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ARCH. MATH. 2, SCRIPTA FAC. SCI. NAT. UJEP BRUNENSIS 
XI: 85—98 1975 

ASYMPTOTIC PROPERTIES OF DISPERSIONS 
OF THE DIFFERENTIAL EQUATIONS y' = q(t)y 

STANfiK SVATOSLAV, Olomouc 
(Received April 9,1974) 

§1. BASIC NOTIONS AND SOME PROPERTIES 
OF THE FIRST PHASE AND OF THE DISPERSION 

OF THE DIFFERENTIAL EQUATION y" =q(t)y 

In the following let us denote R = (-oo, oo), R+ = (0, oo), aeR, I = <a, oo). 
For every positive integer n C" denotes the set of all functions having continuous 
w-th derivative on J, Cj denotes the set of all functions continuous on I. We assume the 
reader is familiar with the definition and properties of the first phase, of the 
fundamental dispersion of the first kind (in the following we write briefly dispersion) 
and of the central dispersion with the index i of the differential equation (q) (shortly 
equation (q)) 

y"~q(t)y, ' (q) 

(see [1]). If a and <p are a first phase and the dispersion of the equation (q), qeC° 

( 1 am(i\ 3 / a*Yt\ \ 2 \ 
{«,(} = - - - '———r 1 ,, r l )» 

2 a'(0 4 \ a'(f) / / 

a o q>(t) = a(0 + n sgn a', (1) 

- { a , f } - a ' 2 ( 0 = <K0, tel. (2) 

Further if a is the first phase of two independent solutions u, v of the equation (q) 

and the Wronskian of u, v equals w, then the function r: I -> R+, r: t -> / — is a 

solution of the differential equation 

r" = qr+^, (3) 

on/ . 
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In this paper we shall study the behaviour o f the dispersion and o f its derivatives 
o f the disturbed equation 

y" = (q(t)-A(t))y9 

assuming that l im A(t) = 0. In the papers [2], [3] analogous problems are studied 
f-*oo 

and sufficient conditions for the validity o f the relations l im <p'(t) = 1, l im (pu)(t) = 
f~>00 f-*oo 

= 0 (j = 2, 3 , . . . , n + 3 ) are given. 
In our considerations the following lemmas will be useful. 

Lemma 1. Let q e Cf, l im sup q(t) < 0. Let cp be the dispersion of the equation (q) . 
f-*0O 

Then there exists a number K, Ke R+ such that there holds the inequality 

<p(t)-t£K, teL 

P r o o f . Because o f l im sup q(t) < 0 then there exist numbers 6, b, —e e R +
9 b g: a 

f-*oo 

% 
such that we have q(t) ^ e for t e <Jb, oo). The function x: / - • /, x: t -* / -f- -
is the dispersion of the equation y" = ey. Us ing Sturm's Comparison Theorem we 
get (p(t) S *(t) as t e <fr, oo). Thus, for t e <Jb, oo) we have <p(t) — t S x(t) — t = 

= . Putting k = m a x (<p(t) - t) > 0, K = max ( k , • - J we come to the 

inequality (p(t) - t g K, tel which was to be proved. 

Lemma 2. Let us assume that qe C", liminf q(t) > -co, limsupq(0 < 0. For 
t~*OD t~*CO 

n > 0, let c e R+ be a number such that \ qik)(t) \ ^ c, / e I, k = 1, 2, ..., n. Let cp be 
the dispersion of the equation (q). Then there exist numbers kiy k2, 0 < kt ^ k2 

such that the inequalities 
k, S <p'(t) ^ k2, tel, (4) 

hold and the functions <pik\t), k = 2, 3 , . . . , n 4- 3 are bounded on I. 
Proof. From the assumptions liminf q(t) > — oo, lim sup q(t) < 0 it follows the 

f-»co f->oo 

existence o f such numbers b, cx, c2, b - a, 0 > ct _ c2 that for t e ( b , oo) it is 
ct £ <l(t) = Ci- F ° r su i table n u m b e r s tl9 t2, t < tt < t2 < <p(t) we h a v e <p'(t) = 

= - 4 r r (cf- PL P- 115> a n d h e n c e — = V ' ( 0 = — . * € < 6 > °°)- L ^ us write q(t2) c2 ct 

dt = max (p'(t), d2 = min<p'(0- We see from the properties of <p that d2eR*. 
<«. *> <«. *> 

The inequaltities (4) are clearly valid if we pose kt = m i n I — - L , d 2 ) , k2 = 

(c \ = max^,d1J. 
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It is known that q> satisfies the equality (cf. [1], p. 123) 

4^4(^H<o-<<>=*>, ... M 
which may be written in the equivalent form 

Let us define u: I -> R, u: t -> -?AJ. . Then w satisfies the equality 
<p'(t) 

2u'(t) - u2(t) = S(0, 5(r) - 4(cpt2(t) q o <p(0 - q(t% t e /. (5) 

From the boundedness of q on / and from the inequalities (4) we deduce also 
the boundedness of S on / i.e. | S(t) | g K, tel, Ke R+. We are going now to 
show that even the boundedness of u follows from (5). It is easy to see that at the 
extremum-points of u there is u2 = — S (u' equals zero at these points) and hence 
at these points u2 g K. If oo is a accumulation point of the extremum-points of u, 
then u must be bounded on /. Let us now admit the function u is not bounded on /. 
Then u must be decreasing or increasing for t large enough and thus lim u(t) = — oo 

f->oo 

or lim u(t) = oo. Hence lim ^ •- = -oo or oo. With respect to the inequalities (4) 
t->ao t-*ao (p(t) 

we have lim <pn(t) = — oo or lim <p"(t) = oo. But cp' > 0 on / and we obtain imme-
f-*00 t->QO 

diately lim <p"(t) = oo. This conclusion contradicts the boundedness of q>' on /. 
f-+oo 

// 
We have so the boundedness of u i.e. of--?- and with respect to (4) also the bounded-

<P' 
ness of cp" on /. Finally the boundedness of cpm on / follows from (qq) and (4). 

Let us now assume that n > 0 and <p<1> are bounded on / for j = 1, 2, ..., k + 2, 
k > 1, k = n. We shall prove that <p<*+3> is also bounded on /. The k-th derivative 
°f (^q) gives 

^г + --røт-««-^-^ Í Є / 

and this equality can be written in the form 

1 <z>(*+3)M 
2 <?>(0 

In this formula P is a fraction and its numerator consists of sums of products 
of functions q>',..., <p(*+2), q,..., # ( k ) multiplied by suitable numbers; in the deno­
minator stands a power of cp'. Thus P is bounded on / and therefore also <p(*+3) 

is bounded on /. Lemma 2 is thus proved. 
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Lemma 3. Let us assume that qe C?, liminf q(t) > -co, limsup q(t) < 0. Let 
t-*ao f-*oo 

us denote by a the first phase of the equation (q). Then there exists a constant c,ceR+ 

such that | a'(t) | ^ c is on I if and only if a constant b, beR+ exists such that b = 

= | a'(t) | is on L 

Proof. With respect to the assumptions of this Lemma it is obviously possible 
to assume without loss of generality that two numbers meR+, MeR+, m = M 
exist so that — m = q(t) £ — M on L 

Let ax be an arbitrary fixed first phase of the equation (q). Then there exists such 
a first phase ex of the equation (—1) that the relation at(f) = et o a(f) holds. Because 
of ei being a periodic function with period n and eleCf, e\ 4= 0 on /, it follows 
from the last relation that | a\ | is on J bounded from above (below) by a positive 
constant if | a' | is bounded from above (below) by a positive constant on J. Therefore, 
without loss of generality, it is possible to assume that sgn a' = 1 and that a is the 
first phase of independent solutions of (q) having the Wronskian w = — 1. In this 

case the function r: I-+ R+,r: t -+ / satisfies the equality 

V«'(0 
r»(t) = q(t)r(t) + -L-, 16/. (6) 

Let us assume there exists c e R+ such that 0 < a'(f) = c, t e I and let lim inf cc'(t) = 
f-*00 

= 0. First we are going to show that no point t0,t0el for which r(t0) =f= 
V~<l(to) 

is a accumulation point of zero points of the function r'. In the opposite case we 

have r' = r" = 0 at this point and from (6) there follows the equality r(t0) = . 
V-2('o) 

Assuming r to be increasing on It = <ti, oo) c / we get with respect to the assump-
1 2r' 

tion liminf-^— = 0 that lim r(t) = oo. From (6) we have 2r'r" = 2#rr' + — 
t-*oo r (t) t-Kx> r 

and integrating this identity between the limits tt and t (t > tt) we obtain 

By the Mean Value Theorem of the Integral Calculus (r' ^ 0 on It) a number £ = <*(t) 
exists such that 

r'*(t) - r'\h) = q(l)(r*(t) - r\h)) - f . - L . - _ L - ) . (7) 
\ r(t) r2(<i) / 
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We have — m S q(£) ^ — Af and for this reason for t -> oo the expression on the 
right hand side of (7) tends to — oo. But this conclusion contradicts the fact that the 
left hand side is bounded from below on It. If r is decreasing on It, then we have 

liminf —-— > 0 and this contradicts our assumption. 
f-oo r2(t) 

For the validity of liminf a'(t) = 0 it is thus necessary that the function r' changes 
f-*oo 

its sign on / and even on every interval of the type (Jb9 oo) c /. There exist sequences 
{sn}9 {tn}9 sn < tn9 lim sn = oo, lim tn = oo of maxima and minima respectively of 

f-*oo f-*oo 

the function r and r(sn) #= , lim — = 0. Let us assume tn are the 
V-«( sn) • -* r2(sn) 

least numbers having this properties. 
Using a procedure analogous to that of the first part of the proof of this Lemma 

it is possible to prove — integrating (6)-the existence of a sequence {rjn}9 sn < r\n < tn 

such that for every n9 n = 1, 2, 3,... the equality 

r'%) - r'\sn) - q(r,n)(r\t„) - r\stt)) - ( - J - - - J - ) 

holds. Because of r'(s„) = r'(t„) = 0 for every positive integer n, we obtain from the 
last equality 

1 

r\sn)ЛQ = -«Ы-

It follows immediately from -m ^ q(t\n) ^ — M, lim — = 0 that lim 
II-OO r\sn) ii-oo r\tn) 

= lim a'(t„) = oo holds but this contradicts the inequality a' ^ c. Thus, if | a'(f) | S c9 
«-*oo 

we must have liminf |a'(r)| > 0. Let us suppose a constant beR* exists so that 
f-*oo 

there is a'(t) ^ b on /. Assuming moreover the relation lim sup a'(f) = oo we see 
f-*oo 

immediately that r cannot be increasing on It = <tt, oo) c / because this yields a 

contradiction by lim sup a'(f) = lim sup —— < oo. If r decreases on / we must 
f-co f-oo r (t) 

necessarily have with respect to lim sup a'(t) = oo : lim r(t) = 0. Analogously to the 
f->00 f-*oo 

first part of the proof it is now possible to deduce (7) with a suitably chosen number 
Ze(ti91). From this it follows directly that the right hand side tends to — oo if t -> oo 
whenever the left hand side remains to be bounded from below. In case r is neither 
increasing nor decreasing on any interval of the type It = <ti, oo) c / we obtain 
a contradiction to our assumption lim sup a'(t) = oo by using a procedure analogous 

t-> 00 

to the foregoing part of the proof. 
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Remarks. 
1. The condition be R+, | a'(0 | ^ * on /is equivalent to the condition that each 

cos <x(i) 
solution of (q) is bounded on /. This follows directly from the fact that 

c i n /vl 11 

are independent solutions of (q) (cf. [5], Lemma 1). 
V|a'(0l 

2. From [4], p. 63 we see that the assumption limsupg(0 < 0, liminf q(t) > — oo 
f->CO f->oo 

cannot quarantee the boundedness of each solution of (q) on /. 

§2. ASYMPTOTICAL PROPERTIES OF D I S P E R S I O N S 

AND T H E I R DERIVATIVES 

Let us first prove the following 

Lemma 4. Assume that qeC° and the inequality -m ^ q(t) <; - M are fulfilled 
on I with me R+, Me R+. Let us denote by a the first phase of(q) and assume that 
| a'(0 | ^b,tel,be R+. For every X, X e R+ let us Aa be the first phase of the equa­
tion (q*). If (p denotes the dispersion of the equation (q) and q>* the dispersion of the 
equation (qA), then the following inequality 

1-Л 
X т- '•'• \<p(t)-<px{t)\< 

is satisfied. 

Proof. From qx(t) = -{Aa, t\ - A2a/2(0 it follows that qk(t) = q(t) + 
+ (1 - X2) oit2(t). With respect to the fact that the functions a, 9, <px fulfil the follow­
ing identities 

a o q>(t) = a(0 + n sgn a', 

XOL o <px(t) = Aa(0 + n sgn a', t e /, 

we obtain (a" 1 means the inverse function to a) <p(t) = a" 1 o (<x(t) + rcsgna'), 

q>x(t) = a""x o ( a(0 + - j sgn a' 1. Let us define: \I/X:I-+ R, $x'*t-± q>(t) - <px(t). 

Then \px(t) = a" l o (a(0 + n sgn a') - a" x o f a(0 + y sgn a' J. By the Mean 

Value Theorem there exists a number, I, £> = {(0 such that 

<M0 = «" v(0 ( я s S n «' - j sgn «') • 
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From the relation oT1#(0 = ~-—ZT— we obtain the inequality \\l/x(t)\£ 
a o a (0 

1 - A 71 
-—-:— -r, telwhich was to be proved. 

Theorem, assume that peCf, qeC°, liminf ?(*) > -oo, limsup ?(0 < °> 
f-*oo f->oo 

lim (q(0 - P(0) = 0. Let us denote by \j/, (p the dispersions of the equations (p), (q) 
t->oo 

respectively. If every solution of(q) is bounded on I, then 

lim(<p(0-iK0)=0. 
f-*oo 

If moreover n = 0 or n is a positive integer, p e C\, qeC", lim (q(t) - p(t))u) = 0, 
f->oo 

f = 0, 1,...,n, q has in I the (n + 1) st derivative with bounded qu\ j = 1, 2,...» 
n + 1, tel, then from the validity of the relation 

lim(<p(0-<K0)'=0 
f-*oo 

it follows also the validity of 

lim (<p(t) - «K0)(i) = 0, J = 0, 1, ..., n + 3. 
f->oo 

Proof. Without loss of generality it is possible to assume q satisfying the inequality 
—m ^ q(t) S —M on / with suitably chosen numbers m e R+, Me R+, m *z M. 
Let us choose e-t-0, ee R, e < M and denote by coe the dispersion of the equation 
(q -f- e). By Sturm's Comparison Theorem we obtain for eeR+(—ee R+) the 
inequality (p(t) < coe(t) (cp(t) > oje(t)) on /. We are going to prove that if e tends to 0 
then the system of function coe(0 uniformly tends to the function (p(t) on /. With a 
denoting the first phase of (q) we obtain from Lemma 3 and from Remark 1 the 
existence of constants b, c, be R+, c e R+, b < c such that b ^ | a'(0 \^k c, tel. 
For every X, X e R+ we denote (qx) the equation having the first phase Xcc. <pk denotes 
then the dispersion of this equation. From the proof of Lemma 4 it follows that 
qk(t) = qit) 4- (1 — A2) a'2(0- Thus, to every number e 4= 0, e < b2 there exists such 
a number X, X — X(e) that on / there hold the relations 

qx(t) - q(t) = (1 - A2) a ,2(0 = e for -e e R+ 

Qx(t) - q(t) = (1 - A2) a'2(0 = e for e e R+ 

Clearly it is A > 1 for — eeR+ and A < 1 for eeR+. Moreover the numbers 
A = X(e) can be chosen in such a manner that lim A(e) = 1 which will be assumed in 

e-+0 

the following. From Lemma 4 we obtain the following inequality 

| <pH-e)(t) - <pm(t) | = | <px(-e)(t) - <p(t) | + | cpm(t) - <p(t) | £ 

VI A(~e) 4-) \ ) b 
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From the relation lim X(e) = 1, the last inequality and the straightforward inequali-
«-*o 

ties 
<7>A(-e)(0 £ ^-e(0 < 9(0 < COe(t) £ C?He)(t)9 t € I, e 6 R +, 

we get immediately for e tending to zero the uniform convergence on J of the system 
of functions <pX(-e)(t) — <Px(8)(t) to the function which equals identically zero on /. 
The system coe(t) converges hence uniformly on I to the function q>(t) for e tending 
to zero. It follows further from lim (q(t) - p(t)) = 0 that for e e JR+, e < M there 

* - * o o 

exists ttel such that #(0 - s ^ P(0 ^ #(0 + e is valid on Ie = <te, oo). Thus on 
every interval /8 the inequalities co~e(t) ^ \}/(t) :g coe(t) are satisfied. With respect 
to the fact that the systems of functions coe(t) — co„e(t) and coe(t) converge uniformly 
on / to the function which is zero identically and to q>(t) respectively as e tends toO 
we obtain directly lim (cp(t) — \j/(t)) = 0 and the first part of the Theorem is proved. 

J-* 00 

The second part of the Theorem is proved by the mathematical induction. By 
the first part of the Theorem we have lim (<p(t) — \j/(t)) = 0 and by our assumption 

f->oo 

also lim (q>(t) - $(t))' = 0. For q>, \j/ the following identities hold (cf. [1], p. 123) 
f-»CO 

^(o+-Kт<oИ1(,)*°*м-*> 
1 <p'"(t) * / " " ' ' ^ 2 

2 <p'(t) 

2 ý'(0 4\ý'(t)) W V W ť W tel. 

From this identities it follows immediately 

i (<p'-(t) _ r(t)\, 3 //<p-(t)y iv(t)y\. ,2(t,a a(t, 

- 4>'2(t) P o Ht) = 9(0 - Pit), 16 /. (8) 

By the Mean Value Theorem there exists <J = £{t) situated between <p(t) and HO 
such that there hold the equalities 

<p'2(t) q o <p(t) - r2(t)P o HO - (q o HO + q'd) OKO - HO) <p'2(t) -
- r2(t)P o HO = (q o HO - p o HO) <P'2(0 + (<p'2(0 - H2(0)p ° HO + 

+ (<p(t)-H0)<P'2(0q'(Z). (9) 

We know from Lemma 2 that the functions <p', H are bounded on / and because 
of our assumptions p, q,q' are also bounded on / we obtain from (9) respecting the 
relations lim (q(t) - p(0) = 0, lim (<p(0 - H0)iJ} = 0 (j = 0,1) 

f->oo r-*oo 

lim (<p'2(t) q o <p(0 - H2(0P • HO) = 0 (10) 
t-»0© 
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Defining fx :/-> R> ft : t - 4<p'2(t) \l*'2(t) (q(t) - p(t) + V2(t) p oW) - <p,2(t) q o 
o <p(t)\ we have lim/i(0 = 0 and it is possible to write the identity (8) in the form 

-2<pV) y<t)(<p-(t)ro) - r(t)<p'(t)) + .wo no - <P'(Ono) (vxonoy = 
=fi(t),tel. (11) 

Putting now f2:I^H,f2:t-+- , * • • (2<p'(t) f (0 <P"(0 (* (0 - 9(0)' -

- 3<p"(0(Wt)-<p(t))'(<p'(t)r(t))' + / i (0) we have lim/2(0 = 0 and using fol-
f-*oo 

lowing identities 
? > ' - ^ V = <PX<P - W + <Pm(* - <P)\ 
<p"iif' - cp'r = ^ - <?y + <p'(<p - w , 

we obtain finally 

wo - my - 4 m - *or (>H^f - / 2 (°> ' eL (12) 

2 ?(0iK0 
Let us introduce the function 7 : / - • .R, 7 : t -• (<p(f) — ^(t))'. It is possible to 

show lim Y'(t) = 0 as follows. There is lim Y(t) = 0 (from assumptions) and from 
f-»oo f-»oo 

(12) we see that Fis a solution of the equation 

2*-y ( ta f l»V' ) ' z ' - / . . (13) 

By means of substitution y.t-* (<p'(t) n0)~3/* z(t) the equation (13) becomes 

/' + (~^(?vr2 w) ' 2 +jWHw) ; - *!• d4) 
Here Ft : t-> (<p\t)^f(t)"3,%{t) and lim Ft(t) = 0. Having performed the 

f-*oo 

transformations just described it is clear that there exists such a solution yt of the 
equation (14) that Y(t) = (<p'(t)^'(0)3/4yi(0, te/ holds and lim^(t) = 0. Let us 

f-»oo 

pose finally F: / -> Ft(t) - {~^(<P'(0 *'(0Y3 (<?'(0 ^'(0)'2 + ^(<p'(0 r(0) 

•(<P'(t)il>'(t))")yi(t) - yt(t). We have lim F(0 = 0 and 

/ f-*oo 

y1(t) - *(0 = -to, ^ / . 
Thus >̂x is a solution of the equation 

y-y-F. (15) 
93 
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and it is possible to write (here bt, b2 denote suitable constants) 

t 

.Vi(0 = *JV + b2e-* + y \(e'-> - es-')F(s)ds = 
a 

= *'6>i + y |V5F(s)ds) + e-'(b2 - y [ esF(s)dsV 
a a 

&2-He sF( s)ds 
From lim^i(0 = 0 and lim —t = 0 we obtain bt = - i J e 'F(s)ds. 

f-»oo f-*oo e a 

Hence 
00 f 

Vt{t) = - y J e-F(s)ds + M~' - -y l pF(s)ds 
f O 

and further immediately 
00 t 

/i(0 = - y J «"'*(») ds + M - b2 e-' + - £ - 1 ^(s) ds - M = 
f a 

oo f 

= - y | c"5F(s)ds - b2«"' + --Ll f ̂ (sjds. 
f a 

J<TsF(s)ds j*"F(s)ds 
The last identity and the relations lim ~ = = lim F(t) = 0, lim — = 

f-*oo e f-*oo f->oo e 

= lim F(0 = 0 imply lim y\(t) = 0. From the identity Y'(0 = -j(<Z>'(0 ^'(t))~m-

• fo'(0 nt))'yt(t) + fo W(0)3/4.vi(0 it follows lim (<p(0 - *(0Y = Um -"(0 = 0. 
f - *oo f->oo 

The latter and (12) finally give lim (9(f) - ij/(t))m = 0. 
f-+oo 

Let us assume that the equatilies lim (cp(t) — \l/(t))U) = 0 are valid for j = 0, 
f -»oo 

1,..., k, k < n 4- 3, k ^ 3. In the proof of thisTheorem we have deduced the formula 

W O - W - U<p(t) -^(oy'MWOl = 
v w ' 2 KrK' yKJ> <p'(t)rji'(t) 

2<p (0<K0 

+ v 2 ( o *,a(o w o - p(t) + * , 2(OF o m - 9,2(t) ? o <p(t)), t e /. 
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Calculating the (k — 2)nd derivative of the last equality and recpecting Lemma 2 
and assumptions of our Theorem we see that for proving the equality lim (<p(t) — 

f-*00 

— \l/(t))ik+1) = 0 it is enough to prove the validity of the relations 

lim (V\t)p o 4,(t) - <p'\t) q o cp(t))W = 0, j = 0, 1,..., k - 2. 
f-*oo 

Moreover we have 

V\t)p o Wf) - <P'2(t) q o <p(t) = r\t) (p o W) - q o <K0) + 
+ GWO + <p(t))f (<K0 - <P(0)' q o HO + <P'2(0 (q o tA(0 - ? o <K0), ' € / 

and hence, with respect to Lemma 2, to the assumptions of our Theorem and to the 
assumptions lim (<p(t) — \l/(t))a) = 0, j = 0, 1,..., k, it is sufficient to prove the 

f-*oo 

validity ot the equalities 

lim (q o ij/(t) -qo <p(t))U) = 0, j = 0, 1,..., k - 2. (16) 
f-*oo 

By assumption the function q' is bounded on I and lim (<p(t) — \l/(t)) = 0. Thus 
f-*oo 

we have lim (q o \j/(t) — qo q>(t)) = 0. Further, the following identities are valid: 
f-*oo 

(q o cp(t) - q o iKO)' = W ° (pit) - q' o *(0) ?'(0 + 
+ (<*>(')-<K'))V°<K0, teI- (17) 

(9 o <K0 - 9 o<K0)O) - ' l ( ; 7 *)(«'o<K0 - 9'o«K0)(i)«p°"i)(0 + 

+ ( ( P ( 0 - < K 0 ) V ° < K 0 ) O ~ 1 ) , ' 6 / . j = 2 , . . . , k -2 . (18) 

By the assumptions lim (<p(0 — \jj(t))lj) = 0,j = 0,1,..., k and the functions t70), 
t-»oo 

j = 0, 1,..., n + 1 are bounded on /. Thus from (17) and (18) we have ({ j : = 1 j 

lim(q ocp(t) - q o«K0)a) = lim'£ (j " l)(q' o cp(t) - q' o *(f))w cp^l\t), 
f-KX> f-*00 t = 0 \ * / 

( f = l , 2 , . . . , k - 2 ) . 
Since the functions <pU), j = 1, 2, ..., n + 3 are bounded on I (by Lemma 2 

we see from the last equalities that for proving (16) it is sufficient to prove the validit 
of the identities 

lim (q' o <p(t) - q' o tfr(f))<* = 0 , j = 0, 1, ...9k - 3. (19) 
f->oo 

Let us now observe that (19) differs from (16) in the manner that q' stands instead 
of q and subscript j changes from 0 to k - 3. Similarly to the first part of the proof 
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the identities (17) and (18) hold, where instead of q, q' We now write q', q" and j in 
(18) changes between the limits 2 and k - 3. Then it is easy to prove that 
lim (qf o q>(t) - q' o ij/(t)) = 0. Proceeding in this manner we come, having performed 
t-+oo 

a finite number of steps, to the remaining equality lim(#<*-2)
o<p(0 — #(*~2)o^(0) = 

t-*oo 

= 0. This last equality can be deduced immediately from the Mean Value 
Theorem, from the boundedness of qih~l) and from the validity of lim (<p(t) -

- WO) - 0. 

Remark. Some conditions sufficient for lim(<p(0 — *K0)' = 0 are derived in the 
t-*oo 

papers [2], [3]. 

Corollary. Let i be a positive integer and \l/i9<Pi the central dispersions of the first 
kind with the index i of the equations (p), (q) respectively. 

If the assumptions of the first part of our Theorem are satisfied, then 

lim ((f>i(t) - xl/t(tj) = 0. 
t-*oo 

If the assumptions of the second part of our Theorem are satisfied, then from the 
validity of the relation 

Km(q>{t)-M0y=0 
t->oo 

follows also the validity of 

lim (^(t) - ^ ( 0 ) u ) = 0 , j = 0, 1,..., n + 3. (20) 
t-*oo 

Proof. By the first part of the Theorem (cpx = <p, \l/x = ^)lim(^1(0 - *h(0) = 0. 
t-»oo 

If lim (q>i(t) - \l/i(t)) = 0 for i = k, k ^ 1, then by the known formulas (cf. [1], 
t->oo 

p. 105) q>i(t) = <p o ... o q>(t), \l/i(t) = \j/ o ... o \j/(t) we get immediately <pk+1(t) -
i i 

- ^fc+i(t) = <P o q>k(t) ~ \// o \l/k(t) =(<po ^ ( 0 - q> o \f/k(t)) + (q>o cpk(t) -
- ^ o \j/k(t)) = q>'(rj) (<pk(t) - \l/k(t)) + («po \//k(t) - | | r o i//k(t)) where rj lies between 
<pk(t) and \//k(t). From Lemma 2 and from lim (cpk(t) - \//k(t)) = 0 we obtain then 

t-*oo 

lim (<pk+1(t) - ^*+i(0) = 0. The first part of the Corollary is proved. 
t-*oo 

Let the assumptions of the second part of the Theorem be satisfied. By the first 
part of the Corollary the equalities (20) are valid for j = 0, 1 = 1, 2, 3, . . . . Let us 
suppose these equalities are true also for J = 0, 1, ..., k, 0 ^ k < n 4- 3, / = 1, 
2, 3, . . . . We are going to prove that under these assumptions the equalities (20) 
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are valid also fory = k + 1, i = 1, 2, 3 , . . . . From the Theorem there follows the 
relation 

Um(<K0-iK0)(*+1) = O. 
t->oo 

Let us assume that lim (cpt(t) - ^*(0)(k+1) = 0 holds for i = 1, 2,.. . , s, s ^ L 

From the following chain of identities 

fo+i(0 - *,+i(0) (*+1) = (<p*<P,(t) - ^o^ s(0f+ 1 ) = 

= W O q>' o <p,(t) - WO V o WO)'* = 

= i (5)(̂ +1~j)(0(«p'°<?»,(o)a) - * ( t + l - w ° won= 

= io (*)(?'<> w o r w o - w o r W) + 

+ io ( J ) * ? + w w ° wo - *'° wor 
it can be deduced that for proving lim (<ps+i(0 — !r/s+i(0((k+1) = 0 it is sufficient 

r-*oo 

to prove 
lim (<p' o cps(t) - r o W 0 ) a ) = 0 , j = 0 ,1 , . . . , k. (21) 
t-»oo 

From the relations 

<?' o (ps(t) - W o HO = (V ° WO - V o <p,(t)) + (*' ° WO - ^' o WO) = 

= (y ° wo - <A' o vM + r(o (wo - wo), 
(with £ between <j». and i/O we see at once that (21) holds forj = 0. We have further 
0 > 0 ) 

(cp' o q>,(t) - y o Ht))(J) = (W0 <p" o <ps(t) - Mt) V o w o ) 0 " 1 ' = 

-% C 7*) (<?" • wor wo - wor°+ 

1 ! C"*0 ̂ "')(0 (<p" ° < p > ( °" f ' ° w o ) ( , ) ' 
H1 

+ 

With respect to the assumptions of the induction and to Lemma 2 it is sufficient 
for proving (21) to verify the equalities 

lim (q>" o q>s(t) - r o U0)U) = 0 , j = 0 ,1 , . . . , k - 1. (22) 
-•oo 

We see that the form of the equalities (22) can be obtained formally from the 
equalities (21) where instead of (p'W) there is <p"(r) anc* -n (22)j = 0, 1,..., k — 1. 
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Thus we see that performing a procedure analogous to that before we reduce our 
problem (analogous to the proof of our Theorem) to the proof of the validity of 

l i m ( ^ + 1 > o ^ ( 0 - ^ + 1 ) o W 0 ) = 0. 
t-*oo 

But this proof is straightforward by using the assumptions of induction, Lemma 2, 
the boundedness of the function 0<"+1> on Zand the equality 

/ + I , ^ 1 ( 0 - f + 1 ) = W') = 
= ( y t + i ) ° <P,(t) - vik+i)o ut))+(y*+l)° w o -<A (*+1)° ut)) = 

- ( / + 1 ) " W 0 - * ( J + 1 , .W0) + <plk+2)(n)(<pM - Ut)) 
where r\ is situated between (ps(t) and ij/s(t). 
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