \cap C(0)+Q \cap B(0)] \\
(=\cup B \cap[Q \cap C(0)+Q \cap B(0)]) \\
x[(B C) \sqcap Q] 0 \Leftrightarrow x \in 0, x B C 0 \Leftrightarrow \\
\Leftrightarrow x \in Q \cap \cup B \cap[B(0)+C(0)] \Leftrightarrow x \in Q \cap \cup B \cap[C(0)+B(0)] .
\end{gathered}
$$

Hence the statement.
3.5.4 Zassenhaus lemma. Let \mathfrak{B} and \mathfrak{L} be Ω-subgroups of an Ω-group G, \mathfrak{B}^{\prime} or \mathfrak{L}^{\prime} an ideal of \mathfrak{B} or \mathfrak{L}, respectively. Then $\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathfrak{L}$ is an Ω-subgroup of G and $\mathfrak{B}^{\prime}+$ $+\mathfrak{B} \cap \mathfrak{L}^{\prime}$ its ideal. $\mathfrak{L}^{\prime}+\mathfrak{L} \cap \mathfrak{B}$ is an Ω-subgroup of G and $\mathfrak{L}^{\prime}+\mathfrak{L} \cap \mathfrak{B}^{\prime}$ its ideal, $\mathfrak{B} \cap \mathfrak{L}^{\prime}+\mathfrak{L} \cap \mathfrak{B}^{\prime}$ is an ideal of $\mathfrak{B} \cap \mathfrak{L}$ and there holds
$\mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathfrak{L} / \mathfrak{B}^{\prime}+\mathfrak{B} \cap \mathfrak{I}^{\prime} \cong \mathfrak{I}^{\prime}+\mathfrak{L} \cap \mathfrak{B} / \mathfrak{L}^{\prime}+\mathfrak{L} \cap \mathfrak{B}^{\prime} \cong \mathfrak{B} \cap \mathfrak{L} / \mathfrak{B} \cap \mathfrak{L}^{\prime}+\mathfrak{L} \cap \mathfrak{B}^{\prime}$.
(e.g. [9] III 4.3)
3.5.5 Let B and C be congruences in an Ω-group G. Then

$$
\begin{align*}
\mathrm{U}(B C) & =\mathrm{U} B \cap[B(0)+\mathrm{U} C]=B(0)+\mathrm{U} B \cap \mathrm{U} C= \tag{3.5,1}\\
& =\mathrm{U} B \cap[\mathrm{UC} C B(0)]=\mathrm{U} B \cap \mathrm{U} C+B(0) . \\
(B C)(0) & =\mathrm{U} B \cap[B(0)+C(0)]=B(0)+\mathrm{U} B \cap C(0)= \tag{3.5,2}\\
& =\mathrm{U} B \cap[C(0)+B(0)]=\mathrm{U} B \cap C(0)+B(0),
\end{align*}
$$

$U(B C)$ is an Ω-subgroup of $G,(B C)(0)$ its ideal, $\cup B \cap C(0)+U C \cap B(0)$ an ideal of $\cup B \cap \cup C$ and there holds
$\cup(B C)|(B C)(0) \cong \cup(C B)|(C B)(0) \cong U B \cap U C \mid \cup B \cap C(0)+U C \cap B(0)$.
Proof. The equalities $(3.5,2)$ follows from 3.5 .1 and from 3.5 .3 for $Q=U B$. The equalities $(3.5,1)$ are got from 3.5.2 and from the statement 3.5.3 applied to the congruences B and $\bar{C}=U C / U C$ and to $Q=U B$. Actually, $U(B C)=U B \cap$ $\cap[B(0)+U C]=U B \cap[B(0)+\bar{C}(0)]=B(0)+U B \cap \bar{C}(0)=B(0)+U B \cap U C$.

Similarly we can get the other expressions of the set $U(B C)$. The rest of the statement follows from the Zassenhaus's lemma 3.5 .4 by setting $\mathfrak{B}=\mathrm{U} B, \mathfrak{B}^{\prime}=B(0), \mathfrak{I}=U C$, $\mathfrak{L}^{\prime}=C(0)$.
3.5.6 For congruences B and C in an Ω-group there holds $(B C B C \ldots)(0)=(B C)(0)$ provided the product on the left contains any finite number of factors $n \geqq 2$.

Proof by induction with respect to the number of factors n. It is obvious that the statement holds for two factors. Now we shall prove its validity for three factors. It holds $x(B C B) 0 \Rightarrow x B C a B 0 \Rightarrow$ (by 3.5.1) $-a+x \in C(0)+B(0), x \in \cup B, a \in$ $\in \cup C \cap B(0) \Rightarrow($ by 3.5.5) $-a+x \in \cup B \cap[C(0)+B(0)]=B(0)+\cup B \cap C(0)$, $a \in B(0) \Rightarrow x=a+(-a+x) \in B(0)+\cup B \cap C(0)=(B C)(0)$. Hence $(B C B)(0) \subseteq$ $\subseteq(B C)(0)$. The reverse inclusion is evident since $x B C 0 \Rightarrow x B C 0 B 0 \Rightarrow x B C B 0$. The induction hypothesis: Let $n \geqq 4$ be a positive integer, $(B C B C \ldots)(0)=(B C)(0)$ provided that $2 \leqq p \leqq n-1$ holds for the number of factors p in the product on the left. Now let $x(B C B C \ldots) 0$ and let the product contain $n \geqq 4$ factors. Then there exists an element $a \in \cup B \cap \cup C$ such that $x(B C) a(B C \ldots) 0$ thus by 3.5.1 and 3.5.5 we have $x-a \in \cup B \cap[B(0)+C(0)]=(B C)(0)$ and by the induction hypothesis there will be $a \in(B C \ldots)(0)=(B C)(0)$. Hence $x=(x-a)+a \in(B C)(0)$ since $(B C)(0)$ is a subgroup by 3.5.5. So $(B C B C \ldots)(0) \subseteq(B C)(0)$ is proved. The reverse inclusion is obvious since $x B C 0 \Rightarrow x(B C) 0(B C \ldots) 0 \Rightarrow x(B C B C \ldots) 0$.
3.5.7 Corollary. For congruences B and C in an Ω-group there holds

$$
\begin{aligned}
& \left(B \vee_{P} C\right)(0)=B(0) \cup(B C)(0) \cup C(0) \cup(C B)(0)= \\
& \quad=[B(0)+\cup B \cap C(0)] \cup[C(0)+\cup C \cap B(0)] .
\end{aligned}
$$

The member in the first square bracket or in the second one is an ideal in the Ω-group $B(0)+U B \cap U C$ or $C(0)+U C \cap U B$, respectively. The order of summands (in one or both square brackets) may be changed.

Proof. If the product $B C B C \ldots$ contains n factors ($n \geqq 1$) denote $B C B C \ldots=A_{n}$. Analogously define $C B C B \ldots=D_{n}$. Proof follows now from 3.5.6 and 3.5.5 since $\left(B \vee_{P} C\right)(0)=\bigcup_{n=1}^{\infty} A_{n}(0) \cup \bigcup_{n=1}^{\infty} D_{n}(0)=B(0) \cup(B C)(0) \cup C(0) \cup(C B)(0)=$ $=\left[B(0)+\cup B \cap_{n=1}^{C(0)}\right] \cup\left[\begin{array}{c}n=1 \\ C(0)\end{array}+U C \cap B(0)\right]$. The rest of the assertion follows from 3.5.5.
3.5.8 For congruences B and C in an algebra there holds $\cup(B C B \ldots)=U(B C) \subseteq U B$ (provided that on the left there are at least two factors).

Proof. $x \in \mathrm{U}(B C B \ldots) \Rightarrow x(B C) a(B \ldots) y$ for some $a, y \Rightarrow x B C a \Rightarrow x \in \mathrm{U}(B C)$. Conversely, $x \in U(B C) \Rightarrow x B a C y$ for some a, y. Hence $x \in U B$ and $x B a C a B a \ldots a$ so $x(B C B \ldots) a$ thus $x \in \cup(B C B \ldots)$.
3.6 Definition. If Q is a subset of an Ω-group G, denote by $\llbracket Q \rrbracket$ the subgroup of the additive group G generated by the subset Q.
3.6.1 Corollary. For congruences B and C in an Ω-group there holds

$$
\left(B \vee_{P} C\right)(0) \subseteq[B(0)+C(0)] \cup[C(0)+B(0)] \subseteq[B(0) \cup C(0)]
$$

This is a corollary to 3.5 .7 and 3.6 .
3.6.2 For congruences B and C in an Ω-group there holds

$$
x\left(B \vee_{P} C\right) y \Rightarrow x-y, \quad y-x \in \llbracket B(0) \cup C(0) \rrbracket .
$$

Proof. $x\left(B \vee_{P} C\right) y \Rightarrow x=x_{0} A_{1} x_{1} \ldots x_{n-1} A_{n} x_{n}=y$, where $A_{i}=B$ or $=C(i=$ $=1,2, \ldots, n) \Rightarrow x_{i-1}-x_{i}, x_{i}-x_{i-1} \in A_{i}(0)(i=1,2, \ldots, n) \Rightarrow x-y=\left(x_{0}-x_{1}\right)+$ $+\left(x_{1}-x_{2}\right)+\ldots+\left(x_{n-1}-x_{n}\right) \in \llbracket B(0) \cup C(0) \rrbracket, y-x=\left(x_{n}-x_{n-1}\right)+\left(x_{n-1}-\right.$ $\left.-x_{n-2}\right)+\ldots+\left(x_{1}-x_{0}\right) \in \llbracket B(0) \cup C(0) \rrbracket$.

3.6.3 For congruences B and C in an Ω-group G the following conditions are equivalent

1. $\left(B \vee_{P} C\right)(0)$ is a subgroup of the additive group G
2. $\left(B \vee_{P} C\right)(0)=B(0)+C(0)=C(0)+B(0)$
3. $\left(B \vee_{P} C\right)(0)=(B C)(0)$ or $=(C B)(0)$
4. $\llbracket B(0) \cup C(0) \rrbracket \subseteq \cup B \cup \cup C$
5. $C(0) \subseteq \cup B$ or $B(0) \subseteq \cup C$.

Remark. The first (second) alternatives of the conditions 3 and 5 are equivalent.
Proof. $2 \Rightarrow 4$: Since $B(0)$ and $C(0)$ commute so $B(0)+C(0)=\llbracket B(0) \cup C(0) \rrbracket$. Then by [12] $1.6 \llbracket B(0) \cup C(0) \rrbracket=\left(B \vee_{P} C\right)(0) \subseteq \cup\left(B \vee_{P} C\right)=U B \cup \cup C$.
$4 \Rightarrow 5$: If it were $B(0) \nsubseteq \cup C, C(0) \nsubseteq \cup B$, then for $b \in B(0) \backslash \cup C, c \in C(0) \backslash \cup B$ there would hold $b+c \bar{\epsilon} \cup B \cup \cup C$ while $b+c \in B(0)+C(0) \subseteq \llbracket B(0) \cup$ $\cup C(0) \rrbracket \subseteq U B \cup U C-$ a contradiction.
$5 \Rightarrow 2,5 \Rightarrow 3$: By 3.6 .1 we have $\left(B \vee_{P} C\right)(0) \subseteq \llbracket B(0) \cup C(0) \rrbracket$. Since $C(0)$ or $B(0)$ is a normal subgroup of the subgroup $\cup C$ or $\cup B$, respectively, it follows from the condition 5 that $B(0)$ and $C(0)$ are permutable subgroups thus $B(0)+C(0)=$ $=C(0)+B(0)=\llbracket B(0) \cup C(0) \rrbracket$. Now let e.g. $C(0) \subseteq U B$. Then by 3.5.5 $(B C)(0)=$ $=B(0)+\cup B \cap C(0)=B(0)+C(0)=\llbracket B(0) \cup C(0) \rrbracket$. Summarizing the got results we have $\left(B \vee_{P} C\right)(0) \subseteq \llbracket B(0) \cup C(0) \rrbracket=(B C)(0) \subseteq\left(B \vee_{P} C\right)(0), \llbracket B(0) \cup C(0) \rrbracket=$ $=B(0)+C(0)=C(0)+B(0)$. Hence 2 and 3: $\left(B \vee_{P} C\right)(0)=B(0)+C(0)=$ $=C(0)+B(0)=(B C)(0)$. If we suppose that in 5 the second alternative $B(0) \subseteq U C$ holds, then the proof is similar.
$2 \Rightarrow 1$ is evident.
$1 \Rightarrow 4$: Since obviously $B(0) \cup C(0) \subseteq\left(B \vee_{P} C\right)(0)$, it will be $\llbracket B(0) \cup C(0) \rrbracket \subseteq$ $\subseteq\left(B \vee_{P} C\right)(0)$ so we have $\llbracket B(0) \cup C(0) \rrbracket \subseteq\left(B \vee_{P} C\right)(0) \subseteq \cup\left(B \vee_{P} C\right)=\cup B \cup C$, i.e., 4 holds.
$3 \Rightarrow 5$: Let $\left(B \vee_{P} C\right)(0)=(B C)(0)$. Then from the relations $B(0) \cup C(0) \subseteq$ $\subseteq\left(B \vee_{P} C\right)(0)=(B C)(0)=\cup B \cap[B(0)+C(0)] \subseteq \cup B$ (the inclusions are obvious, the second equality by 3.5 .5) there follows $C(0) \subseteq \cup B$ thus 5 . Similarly the second alternative of the condition $5, B(0) \subseteq \cup C$, follows from $\left(B \vee_{P} C\right)(0)=(C B)(0)$. The theorem is proved.

In 3.3.1(6) it was proved that the condition $B \vee_{P} C=B \vee_{\mathcal{H}} C$ (in contrast to the equalities $B C=B \vee_{P} C$ or $B C=B \vee_{\mathscr{X}} C$) is neither sufficient nor necessary for the commutativity of congruences B and C in an Ω-group. In the following considerations our attention is paid to this and to the related equalities.
3.7 For congruences B and C in an Ω-group the following conditions are equivalent.

1. $\left(B \vee_{\mathcal{H}} C\right)(0)=\left(B \vee_{P} C\right)(0)$
2. $\left(B \vee_{x} C\right)(0)=\llbracket B(0) \cup C(0) \rrbracket \subseteq \cup B \cup \cup C$
3. $\left(B \vee_{\boldsymbol{x}} C\right)(0)=(B(0)+C(0) \subseteq U B$ or $\subseteq \cup C$
4. $\left(B \vee_{x} C\right)(0)=\left(B \vee_{P} C\right)(0)=(B C)(0)$ or $=(C B)(0)$.

Remark. The first (second) alternatives in the conditions 3 and 4 are equivalent.
Proof. $1 \Rightarrow 2$: First the subgroup $\left(B \vee_{\mathscr{X}} C\right.$) (0) equals $B(0)+C(0)$ by 3.6 .3 thus $\left(B \vee_{\mathscr{H}} C\right)(0)=\llbracket B(0) \cup C(0) \rrbracket$. Second by [12] $1.6\left(B \vee_{\mathscr{H}} C\right)(0)=\left(B \vee_{P} C\right)(0) \subseteq$ $\subseteq \cup\left(B \vee_{P} C\right)=\cup B \cup \cup C$.
$2 \Rightarrow$ 3: By 3.6.3 $C(0) \subseteq \cup B$ or $B(0) \subseteq \cup C$. Since $C(0)$ or $B(0)$ is a normal subgroup in $\cup C$ or $\cup B$, respectively, $B(0)$ and $C(0)$ commute thus $\left(B \vee_{\mathscr{A}} C\right)(0)=$ $=\llbracket B(0) \cup C(0) \rrbracket=B(0)+C(0) \subseteq U B$ or $\subseteq U C$.
$3 \Rightarrow 4$: Suppose the first alternative in 3. Then $\left(B \vee_{\mathscr{H}} C\right)(0)=\cup B \cap[B(0)+$ $+C(0)]=(B C)(0)$ (this follows from 3.5.5). We get the first alternative in 4 from the fact that $(B C)(0)=\left(B \vee_{\mathscr{H}} C\right)(0) \supseteq\left(B \vee_{P} C\right)(0) \supseteq(B C)(0)$. The proof is analogous for the other alternatives in 3 and 4.
$4 \Rightarrow 1$: evident.
Proof of the Remark. We have shown ($3 \Rightarrow 4$) that the first (second) alternative of the condition 3 implies the first (second) alternative of the condition 4. If now the first alternative of the condition 4 is valid, then by $3.5 .5\left(B \vee_{\mathscr{C}} C\right)(0)=(B C)(0)=$ $=\cup B \cap[B(0)+C(0)] \subseteq \cup B$ thus there holds the first alternative of the condition 3. Similarly for the second alternatives.
3.7.1 For congruences B and C in an Ω-group it holds:

$$
\cup\left(B \vee_{\mathscr{C}} C\right)=\mathrm{\cup}\left(B \vee_{P} C\right) \Leftrightarrow \cup B \supseteq \cup C \text { or } \cup C \supseteq \cup B .
$$

Proof. Let the first condition hold. There holds $\cup C \supseteq \cup B$ or $a \in \cup B \backslash \cup C$ exists. In the second case there will be $(a+U C) \cap \cup C=\emptyset$ and by [12] $1.6 a+U C \subseteq$
$\subseteq\langle\cup B \cup \cup C\rangle=\cup\left(B \vee_{\mathscr{H}} C\right)=\mathrm{U}\left(B \vee_{P} C\right)=\cup B \cup \cup C$ thus $a+\mathrm{U} C \subseteq \cup B$. Hence $\cup C \subseteq-a+\cup B=\cup B$, i.e. $\cup C \subseteq \cup B$. The reverse implication follows from [12] 1.6.
3.7.2 Let B and C be congruences in an Ω-group, $Q=\cup B \cap U C$. Then
$Q \cap\left(B \vee_{\mathscr{H}} C\right)(0)=Q \cap B(0)+Q \cap C(0) \Leftrightarrow\left(B \vee_{\mathscr{H}} C\right) \sqcap Q=\left(B \vee_{P} C\right) \sqcap Q$.
Remark. 1. If $Q=U B \cap U C$, then $Q \cap B(0)+Q \cap C(0)=Q \cap[B(0)+C(0)]$.
2. Thus in an abelian or a hamiltonian group the condition of Theorem 3.7.2 is satified (provided $Q=\cup B \cap \cup C$) since $Q \cap\left(B \vee_{\mathscr{C}} C\right)(0)=Q \cap[B(0)+C(0)]$. Thus the following statement is true:

If B, C are congruences in an abelian or a hamiltonian group, $Q=U B \cap U C$, then $\left(B \vee_{\mathscr{K}} C\right) \sqcap Q=\left(B \vee_{P} C\right) \sqcap Q$.

Proof to 3.7.2. Let the first condition hold. Let $x\left[\left(B \vee_{\mathscr{K}} C\right) \sqcap Q\right] y, x-y=a$. The element a belongs to the set $Q \cap\left(B \vee_{\mathscr{H}} C\right)(0)$ and it may be expressed as a sum $a=b+c$, where $b \in B(0), c \in C(0)$. From the relation $a-c=b \in B(0)$ there follows $(a-c) B 0$; hence and from the fact that $c=-b+a \in \cup B$ there follows $a B c$. Together with the relation $c C 0$ we get $a B c C 0,(x-y) B c C 0$ and finally (because of $y \in Q=U B \cap \cup C) x B(c+y) C y$, i.e. $x B C y$. So $\left(B \vee_{\mathscr{H}} C\right) \sqcap Q \leqq B C \sqcap Q$ is proved. This relation together with the evident relations $B C \leqq B \vee_{P} C \leqq B \vee_{\mathscr{H}} C$ gives the desired equality.

Conversely, if the second condition holds, then by 3.4.4 $(B \sqcap Q) \vee_{\mathscr{X}}(C \sqcap Q)=$ $=\left(B \vee_{\mathscr{C}} C\right) \sqcap Q=\left(B \vee_{P} C\right) \sqcap Q$. The last partition is equal to $(B \sqcap Q) \vee_{P}(C \sqcap Q)$ by 3.4.2. Hence we get the equality between \vee_{P} and $\vee_{\mathscr{A}}$ of the congruences $B \sqcap Q$ and $C \sqcap Q$ so by $3.7\left[\left(B \vee_{\mathscr{H}} C\right) \sqcap Q\right](0)=\left[(B \sqcap Q) \vee_{\mathscr{H}}(C \sqcap Q)\right](0)=[(B \sqcap Q)$ $\left.\left.\vee_{\mathscr{C}}\right)(C \sqcap Q)\right](0)$. Obviously the first set equals $Q \cap(B C)(0)$ and by 3.5 .5 the last set equals $Q \cap B(0)+Q \cap C(0)$. The theorem is proved.

Proof of the remark 1. follows from 3.5.3.
3.7.3 Corollary. For congruences B and C on an Ω-group there holds $B \vee_{\mathscr{A}} C=$ $=B \vee_{P} C$.

Indeed, for congruences B and C on the Ω-group G there is $Q=\cup B \cap \cup C=G$ so that $Q \cap\left(B \vee_{\mathscr{K}} C\right)(0)=\left(B \vee_{\mathscr{K}} C\right)(0)=\ll B(0) \cup C(0)>_{G}=B(0)+C(0)=Q \cap$ $\cap B(0)+Q \cap C(0)$. The second equality follows from [12] 1.6, the third from the fact that the ideal generated by a system of ideals is their sum. Finally, 3.7.2 gives the desired equality.
3.7.4 Remark. If B and C are congruences in an Ω-group and $Q=\cup B \cap \cup C$, then

$$
\left(B \vee_{P} C\right) \sqcap Q=(B C) \sqcap Q=(C B) \sqcap Q
$$

Proof. By 3.4.1 and 3.4.2 there holds

$$
\begin{align*}
& \left(B \vee_{P} C\right) \sqcap Q=(B \sqcap Q) \vee_{P}(C \sqcap Q),(B C) \sqcap Q=(B \sqcap Q)(C \sqcap Q), \tag{3.7.1}\\
& (C B) \sqcap Q=(C \sqcap Q)(B \sqcap Q) .
\end{align*}
$$

Since $B \sqcap Q$ and $C \sqcap Q$ are congruences on the Ω-group Q, they commute and by 3.3.1(1) the right sides of the equations (3.7.1) equal one another, so do the left sides.
3.7.5 For congruences B and C in an Ω-group the following conditions are equivalent

1. $\mathrm{U}\left(B \vee_{x} C\right)=\mathrm{U}(B C)$
2. $\mathrm{U}\left(B \vee_{P} C\right)=\mathrm{U}(B C)$
3. $B(0)+\mathrm{U} C=\mathrm{U} B$
4. $\left(B \vee_{\mathscr{H}} C\right)(0)=\left(B \vee_{P} C\right)(0)=(B C)(0)=B(0)+C(0)$,
$\mathrm{U}\left(B \vee_{\mathscr{K}} C\right)=\mathrm{U}\left(B \vee_{P} C\right)=\mathrm{U}(B C)$.
Each of these conditions implies the condition 5. $B \vee_{\mathscr{H}} C=B \vee_{P} C$.
Proof. $1 \Rightarrow 2$ evidently.
$2 \Rightarrow 3$: From 3.5.5 and from [12] 1.6 there follows $\cup B \supseteq B(0)+\cup B \cap \cup C=$ $=\mathrm{U}(B C)=\cup\left(B \vee_{P} C\right)=\cup B \cup \cup C$. Hence $\cup B \supseteq \cup C$ thus $B(0)+\cup C=\mathrm{U}(B C)=$ $=\mathrm{\cup}\left(B \vee_{P} C\right)=\cup B$, i.e. there holds the condition 3 .
$3 \Rightarrow 5$: First from the condition 3 there follows obviously $C(0) \subseteq \cup C \subseteq \cup B$. Further, Teorem 3.5.5 verifies that $(B C)(0)=B(0)+\cup B \cap C(0)=B(0)+C(0)$ is an ideal in the Ω-group $\mathrm{U}(B C)=B(0)+\cup B \cap \cup C=B(0)+\cup C=\cup B=\langle\cup B \cup \cup C\rangle$ so that by [12] $1.6 B(0)+C(0)=\ll B(0) \cup C(0) \gtrdot \cup B \cup \cup C=\left(B \vee_{\mathscr{H}} C\right)(0)$. This proves $\left(B \vee_{\nsim} C\right)(0)=B(0)+C(0)=(B C)(0)$.

We shall prove $x\left(B \vee_{\mathscr{X}} C\right) y=x\left(B \vee_{P} C\right) y$ and hence the required implication. For this purpose consider that $B(0)+C(0)+U C=B(0)+U C=U B$ holds. It follows that for any $x \in \cup B$ there exists $c \in \cup C$ such that $B(0)+C(0)+x=B(0)+$ $+C(0)+c$. Denote by the symbol b with indices or c with indices elements of $B(0)$ or $C(0)$, respectively; then $x\left(B \vee_{\mathscr{H}} C\right) y \Rightarrow y-x \in\left(B \vee_{\mathscr{H}} C\right)(0)=B(0)+C(0)$, $x, y \in \cup B(=\langle\cup B \cup \cup C\rangle) \Rightarrow y \in B(0)+C(0)+x=B(0)+C(0)+c \Rightarrow$

$$
\begin{equation*}
y=b_{0}+c_{0}=x=b_{1}+c_{1}+c \tag{3.7.2}
\end{equation*}
$$

(for suitable elements b_{0}, b_{1}, c_{0} and c_{1}). From the normality of a subgroup $B(0)$ in $U B$ we get successively for suitable elements b_{2}, b_{3} and c_{2} :

$$
\begin{gathered}
c_{0}+x=-b_{0}+b_{1}+c_{1}+c=c_{1}+b_{2}+c,-c_{1}+c_{0}+x= \\
=b_{2}+c=c+b_{3}, x-b_{3}=c_{2}+c
\end{gathered}
$$

Hence $x B\left(x-b_{1}\right)=\left(c_{2}+c\right) C c C\left(c_{1}+c\right)=\left(-b_{1}+y\right) B y$ (the last equality see (3.7.2)), i.e. $x B C C B y$ thus $x\left(B \vee_{P} C\right) y$. So $3 \Rightarrow 5$ is proved.
$3 \Rightarrow 4$: We have just proved $3 \Rightarrow 5$. From the conditions 5 and 3 there follows obviously $\mathrm{U}\left(B \vee_{\boldsymbol{x}} C\right)=\mathrm{\cup}\left(B \vee_{P} C\right)=\mathrm{U} B \cup \cup C=\cup B$. Then $\mathrm{U}(B C)=B(0)+\cup B \cap$ $\cap \cup C=B(0)+U C=U B$ by 3.5.5. This verifies the second part of the condition 4
(concerning the domains). In the proof to $(3 \Rightarrow 5)$ there was proved $\left(B \vee_{P} C\right)(0)=$ $=\left(B \vee_{\mathscr{H}} C\right)(0)=B(0)+C(0)=(B C)(0)$. Hence 4. $4 \Rightarrow 1$ is evident.
3.7.6 Remark. It will be proved in 3.9.5 that the conditions of the preceding theorem do not imply the commutativity of the congruences B and C.
3.8 Congruences B and C in an Ω-group commute if and only if $(B C)(0)=(C B)(0)$.

Proof. Let $(B C)(0)=(C B)(0)$ hold. Then $x B C y \Rightarrow x B a C y \Rightarrow x B a C a \Rightarrow(x-$ $-a) B 0 C 0 \Rightarrow(x-a) B C 0 \Rightarrow(x-a) C B 0 \Rightarrow x-a \in U C$. Since also $a \in U C$, we have $x=(x-a)+a \in \cup C$. Now the symmetry of the relation $B C$ may be proved:

$$
\begin{gathered}
x B C y \Rightarrow x B a C y \Rightarrow 0 B(a-x) C(y-x) \Rightarrow 0 B C(y-x) \Rightarrow(y-x) C B 0 \Rightarrow \\
\Rightarrow(y-x) B C 0 \Rightarrow 0 C B(y-x) \Rightarrow 0 C b B(y-x) \Rightarrow x C(b+x) B y \Rightarrow x C B y \Rightarrow \\
\Rightarrow y B C x .
\end{gathered}
$$

By 3.3 the commutativity B and C follows from the symmetry of the relation $B C$.
Conversely, if B and C commute, i.e. if $B C=C B$ holds, then obviously $(B C)(0)=$ $=(C B)(0)$.
3.8.1 Let B and C be congruences in an Ω-group, $\mathrm{U}\left(B \vee_{P} C\right)=\mathrm{U}(B C)$. Then the following conditions are equivalent.

1. $\left(B \vee_{\mathscr{H}} C\right)(0)=(C B)(0)$
2. $\left(B \vee_{P} C\right)(0)=(C B)(0)$
3. $C(0)+B(0)=(C B)(0)$
4. $B(0)+C(0)=(C B)(0)$
5. B and C commute.

Proof. First note that the condition $\mathrm{U}\left(B \vee_{P} C\right)=\mathrm{U}(B C)$ implies $B(0)+\mathrm{U} C=\mathrm{U} B$ by 3.7.5(3) thus also $C(0) \subseteq U C \subseteq \cup B$.
$1 \Rightarrow 2$ is evident.
2 \Rightarrow 3: By 3.5.7 $(C B)(0)=\left(B \vee_{P} C\right)(0)=[C(0)+B(0)] \cup[C(0)+U C \cap B(0)]=$ $=C(0)+B(0)$.
$3 \Rightarrow 4: C(0)+B(0)=(C B)(0) \subseteq U C$ (by 3.5.5) thus $B(0)$ and $C(0)$ are ideals in $\cup C$ and thus they commute.
$4 \Rightarrow 1$: By 3.7.5 the condition $\mathrm{U}\left(B \vee_{P} C\right)=\mathrm{U}(B C)$ implies $\left(B \vee_{\mathscr{H}} C\right)(0)=B(0)+$ $+C(0)$.
$4 \Rightarrow$ 5: The condition $\mathrm{U}\left(B \vee_{P} C\right)=\mathrm{U}(B C)$ implies $(B C)(0)=B(0)+C(0)$ by 3.7.5 thus $(B C)(0)=(C B)(0) . B$ and C commute by 3.8.
$5 \Rightarrow 1$: By 3.7.5 the condition $U\left(B \vee_{P} C\right)=U(B C)$ implies $\left(B \vee_{\mathscr{H}} C\right)(0)=B(0)+$ $+C(0)$ and $\cup B \supseteq \cup C$, the condition $B C=C B$ gives $(C B)(0)=(B C)(0)=B(0)+$ $+\cup B \cap C(0)=B(0)+C(0)$ by 3.5.5. Hence 1 .
3.9 Congruences B and C in an Ω-group commute if and only if $B(0) \cup C(0) \subseteq$ $\subseteq \cup B \cap U C$.

Proof. Let B and C commute. If $x \in B(0) \backslash \cup C$ exists, then $x B 0 C y$ for all $y \in C(0)$ thus $x B C y$. By hypothesis $x C B y$, i.e. $x C b B y$ for suitable $b \in \cup C \cap \cup B$ thus $x \in \cup C$, a contradiction. Hence $B(0) \subseteq U C$. The validity of the inclusion $C(0) \subseteq U B$ is proved symmetrically.

Let $B(0) \cup C(0) \subseteq \cup B \cap \cup C$ hold. $B(0)$ and $C(0)$ are ideals in $\cup B \cap \cup C$, thus permutable subgroups. Hence we get by $3.5 .5(B C)(0)=U B \cap[B(0)+C(0)]=$ $=B(0)+C(0)=C(0)+B(0)=U C \cap[C(0)+B(0)]=(C B)(0)$. The commutativity B and C now follows from 3.8.
3.9.1 Corollary. Congruences on an Ω-group are permutable.
3.9.2 Corollary. For permutable congruences B and C in an Ω-group G there holds $(B, C) M^{*}$ and $(C, B) M^{*}$ both with respect to $P(G)$.

It follows from 3.9 and [13] 2.2.
3.9.3 Corollary. Null blocks of permutable congruences B and C in an Ω-group are permutable subgroups.

It follows from 3.9 since $B(0)$ and $C(0)$ are ideals in $\cup B \cap \cup C$.
3.9.4 The commutativity of the subgroups $B(0)$ and $C(0)$ does not imply the commutativity of the congruences B and C in Ω-group as the example 3.1.1(2) proves:
The congruences B and C do not commute, but $B(0)$ and $C(0)$ are permutable subgroups in G since the group G is abelian. (The noncommutativity of the congruences B, C follows also easily from 3.9 since $B(0) \cup C(0)=Y \$ X=\cup B \cap \cup C)$.
3.9.5 The same example as in 3.9.4 proves that the conditions of Theorem 3.7.5 do not imply the commutativity of congruences B and C in an Ω-group.

Indeed, the congruences B and C do not commute, but at the same time the condition 3.7.5(3) $C(0)+U B=Y+X=G=U C$ is satisfied.
3.10 Congruences B and C in an Ω-group commute if and only if $\cup(B C)=U(C B)$.

Proof. From the first condition, $B C=C B$, there follows obviously the second one, $\mathrm{U}(B C)=\mathrm{U}(C B)$. Now suppose that $\mathrm{U}(B C)=\mathrm{U}(C B)$. By 3.5.5 $\cup B \supseteq B(0)+$ $+\mathrm{U} B \cap \mathrm{U} C=C(0)+\mathrm{U} C \cap U B \subseteq \cup C$, thus $B(0) \cup C(0) \subseteq \cup B \cap U C$. By 3.9 B and C commute.
3.11 For congruences B and C in an Ω-group the following conditions are equivalent. 1. $\mathrm{U} B=\mathrm{UC}$ 2. $B C=B \vee_{P} C$ 3. $B C=B \vee_{\mathscr{H}} C$.

Proof. $2 \Leftrightarrow 3-$ see 3.3.1(4).
$1 \Rightarrow 2$ follows from 3.3.1(1) and from the fact that congruences on group commute.
$2 \Rightarrow 1$ follows from 3.1.1(6).

REFERENCES

[1] Birkgoff, G.: Teorija struktur. Moskva 1952.
[2] Borůvka, O.: Theory of partitions in a set (Czech). Publ. Fac. Sci. Univ. Brno No. 278 (1946), 1-37.
[3] Borůvka, O.: Grundlagen der Gruppoid- und Gruppentheorie. Berlin 1960.
[4] Borůvka, O.: Foundations of the theory of groupoids and groups (Czech). ČSAV Praha 1962 (English) Berlin 1974.
[5] Brandon, R. L., Hardy, D. W. and Markowsky, G.: The Schützenberger group of an H-class in the semigroup of binary relations. Semigroup Forum, 5 (1972), 45-53.
[6] Draškovičová, H.: The lattice of partitions in a set. Acta Fac. Rer. Nat. Comen.-Math. 24 (1970), 37-65.
[7] Draškovičová, H.: Permutability, distributivity of equivalence relations and direct products. Matemat. Čas. SAV 23 (1973), 69-87.
[8] Hermes, H.: Einführung in die Verbandstheorie. Berlin-Heidelberg-New York 1967.
[9] Kuroš, A. G.: Lekcii po obščej algebre. Moskva 1962.
[10] Ore, O.: Theor;' of equivalence relations. Duke Math. J. 9 (1942), 573-627.
[11] Šik, F.: Über Charakterisierung kommutativer Zerlegungen. Publ. Fac. Sci. Univ. Brno, No. 354 (1954), 1-6.
[12] Mai, T. D.: Partitions and congruences in algebras. I. Fundamental properties Archivum Math. 10 (1974), 111-122.
[13] Mai, T. D.: Partitions and congruences. II. Modular and distributive equalities, complements. Archivum Math. 10 (1974), 159-172.
[14] Trevisan, G.: Construzione di quasigruppi con relazioni di congruenza non permutabili, Rendiconti del Seminario matematico della università di Padova, XXII (1953), 11-22.

Tran Duc Mai

66295 Brno, Janáčkovo nám. ¿̇a
Czechoslovakia

