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A NOTE ON LINE COLORINGS OF CUBIC GRAPHS 

HERBERT FLEISCHNER 

(Received October 3, 1973) 

All concepts used in this note may be found in [3] if not explicitely stated otherwise. 
The graphs considered throughout this note are connected, plane, cubic graphs which 
are assumed to have a 1-factorization C (i.e., a partition of the line set into three 
classes such that adjacent lines belong to different classes). The classes of C are called 
linear factors. 

Let C = {L!, L2, L3} be a 1-factorization of G, and let L = Lf e C be a fixed 
linear factor. For each e = [a, b] e L there are four lines f , f2, f 3 , f4 adjacent to 
e such that without loss of generality f , f3 belong to L2 (and f2, f4 belong to L3). 
We say e is of type 1 in C iff andf3 belong to the same boundary of a face of G; 
otherwise e is said to be of type 2. For fixed C and fixed L e C, we denote by N(L) the 
number of lines e in L which are of type 2. 

Theorem 1. F0r arbitrary C of G and arbitrary L in C, N(L) is even. 
In the proof of the theorem we shall use a concept called Q-extension: A line e of G 

is replaced with a quadrangle Q and the lines adjacent to e have (exactly) one of their 
endpoints in Q, such that the new (connected and cubic) graph is still plane. (For an 
exact definition of the Q-extension see [2]). 

Proof of Theorem 1. Let C be a 1-factorization of G and Lt a fixed linear 
factor of G in C For each line of Lt we apply the Q-extension and denote the graph 
obtained in this way by G+. By [1, Theorem 2], G+ is bipartite. 

Now let LjJ 7- /, be another linear factor of G in C. T = Lt u Lj is a 2-factor of G, 
and to each cycle K of T corresponds K+ of G+ which is constructed as follows: 
lfeeK belongs to Lj9 then e belongs to K+, If e e K belongs to Li9 then there are two 
lines ft ,f2 of L^ adjacent to e in K; if e is in G of type 1, then there is in G+ a path P 
joiningf! andf2 in Q (the quadrangle corresponding to e) and containing all points 
of Q, and we let P belong to K; but, if e is in G of type 2, then there are paths Pt 

and P2 in Q c G+ joining ft andf2 and each containing exactly three points of Q. 
We choose arbitrarily exactly one of P1 and P2 as belonging to K+. By this construc
tion, K+ obviously is a cycle. Let T+ denote the set of all these K+. Since Fis a set of 
disjoint cycles, therefore, T+ is also a set of disjoint cycles, but T+ is not a 2-factor 
of G+ ifLt contains a line of type 2. In fact, to each e eLt, which is of type 2, corres-
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ponds exactly one v(e) e V(G+) such that v(e) does not belong to an element of T+, 
and viceversa. 

Obviously, 

V(G+) = ( U V(K+)) u He) I e is of type 2}, 
K + eT + 

and 
U V(K+) n {v(e) | e is of type 2} = <£. 

K + 6 T + 

Therefore, 

I V(G+) | - | U ^ ( * + ) I = -V(L,), 
K + 6 T + 

and since F+ is a,set of disjoint cycles, 

JV(L;J = | V(G+) I - Z I V(K+) |. 
K + 6 T + 

Any cubic graph has an even number of points, and for any K+ e T+,\ V(K+) | is 
even because G+ is bipartite. I.e., N(Lt) is an even number. This proves the theorem. 

In fact, it is possible to characterize the bipartite graphs in terms of N(Lf). This is 
expressed by the following theorem. 

Theorem 2. G is bipartite if and only if G has a 1 -factorization C = {Ll5 L2, L3} 
with N(Lt) =0 for i = 1,2, 3. 

Proof. 1. Assume G to be bipartite. Then G has a face-coloring with three colors 
1, 2, 3 such that faces of the same color class have disjoint boundaries. We define 
e e E(G) as belonging to Lx if and only if e is boundary line for a face with color j and 
a face of color k such that {i, j , k] = {1, 2, 3}. One sees immediately that C = 
= {Lx, L2, L3} is a 1-factorization of G for which N(LX) = N(L2) = N(L3) = 0. 

2. If for some C of G and any L(e C follows N(L() = 0, then we consider a face F 
and its boundary B. Assuming a line e of B belonging to Lv, it follows that the lines 
fi>fi adjacent to e in B must belong to the same Lk, k ?- i, since N(Lf) = 0. Analo
gously, the lines adjacent to f ,f2 in B and different from e, belong to L£ since N(Lfc) = 
= 0, a.s.o. Thus we find that in B alternate lines of L, and Lk, i.e., B is an even cycle. 
Since B is boundary of an arbitrarily chosen face of G we conclude by [1, Theorem 1] 
that G is bipartite. This finishes the proof of the theorem. 
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