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PARTITIONS AND CONGRUENCES IN ALGEBRAS 
III . COMMUTATIVITY OF CONGRUENCES 

TRAN DUC MAT, Brno 

(Received August 15. 1973) 

The basic information about the object of this paper is given in sees. 0 — 0.5 [12]. 
Recall that a partition in a set G is a system (eventually empty) of nonempty mutually 
disjoint subsets in G [1, 2, 3, 4, 6, 7, 10]. On the ground of existence of a 1-1 cor
respondence between the set P(G) of all partitions in G and the set of all symmetric 
and transitive relations (ST-relations) in G there is often made no difference between 
both the notions. The element of the partition is called a block and the union UA 
of all the blocks of A is called a domain of the partition A. By a congruence in an 
algebra (G, Q), is meant a stable ST-relation in the algebra (G, Q). The block A(0) 
of the congruence A in an O-group G containing the zero element 0 of the group G 
is called a null block. 

3.0 The objects of our considerations in this paper are problems concerning the 
commutativity of partitions and congruences "in". The following results demonstrate 
that if we replace "on" by "in", then some of the known characteristics of the com
mutativity of partitions or congruences on a set or on an algebra, respectively (see 
e.g. [10, 11]), will fail. The commutativity of congruences B, C in an algebra G is 
characterized by any of the following properties (see 3.3) : 1. BC is a partition 2. BC 
is a symmetric relation, 3. BC is a congruence. The first two properties are the well 
known characteristics of commutativity of partitions on a set; they also characterize 
the commutativity of partitions in a set (3.1). 

In case of congruences in an jQ-group G we may join to properties 1, 2, 3 charac
terizing the commutativity of congruences B, C another one: 4. B(0) u C(0) £ 
£ UB n UC (3.9). The equalities BC = B v P C, BC = B v x C are mutually 
equivalent in any algebra (3.3.1(4)), they imply the commutativity of the congruences 
B and C, and in case of congruences "on" they characterize the commutativity of 
B and C (3.3.1(1)); in case of congruences in an O-group they characterize the relation 
UB = UC (3.11). The commutativity of the nullblocks B(0) and C(0) is implied by 
the commutativity of the congruences B and C in an O-group, but it does not imply 
it (3.9.3, 3.9.4). The equality BvFC = BvjrCis neither necessary nor sufficient 
for the commutativity of the congruences B and C in an O-groxip (3.3.1(6)). Some 
formal weakenings of definition requirement of the commutativity of congruences 
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give other criteria of the commutativity of the congruences B and Cin an O-group: 
5. (BC) (0) = (CB) (0), 6. U(BC) = U(CB) (3.8, 3.10). On the other hand, analogous 
weakenings of the equality B v PC = BC (this equality implies the commutativity 
of B and C) are no longer sufficient for the commutativity (3.9.5). The above criteria 
of the commutativity of congruences B and C refer to its product BC. In 3.5A the re
lation BC is described and on this ground there are constructed U(BC) and (BC) (0) 
(see Definition 3.5); the first set is equal to B(0) + UB n UC, the second one to 
B(0) + UB n C(0). Both the assertions are the subject-matter of the main theorem 
3.5.5 of this paper. From the fact that (BCBC...) (0) = (BC) (0) (3.5.6), (B v P C) (0) 
follows as the union of two 0-subgroups [B(0) + UB n C(0)] u [C(0) + (UCn 
n B(0)]. In 3.6.3 and 3.7 there are characterized the equalities (B v p C ) (0) = 
= (BC) (0) and (B v x C) (0) = (B v p C) (0), in 3.7.5 and 3.7A the equalities 
U(B v p C) = U(BC) and U(B v ^ C) = U(B v p C). 

3.1 For partitions B and C in a set G the following conditions are equivalent: 
1. B and C commute 2. BC is a partition in G 3. BC is a symmetric relation in G. 

Proof. 2 => 3 is evident. 

3 => 1: xBCy o yBCx <=> yBaCx <=> xCaBy <=> xCBy. 
I => 2: The symmetry of the relation BC: xBCy => xCBy => yBCx. The transitivity of 
the relation BC; xBCyBCz => xBCBCz => xBBCCz => xBCz since evidently BB = 
= B and CC = C). 

3.1.1 Remarks 

(1) For partitions B and C in a set G it holds: B and C commute => B v p C = 
= BC u B u C. 

Proof. From the relation x(B vpC)y it follows: xAtxx . . . x n ^ A j / , where At = B 
or = C (/ = 1, 2, ..., n), At ^ Ai+l (i = 1, 2, ..., n — 1) hence we get the following 
six possibilities: for n = 1 either xBy or xCy, and for n = 2 the following four ones: 
xBxt ... xn„tBy, or xBxt ... Xn^^Cy, or xBxt ... xn_tBj, or xCxA ... xn^tCy. From 
these four possibilities it follows respectively: x(BC)mBy, or x(BC)my, or x(CB)my, or 
x(CB)mCy where the exponent m is a suitable positive integer. From the commuta
tivity of B and C and from the obvious fact that Bm = B, Cm = C we get in the first 
case 

x(BC)mBy => xBmCmBy => xBCBy => xBBCj => xBCy, in the second one x(BC)my => 
=> xBmCmy => xBCj. Similarly in the cases three and four. So B v p C c: BC u Bu C 
is proved. The reverse inclusion is evident. 

(2) The reverse implication in (I) does not hold in general even for congruences in an 
fi-group. 

Examples. Let G = R -i- R, where R is the additive group of reals (in geometric 
meaning G is a plane), let the partition B the the set of all points on the axis X, and 
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the partition C the set of all straight lines in G parallel to the axis Y. The partitions 
B, C do not commute, but B v P C = BC u B u C is true. Indeed, let Te C, x e T\X, 
yeTc\X. Then xCyBy thus xCBy, while xBCy is not true since x e UB = X. Thus 
BC # CB. Furthermore BC is the set of all ordered pairs of points the first of which 
lies on the axis Xand the second one on the parallel line with the axis Y which passes 
through the first point. Thus BC c C; as also B c C, it holds BCuBuC=C = 
= B v p C 

(3) For partitions B and C in a set it holds: B v P C = BC => B and C commute. 
Indeed, from the condition follows that BC is a partition and from 3A that B 

and C commute. 
(4) The reverse implication in (3) does not hold in general even for congruences in 

an Q-group. 
This will be proved in 3.3A (2). 
(5) For partitions B and C on a set there holds the following: B and C commute 

oBC = B v p C ( [ 1 0 , 11]). 
The implication <= follows from (3), the implication => from (1) and from that 

partitions on a set are contained in their product. 
(6) For partitions B, C in a set there holds as follows: B v PC = BC=> UB = UC. 
In fact, for x e U C \ UB there holds xB v p Cx, but xBCx does not hold; thus 

UB 2 UC. By 3.1.1 (3) the condition is symmetrical with respect to B, C thus UB = 
= UC 

3.2 The product of congruences in an algebra G is a binary relation preserving 
operations in G. The product of commutative congruences in G is a congruence in G. 

Proof. If B and C are congruences in an algebra G, co an w-ary operation in G and 
xtBCyi (i = 1, 2, . . . , «), then we get consecutively the following: xfiafiyi, xx ...xnco 
Bax ... ancoCy1 ... ynco, xA ... xncoBCyx ... ynco. If the congruences B and C are per-
mutable, BC is, by 3A, a partition and hence a congruence in G. 

3.3 For congruences B, C in an algebra G the following conditions are equivalent: 
1. B and C commute 2. BC is a partition in G 3. BC is a symmetric relation in G 

4. BC is a congruence in G. 

Proof. The first three statements are mutually equivalent by 3.1. 4 => 2 is obvious 
and 1 => 4 follows from 3.2. 

3.3.1 Remarks 

(1) For congruences B and C on an algebra the following conditions are equivalent. 
1. B and C commute 2. BC = B v p C 3. BC = B v# C, 

Proof. 1 => 3: BC is a congruence in G by 3.2 and B, C ^ B v p C = BC holds by 
3.1.1 (5) thus B v x C < BC. Hence and from the obvious relations BC = B v p C ^ 

= B v # C there follows BC = B v P C = B v # C, 
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3 => 2 follows from the fact that BC = B v P C = B v r C. 
2=> 1 by 3.1.1 (5). 

(2) For congruences B and C in an algebra there holds 2 => 1, 3 => 1 (1, 2, 3 — 
see (1)) 
namely because of the fact that BC is a partition in this case and B and C commute 
by 3.3. 

(3) The implication 1 => 2 does not hold in general even for congruences in an 
Q-group. 

Example. Let B and C be the partitions in the plane G = R + R (see 3.1.1 (2)) 
as follows: B the set of all points on the axis X, C the set of all points on the axis Y. 
Then B and C are congruences in the group G which commute and therefore BC 
is a congruence in G by 3.2; on the other hand U(B vpC) = XuY^ {(0, 0)} = 
= U(BC ) thusB v p C # BC. 

(4) For congruences B and C in an algebra G it holds: BC = B v p C <-> BC = 
= Bv^C. 

Proof. The implication <= is obvious since BC ^BvpC^Bv^C. In proving 
the reverse implication let us recall that by 3.2 the relation BC preserves operations 
in G and by assumption it is a partition thus a congruence in G. Hence and from the 
relations B, C^BvpC=BC there follows B v ^ C = BC. The desired equality 
follows now from the relations BC ^ B V p C ^ g B v ^ C . 

(5) The equality B v P C = B v # C holds always for congruences on an algebra 
([12] 0.4). 

It does not represent a characteristic of commutativity on an algebra since there 
exists an algebra G and congruences B, C on G which do not commute (see e.g. the 
example of noncommutative congruences on a quasi-group in [14]). 

(6) The equality BvpC = BvJfC (in contrast to the equalities BC = B y P C 
or BC = B v x C) is neither a) sufficient nor b) necessary for the commutativity of 
congruences in an Q-group. 

An example for a) is given in 3.1.1 (2) (the partitions B and C do not commute and 
at the same time BvpC = BvjrC since B = C), for b) in 3.3.1 (3) (the partitions B 
and C commute, but B v p C # B v x C since U(B v p C) = UB u UC # G = 
= <UB ,UC>= U(B v ^ C ) . 

(7) Comparable congruences in an Q-group need not commute. Also in this case the 
congruences B and C in 3.1.1 (2) are used as an example. 

3.4 IfB and C are congruences in an Q-group G, Qa subgroup of the additive group G, 
Q c UB n UC, then the congruences B n Q a«d C n Q commute. 

(Recall that the partition B n Q = {B1 n Q: B1 e B B1 n Q # 0 } is called an 
intersection of the partition B with the set Q [3] I, 2.3, [4] 2.3, [12] 1.5.1). The 
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statement follows from the fact that B n Q and C n Q are congruences on the 

group Q. 

3.4.1 If B and C are congruences in an algebra G, Q a subalgebra in G, Q 3 
2 UB n UC, then (B n Q) (C n Q) = (BC) n G. 

Proof. x[(B n Q) (C n Q)] y => x(B n Q) a(C n Q) j => x, y, aeQ, xBaCy => 
=> xBCy, x, y e Q => x[(BC) n Q] y, hence (B n Q) (C n Q) s (BC) n Q. Con
versely, x[(BC) n Q] y => x, ye Q, xBCj. From the latter there follows xBaCy 
with a e UB n UC c Q. Hence x(B n Q) a(C n Q) j> thus x(B n g ) ( C n Q) j . 
In conclusion (BC) n Q = (B n Q) (C n Q). 

3.4.2 If{-4a} is a system of partitions in a set G, Q'3 U Q^Aa n UA^), then ir 
hows " " * ' 

V p ( A n Q ) = ( V p ^ a ) n Q . 
a a 

Proof. x[(VPA„) n Q ] J = x,yzQ,xAxxx ...xn-xAny=> x(Al n 0 *, ... x , . . 

(A n0j=>%[VP(A .n0].v. 
a 

Conversely, x[Vp(v4a n Q)]j = x(AX n Q)xt . . . ^ ^ ( A , , n 0 ^ x 1 } - V i e 
a 

GQ, x^ix! . . . x ^ i A ^ - ^ ^ V p ^ a ) n Q>\ 
a 

3.4.3 If {-4a} is a system of congruences in an algebra G, Q a subalgebra of G, 
Q c H UAa, then VR U a n Q) = V^ 0*a n Q) ho/ds. 

a a a 

The proof follows from the fact that {Aa n Q} is a system of congruences on the 
algebra Q. 

3.4.4 If{^4a} is a system of congruences in an algebra G, Q a subalgebra ofG,Q^ 

=• U ( u ^« n U^/J)> then it holds 
a*P 

(Vx A.) n e = (V,i..)nfi-> (W 4 ) n g = W (A n 0 . 
a a * a a 

Proof. By 3.4.2 there holds 

yP(Ax n 0 = (V,>U n g = (V^AJ n g = W(A n 0 = V P ( A n 0 . 
a a a a a 

3.5 Definition. Let A be a binary relation in a set G, x e G. Define 

A(x) = {yeG: yAx] (a row of A - [5]), (x) A = {y e G : xA;y} 

(a column of A — [5]) 

IW = {y e G : 3 x e G, ;Mx} = U ^(*) (Vorbereich, [7] p. 191), 
x e G 

A\J = {>> e G : 3 x e G, xAy) = \J (x) A (Nachbereich, [7] p. 191). 
xeG 
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Remark. If B, C are symmetric relations in G, then 

(BC) (x) = (x) (CB), U(BC) = (CB) U. 

The first equality: > e (BC) (x)<=> >BCx <=> xCB>o > e (x) (CB): The second equality 
follows from the first one on the basis of relations 

U(BC) = (J (BC) (x), (BC) U = U W (BC). 
xeG xeG 

3.5.1 For congruences B and C in an Q-group the following conditions are equivalent 

l.xBCy 

2.x - > G B(0) + C(0), x e UB, > G UC 

3. - x + > G B(0) + C(0), x G UB, > G UC 

4. > - x G C(0) + B(0), xe UB, > G UC 

5. - > + xGC(0) + B(0),xGUB,>eUC. 

Proof. 1=>2: xBCy=>xBaCy (with a G UB n UC)=> x - ae B(0), a-ye 
e C(0) => x - > = (x - a) + (a - >) G B(0) + C(0). Of course, it also holds: 
xBC>=>xGUB, >GUC. 

2 => 1: x - ye B(0) + C(0) => x - > = b + c for suitable b e B(0), c e C(0) => 
=>—b + x = c + >. Since, by hypothesis, x G UB, > G UC holds, we have 
xB(-b + x) = (c + >) C> thus xBC>. 

The equivalence 1 <=> 3 is proved in a similar way. The equivalence 2 <=> 4 follows 
from the fact' that x - > e B(0) + C(0) <=> > - x = - (x - >) e C(0) + B(0). Simil
arly 3 o 5. 

3.5.2 For congruences B and C in an Q-group there holds 

U(BC) = UB n [B(0) + UC] = UB n [UC + B(0)], 

(BC) U = UC n [C(0) + UB] = UC n [UB + C(0)]. 

Proof, xe U(BC)=> xBC> for some ye UC=> (by 3.5.1 (2)) x - >GB(0) + C(0), 
xe UB,ye UC=> x e UB n [B(0) + C(0) + >] s UB n [B(0) + C(0) + UC] = 
= UB n [B(0) + UC]. Conversely, x e UB n [B(0) + UC] => xe UB, x = b + c, 
wherebGB(O), CG UC=> - b + x = cG[B(0) + x] n U B n U C = > x B ( - b + x) = 
= cCy f6r some > G UC=> xBC>=> xe U(BC). Hence the first expression of the 
set U(BC). The second one is got in a similar way (this time 3.5.1 (5) is used). 

We get the expression of (BC) U from above in consequence of Remark 3.5. 

3.5.3 Let B and C be congruences in an Q-group G, Q an Q-sugbroup of G, Q ^ 
3 UB n UC. Then there holds 

(Q n UB) n [B(0) + C(0)] = UB n [Q n B(0) + Q n C(0)]. 
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The equality remains preserved if we change 5(0) and C(0) on one side of the equa
tion. 

Especially for Q = UB we get 

U5 n [5(0) + C(0)] = 5(0) + U5 n C(0) = U5 n [C(0) + 5(0)] = 

= U5 n C(0) + 5(0). 

Proof. By 3.4.1 (B n Q) (C n Q) = (5C) n Q and by 3.5.1 (2) and (5) there 
holds 

x[(B nQ)(CnQ)]0oxe(Qn UB) n[Qn 5(0) + Q n C(0)] 

(= U5 n [Q n 5(0) + Q n C(0)]) 

o x e (Q n UB) n [Q n C(0) + Q n 5(0)] 

(= U5 n [Q n C(0) + Q n 5(0)]) 

x[(BC) n Q] 0 o x e 0, x5C0 o 

oxeQnUBn [5(0) + C(0)] oxeQnUBn [C(0) + 5(0)]. 

Hence the statement. 

3.5.4 Zassenhaus lemma. Let 93 and fi be Q-subgroups of an Q-group G, 33' or fi' 
an ideal o/93 or fi, respectively. Then 93' + 93 n fi to an Q-subgroup of G and 93' + 
+ 93 n S' its ideal, fi' + fi n 93 « an Q-subgroup of G and fi' + fi n 93' its ideal, 
9? n fi' + fi n 33' is an ideal of 3? n fi and rhere ho/dy 

33' + 93 n fi/93' + 9 3 n £ ' s f i ' + fin 93/fl' + fi n 93' s 33 n fi/33 n S' + fi n 23'. 

(e.g. [9] I I I 4.3) 

3.5.5 Let B and C be congruences in an Q-group G. Then 

(3.5.1) U(5C) = U 5 n [5(0) + UC ] = 5(0) + U 5 n UC = 
= U 5 n [ U C + 5(0)] = U 5 n UC + 5(0). 

(3.5.2) (BC) (0) = U 5 n [5(0) + C(0)] = 5(0) + U 5 n C(0) = 
= U B n [C(0) + 5(0)] = U 5 n C(0) + 5(0), 

U(5C) is an Q-subgroup ofG, (BC) (0) its ideal, UB n C(0) + UC n 5(0) an ideal 
of UB n UC and there holds 

U(BC) | (BC) (0) s U(CB) | (C5) (0) s U5 n UC | U5 n C(0) + UC n 5(0). 

Proof. The equalities (3.5,2) follows from 3.5.1 and from 3.5.3 for Q = U5. 
The equalities (3.5,1) are got from 3.5.2 and from the statement 3.5.3 applied to the 
congruences 5 and C = UC/UC and to Q = U5. Actually, U(5C) = U5 n 
n [5(0) + UC] = U5n [5(0) + C(0)] = 5(0) + U5n C(0) = 5(0) + U 5 n UC. 
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Similarly we can get the other expressions of the set U(BC). The rest of the statement 
follows from the Zassenhaus's lemma 3.5.4 by setting 23 = UB, S ' = B(0), S = UC, 
£ ' = C(0). 

3.5.6 For congruencesB and C in an Q-group there holds (BCBC...) (0) = (BC) (0) 
provided the product on the left contains any finite number of factors n >̂ 2. 

P roof by induction with respect to the number of factors n. It is obvious that the 
statement holds for two factors. Now we shall prove its validity for three factors. 
It holds x(BCB) 0 => xBCaBO => (by 3.5.1) -a + x e C(0) + B(0), x e UB, a e 
G UC n B(0) => (by 3.5.5) -a + x e UB n [C(0) + B(0)] = B(0) + UB n C(0), 
a e B(0) =>x = a + ( - a + x)e B(0) + UB n C(0) = (BC) (0). Hence (BCB) (0) _ 

^ _ (BC) (0). The reverse inclusion is evident since xBCO => xBCOBO => xBCBO. 
The induction hypothesis: Let n = 4 be a positive integer, (BCBC.) (0) = (BC) (0) 
provided that 2 _ p _ n — 1 holds for the number of factors p in the product on the 
left. Now let x(BCBC...)0 and let the product contain n ^ 4 factors. Then there 
exists an element a e UB n UC such that x(BC) a(BC...) 0 thus by 3.5A and 3.5.5 
we have x - a e UB n [B(0) + C(0)] = (BC) (0) and by the induction hypothesis 
there will be a e (BC...) (0) = (BC) (0). Hence x = (x - a) + a e (BC) (0) since 
(BC) (0) is a subgroup by 3.5.5. So (BCBC.) (0) _ (BC) (0) is proved. The re
verse inclusion is obvious since xBCO => x(BC) 0(BC...) 0 => x(BCBC...) 0. 

3.5.7 Corollary. For congruences B and C in an Q-group there holds 

(BvpC) (0) = B(0) u (BC) (0) u C(0) u (CB) (0) = 
= [B(0) + UB n C(0)] u [C(0) + UC n B(0)]. 

The member in the first square bracket or in the second one is an ideal in the Q-group 
B(0) + UB n UC or C(0) + U C n UB, respectively. The order of summands (in one 
or both square brackets) may be changed. 

Proof. If the product BCBC. contains n factors (n _ 1) denote BCBC. = An. 
Analogously define CBCB... = Dn. Proof follows now from 3.5.6 and 3.5.5 since 

OO 00 

(B v p C)(0) = U AM u (J D„(0) = B(0) u (BC) (0) u C(0) u (CB) (0) = 
n = l n = l 

= [B(0) + UB n C(0)] u [C(0) + UC n B(0)]. The rest of the assertion follows 
from 3.5.5. 

3.5.8 For congruences B and C in an algebra there holds U(BCB...) = U(BC) _ UB 
(provided that on the left there are at least two factors). 

Proof, x e U(BCB ...)=> x(BC) a(B...)y for some a, y => xBCa => x e U(BC). 
Conversely, x e U(BC) => xBaCy for some a, y. Hence x e UB and xBaCaBa ... a 
so x(BCB ...)a thus x e U(BCB ...). 
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3.6 Definition. If Q is a subset of an O-group G, denote by [Q] the subgroup of the 
additive group G generated by the subset Q. 

3.6.1 Corollary. For congruences B and C in an Q-group there holds 

(BvPC) (0) c [B(0) + C(0)] u [C(0) + B(0)] e [B(0) u C(0)]. 

This is a corollary to 3.5.7 and 3.6. 

3.6.2 For congruences B and C in an Q-group there holds 

x(BvpC)y^x~ y9 y - x e [B(0) u C(0)]. 

Proof. x(B v p C)y=> x = x0Alxl ... xn.tAnxn = y9 where A( = B or = C (/ = 
= 1,2, ...,«)=> xi.1 ~ xi9xt - x^eA^OHi = 1,2, . . . ,n)=>x - y= (x0-xx) + 
+ (*i ~ *2) + - + (*„-i - *„) e [B(0) u C(0)], y ~ x = (x„ - xn.t) + (xH-i -
- *„-2) + ... + (x, - x0) e [B(0) u C(0)]. 

3.6.3 For congruences B and C in an Q-group G the following conditions are equivalent 

1. (B v p C) (0) is a subgroup of the additive group G 

2. (B v p C) (0) = B(0) + C(0) = C(0) + B(0) 

3. (B v p C) (0) = (BC) (0) or = (CB) (0) 

4. [B(0) u C(0)] s UB u UC 
5. C(0)c UBorB(0)<= UC. 

Remark. The first (second) alternatives of the conditions 3 and 5 are equivalent. 

Proof. 2=> 4: Since B(0) and C(0) commute so B(0) + C(0) = [B(0) u C(0)]. 
Then by [12] 1.6 [B(0) u C(0)] = (B v p C) (0) <= U(B v p C) = UB u UC. 

4=> 5: If it were B(0) $ UC, C(0) $ UB, then for beB(0)\UC, ceC(0)\UB 
there would hold b+ceUBuUC while b + c e B(0) + C(0) £ [B(o) u 
u C(0)] c UB u UC - a contradiction. 

5=>2, 5=>3: By 3.6A we have (B v P C)(0) c [B(0) u C(0)]. Since C(0) or B(0) 
is a normal subgroup of the subgroup UC or UB, respectively, it follows from the 
condition 5 that B(0) and C(0) are permutable subgroups thus B(0) + C(0) = 
= C(0) + B(0) = [B(0) u C(0)]. Now let e.g. C(0) s UB. Then by 3.5.5 (BC) (0) = 
= B(0) + UB n C(0) = B(0) + C(0) = [B(0) u C(0)]. Summarizing the got results 
we have (B v p C) (0) s [B(0) u C(0)] = (BC) (0) s (B v p C) (0), [B(0) u C(0)] = 
= B(0) + C(0) = C(0) + B(0). Hence 2 and 3: (B v p C) (0) = B(0) + C(0) = 
= C(0) + B(0) = (BC) (0). If we suppose that in 5 the second alternative B(0) s UC 
holds, then the proof is similar. 

2 => 1 is evident. 
1 => 4: Since obviously B(0) u C(0) c (B v p C) (0), it will be |fB(0) u C(0)] _= 

£ (B v p C) (0) so we have [B(0) u C(0)] £ (B v p C ) (0) c U(B v P C ) = U B u u C, 
i.e., 4 holds. 
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3 => 5: Let (B vpC)(0) = (BC)(0). Then from the relations B(0) u C(0) £ 
£ (B Vp C) (0) = (BC) (0) = UB n [B(0) + C(0)] c UB (the inclusions are obvious, 
the second equality by 3.5.5) there follows C(0) £ UB thus 5. Similarly the second 
alternative of the condition 5, B(0) c UC, follows from (B vpQ (0) = (CB)(0). 
The theorem is proved. 

In 3.3.1(6) it was proved that the condition BvpC = Bv<3rC(in contrast to the 
equalities BC = B vPC or BC = B v#C) is neither sufficient nor necessary for the 
commutativity of congruences B and C in an O-group. In the following considerations 
our attention is paid to this and to the related equalities. 

3.7 For congruences B and C in an Q-group the following conditions are equivalent. 

1. ( 5 V j r C ) ( 0 ) = (BVpC ) (0) 

2. (B v x C) (0) = [B(0) u C(0)| s UB u UC 

3. (B v x C) (0) = (B(0) + C(0) c UB or c UC 

4. (B vx C) (0) = (B Vp C) (0) = (BC) (0) or = (CB) (0). 

Remark. The first (second) alternatives in the conditions 3 and 4 are equivalent. 

Proof. 1 => 2: First the subgroup (B v# C) (0) equals B(0) + C(0) by 3.6.3 thus 
(B v x C) (0) = |B(0) u C(0)]. Second by [12] 1.6 (B v x C) (0) = (B v p C) (0) c 
S U(B VpC) = U B u UC. 

2=> 3: By 3.6.3 C(0) c UB or B(0) c UC. Since C(0) or B(0) is a normal sub
group in UC or UB, respectively, B(0) and C(0) commute thus (B v # C) (0) = 
= [B(0) u C(0)] = B(0) + C(0) c UB or s UC. 

3 => 4: Suppose the first alternative in 3. Then (B v ^ C) (0) = UB n [B(0) + 
+ C(0)] = (BC) (0) (this follows from 3.5.5). We get the first alternative in 4 from 
the fact that (BC) (0) = (B v # C) (0) 2 (B v p C) (0) 2 (BC) (0). The proof is 
analogous for the other alternatives in 3 and 4. 

4 => 1: evident. 

P roof of the Remark. We have shown (3 => 4) that the first (second) alternative 
of the condition 3 implies the first (second) alternative of the condition 4. If now the 
first alternative of the condition 4 is valid, then by 3.5.5 (B v ^ C ) (0) = (BC) (0) = 
= UB n [B(0) + C(0)] s UB thus there holds the first alternative of the condition 
3. Similarly for the second alternatives. 

3.7.1 For congruences B and C in an Q-group it holds: 

U(B v x C) = U(B Vp C)o UB 2 UC or UC 2 UB. 

Proof. Let the first condition hold. There holds UC 2 UB or a e UB\UC exists. 
In the second case there will be (a + UC) n UC = 0 and by [12] 1.6 a + UC c 
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£ <UB u UC> = U(B v ^ C ) = U(B v p C) = UBu UC thus a + UC c UB. Hence 
UC c - a + UB = UB, i.e. UC c UB. The reverse implication follows from [12] 
1.6. 

3.7.2 Let B and C be congruences in an Q-group, Q = UB n UC. Then 

Q n (B vx Q (0) = Q n B(0) + Q n C(0) <=> (B v # C) n Q = (B v p C) n Q. 

Remark. 1. I f Q = UB n UC, then Q n B(0) + Q n C(0) = Q n [B(0) + C(0)]. 
2. Thus in an abelian or a hamiltonian group the condition of Theorem 3.7.2 

is satified (provided Q = U B n UC) since Qn(B v ^ C ) (0) = Qn [B(0) + C(0)]. 
Thus the following statement is true: 

If B, C are congruences in an abelian or a hamiltonian group, Q = UB n UC, then 
(B v ^ C ) n Q = (B v p C ) n Q . 

P roof to 3.7.2. Let the first condition hold. Let x[(B v XQ n Q] y, x - y = a. 
The element a belongs to the set Q n (B v # C) (0) and it may be expressed as a sum 
a = b + c, where b e B(0), c e C(0). From the relation a — c = b e B(0) there follows 
(a — c) BO; hence and from the fact that c = — b + a 6 UB there follows aBc. 
Together with the relation cCO we get aBcCO, (x — y) BcCO and finally (because of 
y e Q = UB n UC) xB(c + j ) Cy, i.e. xBCy. So (B v x C) n Q g BC n Q is proved. 
This relation together with the evident relations BC ^ B v p C ^ B v J f C gives the 
desired equality. 

Conversely, if the second condition holds, then by 3.4.4 (B n Q) v x (Cn Q) = 
= (B v x Q n Q = (B v p C) n Q. The last partition is equal to (B n Q) v P (C n Q) 
by 3.4.2. Hence we get the equality between v p and v x of the congruences B n Q 
and Cn Q so by 3.7 [(B v ^ C ) n Q] (0) = [ ( B n Q) v , ( C n Q)] (0) = [ ( B n Q) 
VJT) (Cn Q)] (0). Obviously the first set equals Q n (BC) (0) and by 3.5.5 the last 
set equals Q n B(0) + Q n C(0). The theorem is proved. 

Proof of the remark 1. follows from 3.5.3. 

3.7.3 Corollary. For congruences B and C on an Q-group there holds B v # C = 
= B vPC. 

Indeed, for congruences B and C on the .Q-group G there is Q = UB n UC = G 
so that Qn(BvXC)(0)= (B v XQ (0) = <^B(0) u C(0)> G = B(0) + C(0) = Q n 
n B(0) + Q n C(0). The second equality follows from [12] 1.6, the third from the 
fact that the ideal generated by a system of ideals is their sum. Finally, 3.7.2 gives 
the desired equality. 

3.7.4 Remark. If B and C are congruences in an Q-group and Q = UB n UC, then 

(B v p C) n Q = (BC) n Q = (CB) n Q. 

Proof. By 3.4A and 3.4.2 there holds 

(3.7.1) (B v P C) n Q = (B n Q) v P (C n Q), (BC) n Q = (B n Q) (C n Q), 
(CB )nQ = ( C n Q ) ( B n Q ) . 

183 



Since B n Q and C n Q are congruences on the O-group Q, they commute and 
by 3.3.1(1) the right sides of the equations (3.7A) equal one another, so do the left 
sides. 

3.7.5 For congruences B and C in an Q-group the following conditions are equivalent 

1. U(B v ^ C ) = U(BC) 

2. U(B v p C ) = U(BC) 

3. B(0) + UC = UB 

4. (B v x C) (0) = (B v p C) (0) = (BC) (0) = B(0) + C(0), 

U(B v x C) = U(B v p C) = U(BC). 

Each of these conditions implies the condition 5. B v r C = B v PC. 

Proof. 1 => 2 evidently. 
2=> 3: From 3.5.5 and from [12] 1.6 there follows UB 2 B(0) + UB n UC = 
= U(BC) = U(B v P C) = U B u UC. Hence UB=2 UCthus B(0) + UC = U(BC) = 
= U(B v p C) = UB, i.e. there holds the condition 3. 
3 => 5: First from the condition 3 there follows obviously C(0) ^ U C c UB. Further, 
Teorem 3.5.5 verifies that (BC) (0) = B(0) + UB n C(0) = B(0) + C(0) is an ideal 
in the .Q-group U(BC) = B(0) + UB n UC = B(0) + UC = UB = <UB u UC> 
so that by [12] 1.6 B(0) + C(0) = < B(0) u C(0) > u B u UC = (B vx C) (0). 
This proves (B v x C) (0) = B(0) + C(0) = (BC) (0). 

We shall prove x(B v x C) y = x(B v P C) y and hence the required implication. 
For this purpose consider that B(0) + C(0) + UC = B(0) + UC = UB holds. It 
follows that for any x e UB there exists c e UC such that B(0) + C(0) + x = B(0) + 
+ C(0) + c. Denote by the symbol b with indices or c with indices elements of 
B(0) or C(0), respectively; then x(B vXC)y=>y - xe(BvXC) (0) = B(0) + C(0), 
x, y e UB(= <UB u UC» => y e B(0) + C(0) + x = B(0) + C(0) + c => 

(3.7.2) y = b0 + c0 = x = b! + c! + c 

(for suitable elements b0, bl9 c0 and ct). From the normality of a subgroup B(0) 
in UB we get successively for suitable elements b2, b3 and c2: 

c0 + x = —bo + bi + ci + c = ci + b2 + c, - c i + c0 + x = 

= b2 + c = c + b3 , x — b3 = c2 + c. 

Hence xB(x - bx) = (c2 + c) CcC(c! + c) = (-bx + y) By (the last equality -
see (3.7.2)), i.e. xBCCBy thus x(B v p C) y. So 3 => 5 is proved. 
3 => 4: We have just proved 3 => 5. From the conditions 5 and 3 there follows ob
viously U(B v x C) = U(B Vp C) = U B u UC = UB. Then U(BC) = B(0) + UB n 
n UC = B(0) + UC = UB by 3.5.5. This verifies the second part of the condition 4 
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(concerning the domains). In the proof to (3 => 5) there was proved (B v p C ) (0) = 
= (B v x C) (0) = B(0) + C(0) = (BC) (0). Hence 4. 
4 => 1 is evident. 

3.7.6 Remark. It will be proved in 3.9.5 that the conditions of the preceding 
theorem do not imply the commutativity of the congruences B and C. 

3.8 Congruences B and C in an Q-group commute if and only if(BC) (0) = (CB) (0). 

Proof. Let (BC) (0) = (CB) (0) hold. Then xBCy => xBaCy => xBaCa => (x -
- a) B0C0 => (x - a) BC0 => (x - a) CB0 => x - a e UC. Since also a e UC, we 
have x = (x — a) + a e UC. Now the symmetry of the relation BC may be proved: 

xBCy => xBaCy' => 0B(a - x) C(y - x) => 0BC(y - x) => (y - x) CB0 => 

=> (y - x) BC0 => 0CB(v - x) => 0CbB(y - x) => xC(b -F x) By => xCBy => 

=> yBCx. 

By 3.3 the commutativity B and C follows from the symmetry of the relation BC. 
Conversely, if Band C commute, i.e. if BC = CB holds, then obviously (BC) (0) = 

= (CB)(0). 

3.8.1 Let B and C be congruences in an Q-group, U(B v p C) = U(BC). Then the 
following conditions are equivalent. 

1. ( f iv ,C)(0) =(CB)(0) 

2. (BvpQ(0) = (CB)(0) 
3. C(0) + B(0) = (CB) (0) 

4. B(0) + C(0) = (CB) (0) 

5. B and C commute. 

Proof. First note that the condition U(B vp C)= U(BC) implies B(0) + UC = UB 
by 3.7.5(3) thus also C(0) c UC c UB. 

1 => 2 is evident. 
2 => 3: By 3.5.7 (CB) (0) = (B v p Q (0) = [C(0) + B(0)] u [C(0) + UC n 5(0)] = 
= C(0) + 5(0). 
3 => 4: C(0) + 5(0) = (CB) (0) «= UC (by 3.5.5) thus 5(0) and C(0) are ideals in 
UC and thus they commute. 
4 => 1: By 3.7.5 the condition U(5 v P Q = U(5C) implies (5 vx Q (0) = 5(0) + 
+ C(0). 
4=> 5: The condition U(5 vPQ = U(5C) implies (BC) (0) = 5(0) + C(0) by 
3.7.5 thus (BC) (0) = (CB) (0). 5 and C commute by 3.8. 
5 => 1: By 3.7.5 the condition U(5 vpQ= U(5C) implies (5 v x Q (0) = 5(0) + 
+ C(0)and U5 2 UC, the condition BC = CB gives (CB) (0) = (BC) (0) = 5(0) + 
+ U5 n C(0) - 5(0) + C(0) by 3.5.5. Hence 1. 
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3.9 Congruences B and C in an Q-group commute if and only if B(0) u C(0) <= 
S UB n UC. 

Proof. Let B and C commute. If xeB(0)\UC exists, then xBOCy for all yeC(0) 
thus xBCy. By hypothesis xCBy, i.e. xCbBj for suitable b e UC n UB thus x e UC, 
a contradiction. Hence B(0) c U C . The validity of the inclusion C(0) s UB is 
proved symmetrically. 

Let B(0) u C(0) c UB n UC hold. B(0) and C(0) are ideals in UB n UC, thus 
permutable subgroups. Hence we get by 3.5.5 (BC) (0) = UB n [B(0) + C(0)] = 
= B(0) + C(0) = C(0) + B(0) = UC n [C(0) + B(0)] = (CB) (0). The commuta-
tivity B and C now follows from 3.8. 

3.9.1 Corollary. Congruences on an Q-group are permutable. 

3.9.2 Corollary. For permutable congruences B and C in an Q-group G there holds 
(B, C) Af * and (C, B) M* both with respect to P(G). 

It follows from 3.9 and [13] 2.2. 

3.9.3 Corollary. Null blocks of permutable congruences B and C in an Q-group 
are permutable subgroups. 

It follows from 3.9 since B(0) and C(0) are ideals in UB n UC. 

3.9.4 The commutativity of the subgroups B(0) and C(0) does not imply the com-
mutativity of the congruences B and C in Q-group 
as the example 3.1.1(2) proves: 
The congruences B and C do not commute, but B(0) and C(0) are permutable sub
groups in G since the group G is abelian. (The noncommutativity of the congruences 
B, C follows also easily from 3.9 since B(0) u C(0) = Y J X = UB n UC). 

3.9.5 The same example as in 3.9.4 proves that 
the conditions of Theorem 3.7.5 
do not imply the commutativity of congruences B and C in an Q-group. 

Indeed, the congruences B and C do not commute, but at the same time the 
condition 3.7.5(3) C(0) + UB = Y + X = G = UC is satisfied. 

3.10 Congruences B and C in an Q-group commute if and only if U(BC) = U(CB). 

Proof. From the first condition, BC = CB, there follows obviously the second 
one, U(BC) = U(CB). Now suppose that U(BC) = U(CB). By 3.5.5 UB 2 B(0) + 
+ UB n UC = C(0) + UC n l/B <= UC, thus B(0) u C(0) s UB n UC. By 3.9 
B and C commute. 

3.11 For congruences B and C in an Q-group the following conditions are equivalent. 
1. UB = UC 2. BC = B v p C 3. BC = B v ^ C. 

Proof. 2 o 3 - see 3.3.1(4). 
1 => 2 follows from 3.3.1(1) and from the fact that congruences on group commute. 
2 -=> 1 follows from 3.1.1 (6). 
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