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ASYMPTOTIC BEHAVIOUR OF THE SYSTEM
OF TWO DIFFERENTIAL EQUATIONS

JOSEF KALAS, Brno
(Received August 26, 1974)

This paper deals with asymptotic properties of solutions of a system
X =PX,Y,1),
Y = Q(X, Y9 t))

4
de ’

(M

The special case of this system was studied in [2]. There C. Kulig generalized
Butlewski’s theorem [3], [4] about trajectories of a system
R = R(p)?%,
(R*g) = A1) R,
which can be transformed into a system of the form
X =a(t) - X* + Y2,
Y = B(t) — 2XY
by the substitution
X = RR™!, Y = ¢.
In the paper [1], there is shown the advantage of transferring the considered system ‘
into the equation with complex-valued coefficients
z = u(t) — 2%,
where z = X + iY, u(t) = a(t) + if(t). A similar method is used in the present paper.
If we define
h(z,t) = P(X, Y,t) + iQ(X, Y, 1),
where z = X + iY we can replace (1) by
@ z = h(z, 1).
We can easily see that z = z(¢) is a solution of (2) if and only if z(¢t) = X(¢) + iY(?)
where X = X(t), Y = Y(¢) is a solution of (1). The most part of considerations and

formulations of results becomes essentially simpler if we investigate (2) instead of (1).
Then it is suitable to give results in the complex form.
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Let 7 denote an open interval (£, ), —00 < ¢, < o and let Q signify a domain
in the complex plane. It will be always assumed that A(z, ¢) is a continuous on Q x |
complex-valued function. The description of the asymptotic behaviour of the
trajectories of (2) in a neighbourhood of & € Q is the main object of this paper. The
equation (2) can be written in a form

3) =G ),

where G(z, t) = 0Ois a continuous on  x I real-valued function and g(z, t) is a continu-
ous on Q x I complex-valued function. (We may take, e.g., G(z, 1) = 1 and g(z, t) =
= h(z, t)). If the function g(z, t) is in a certain meaning “close’ to the (continuous)
function of a form (z — b) f(z) we shall show that on suitable assumptions the
asymptotic behaviour of the trajectories of (3) depends substantially only on the real
part of f(z). The main means of investigation are Lyapunov functions.

Complex numbers and functions are denoted by small Roman characters (except
t, s), real numbers and functions by capital Roman and small Creek characters
(except I, K). d signifies the complex conjugate number of d, Re d and Im d the real
and imaginary parts of d, | d| the absolute value of d.

We shall put

Ke={z:|z-b| < C},
Kep={z2C<|z-b|<D}.

If I is a set, I' will denote the closure of I', [" the boundary of I.

Let Q° bz an open subset of @x 1. A point (z,,t,)e(@x 1) Q° is called an
egress point of Q°, with respect to the equation (2), if for every solution z = z(¢)
of (2), satisfying the initial condition z(¢,) = z,, there is an ¢ > 0 such that (z(¢), t) €
eQ° for t; — ¢ £t < t,. The set of all egress points of 2° will be denoted by Q.

Let I'y be a topological space and I', = I';. A continuous mapping of I'; onto I',
is called a retraction of I'; onto r , if the restriction of this mapping to I', is the
identity. If there exists a retraction of I'y onto I',, I', is called a retract of I',.

The real-valued function U(z, t) defined on Q x I is said to be of class C! if it has
continuous partial derivatives with respect to ¢ and the real and imaginary parts of z.

The real-valued function U(z, t) defined on an open subset of Q x Iis said to possess
a trajectory derivative U(z, t) at the point (z,, t,;) along the solution z = z(¢) of (2),
z(t)) = z, if U(z(t), t) has a derivative at ¢ = ¢t,; in this case

Uzy, t,) = [UG®1), D=y,
This trajectory derivative -exists if U(z, t) is of class C'; there holds

oU(z,t)  6U(z,1)

oU(z, 1)
at JdRez

Uz, t) =
(1) J0lmz

Re h(z, t) + Im h(z, 1).
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An open subset Q° of Qx I will be called a (U, V)-subset of Qx I with respect
to (2) if there exists a number of real-valued continuous functions

Uiz, t), ..., Uz, t), Vi(z, 1), ..., Vul(z, 1),
on Q x I such that

Q° ={(z,1): Uy(z,t) <0 for N=1,2,..,L
and Va(z, t) <0 for N=12,..., M}

and if %,, ¥'5 are the sets

Uy, = {(z,1): Uz, t) = 0, Uy(z,t) £ 0 for N=1,2,...,L
and  Vyzt)sO0 for N=1,2, ..., M},

Vi ={(z1):Vyz,t) =0,Up(z,t) £0 for N=1,2,...,L
and Va(z, ) £ 0 for N=12,..., M},

then the trajectory derivatives U,, V, exist on %,, ¥, and satisfy

Uf(z,t) >0 for (z,t)e4,,
Ve(z,1) <0  for (z,t)e ¥,

respectively, along all solutions through (z, ¢). In this definition, either L or M can
be zero.

Lemma 1 (Wazewski). (i) Let Q° be a (U, V)-subset of Qx1I with respect to (2).
Then

o _ L M .
Qe— U%a_U'//lﬂ’
a=1 =1

(ii) Let Q° be a (U, V)-subset of Qx I with respect to (2). Let £ be a nonempty
subset of Q° L Q0 satisfying the condition that 5 n Q0 is not a retract of Z but is
a retract of Q0. Let us assume that E is compact and let U,(z, t), Vy(z, t) be of class C'.
Then there exists a point (z,,t,) € E n Q° and a solution z = z(t) of (2), z(t,) = z,
such that (z(t), t) € Q° for all t from the right maximal interval of existence.

For a proof, the reader is referred to [5].

Now, we shall bring two assertions the analogies of which can be found, e.g.,
in [6], [7].

Let functions W(¢), C(t) be defined on an interval [, f] and let C(¢) be continuous
on [a, f].

Lemma 2. Let C(t) have left and right derivatives in each point of («, B). Then the
set of all points t* € (¢, B) satisfying C_(t*) < C,(t*) is at most countable.
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Lemma 3. If C(t) = W(t) on [, B] except on at most countable subset of (% B] and
Ji W(t) is (Lebesgue) integrable, then

B

J W(t)dt = C(B) — C(a).

Theorem 1. Let ¢ > 0, K = K, = Q and let there exist a §, 0 £ 6 < & a time
T > ty and a function f(z) such that

1° (z — b) f(2) is continuous on K;

2° Re f(z) £ 0 for any z€ K ,;

3° there holds
@ |z—-0]|gzn~@-b)f@)]| =8 |Ref(D)]
for all zeK; ,and all t = T;

4° a trajectory z = z(t) of (3) satisfies at t = t, = T the inequality
) : | z(t,) — b| < e

Then
© 7 |2(t) - b| < max (5, | (¢,) - b))
forallt = ¢t,.

If, moreover,

5° Re f(z) < 0 for any z€ K ,;
6° there exists a continuous on K function F(z) such that

G(z,t) = F(z) > 0
for all zeK; ,and all t 2 T,

then to each €, 6 < g, < & there exists a time t, 2= t, so that
% |2) = b| <,
forallt >t,.
Proof. Let us define
d(z,t) = g(z,t) — (z = b) f(2)

and
V) =|z-b|%
The equations ¥V(z) = C represent a family of circles the centres of which are
in the point b. Each point z(t) of the trajectory z = z(t) belongs to a circle with

a parameter C(t) = V(z(1)).
Differentiation yields

C()=2Re[(z — b)3].
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By substituting from (3) we get
C(t) = 2G(z, 1) Re [(z — b) g(z, 1)].

Now, we shall prove the first part of the theorem. Let conditions 1°, 2°, 3°, 4° be
satisfied. If t = T and z(t) € K ., then

C(t) = 2G(z, ) Re [(z — b) ((z = b) f(z) + d(z,1))] <
S 2G(z ) (C(t)Re f(2) + |z — b ]| | d(z, 1) ).

Using (4) and Re f(z) £ 0 we get
(8) C(t) £ 2G(z, t) Re f(2) (C(t) — &%)

It is seen that C(¢) £ 0 if t = ¢, and 6% < C(t) < &% The function C(¢) is non-

increasing in each such a time.
If | z(t)) — b| > &, then C(t) £ C(t)) for ¢ = t;. Thus the trajectory z = z(r)

satisfies the inequality
|z() = b| = |2(t,) — b
forall t 2 ¢,.
If | z(t,) — b| £ 6, then
|z(t) —b| <6
for all ¢+ = ¢, because contrariwise we get a contradiction to the previous assertion.

This completes the proof of the first part of the theorem.
Now, we shall prove the second part. Let conditions 1° up to 6° be satisfied. Let

£, 0 < g < ¢ be given arbitrary.
If | z(t;) — b| < &, then we have
|z(t) — b| < max (5, | z(t) — b)) < &

for all + = ¢; and we may take t, = ¢,.
Let | z(t;) — b| = &. It holds:

|z(t) — b| = | z(t,) — b

forallz Z t,. There exist constants L > 0, M < Osothat F(z) = Land Re f(z2) s M
for all ze K,, 1,(,)-b1-
Using (8) we get
C(t) < 2ML(E} — 6%) < 0
as long as t 2 t, and C(t) = 2. Thus there exists a time 1, > t, so that C(f2) < &2
Clearly,
|2() — b| < max (8, | z(t2) = b ) <&,
for all t = ¢,.
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Theorem 2. Let ¢ > 0, K = K, = Q and let there exist a function f(z) such that

1° (z — b) f(2) is continuous on K;

2° Ref(z) < O for all ze K;

3° (z — b) g(z, t) » (z — b)* f(2) uniformly on K as t - oo;
4° there exists a continuous on K, function F(z) so that

Gz, 2z F2) 20

on K,x I and F(z) # 0 on the set K, ,.
If there exists a sequence of real numbers {ty}, N = 1,2, ..., where ty - 0, as

N — oo, such that a trajectory z = z(t) of (3) satisfies

©) "z - bl<e
for N=1,2,..,
then

lim z(t) = b.

t— o

Proof. Let the assumptions of the theorem be satisfied. Let ¢;, 0 < &; < ¢ be
an arbitrarily given number. Putting = ¢,;/2 we can observe that there exists
a time T > t, such that

| (z — b)g(z, t) — (z — b)* f(z)| < & mi;l | Re f(2) |

for all t > T and all ze K.
Thus we have

|z=b] |20 - (= b)) < 6*| Ref(2) |
forall zeKand all t > T.
From Theorem 1 it can be seen that there exists a time ¢* 2 T such that

|z(t) — b| < &
for all ¢t = t*,
Hence we get
lim z(t) = b.

t— o0
Theorem 3. Let ¢ > 0, K = K, = Q and let there exist a 5, 0 < § < ¢, a time
T > t, and a function f(z) such that

1° (z — b) f(2) is continuous on K;

2° Ref(z) 2 0 for any z€ K; ,;

3° there holds (4) for all ze K; , and all t 2 T,

4° a trajectory z = z(t) of (3) satisfies at t = t; 2 T the condition

1o d<|zty) —b| <e
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Then
lz(t)—-b| > lz(tl) —b|

for all t = t, for which the solution z = z(t) exists.
If, moreover,

5° Re f(z) > O for any ze K, .;
6° there exists a continuous on K function F(z) such that
G(z,t) = F(z) > 0
forall ze K, , and all t 2 T,
then to any given ¢;, 0 < &, < &, there exists a time t, 2 t, such that

|z(t) — b| > &
for all t = t, for which the solution z = z(t) exists.
Proof. The proof is similar to that of Theorem 1.

Theorem 4. Let § > 0, K, = Q, K = K; and let there exist a function f(z) so that
1° (z — b) f(2) is continuous on K,

2° Ref(z) > 0 on K;

3° there exists a time T > t, such that

G(z,t) >0
and

|g(z, ) — (z — b) f(2) | < 6 Re f(2)
forall ze Kandt 2 T.
Then, for every t, > T, there exists a trajectory z = z(t) of (3) so that
|2(t) = b| < 6
forallt =z t,.
Proof. Let us denote
d(z,t) = g(z, t) — (z — b) f(2)>
Uiz, t)=|z-b|* - 8%
Vi, t) =T —t,
@ ={z1):|z-b|<st>Th

U ={zt)|z-bl=581t2T}
and

vV ={@1):|z-b|<81=Th
We can see that

U(z, 1) = 2G (z, 1) Re [(z — b) g(# )]
on the set %.

Similarly as in the proof of Theorem 1 we get

Uz, ) 2 2G(z,1) |z — b|*Re f(2) — | z - b| | d(z, 1) D.
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Using assumptions 2°, 3° we can see that
Ulz, 1) =z 2G(z,1) 8(6 Re f(z) — | d(z, 1) |) > O

on the set #.

Clearly

Viz,t) = —=1 <0

on the set ¥ .

Thus Q° is a (U, V)-subset of Q x I with respect to (3).

Using the first part of Lemma 1 we see that the set of all egress points of Q° is

Q) ={G1):|z-b|=61t>T}
Let ¢,/ > T be arbitrary and let us denote
E={:|z-b|s61t=1)}

The set
EnQ={z1n:|z-b|=61=1)

is a retract of Q%, as it can be seen by choosing the retraction (z, t) + (z, t,).

Z QY is not a retract of Z. For if there exists a retraction w: = — = n Q9 then
there exists a continuous map of Z into itself, e.g. —w, without fixed points, which is,
by the fixed point theorem of Brouwer, impossible.

Using Lemma 1 we can see that there exists a trajectory z = z(t) of (3) such that

|z(t)—b| <
for all t = ¢,.

Theorem 5. Let ¢ > 0, K = K, < Q. Let there exist a function f(Z) so that conditions
1°, 3°, 4° of Theorem 2 are fulfilled and Re f(z) > O for all z € K. Then there exists
a trajectory z = z(t) of (3) such that

lim z(¢) = b.

t—

Proof. There exists a time #; > ¢, such that
lz—b]ig(z1)—(z-b)f(2)] <
forallt = ¢; and ze K.
Hence 8. 1) = (2 = B | < > Ref()

for all ze K;j2 and all ¢ > ¢,.
Let ¢, > t1. By Theorem 4 there exists a trajectory z = z(¢) of (3) so that

82
——min Re f(2)
4 zeK

(1) ' |2(t) - bl < =

for all t = £2-
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Let ¢;, 0 < g; < ¢ be arbitrary. Putting & = ¢,/2 we can see that there exists a time
ty = t, such that
|z - 5| |g(z 1) — (z — b)f(z)) | < 6* min Re f(2)
zeK
forall t = ¢t and ze K.
Suppose that.

d<|z(r*)—b|<e
for a time t* = t,.

By Theorem 3 there exists a time ¢, = t* so that

&
ty) — -
| z(ts) — b] > 7
This gives a contradiction. Thus

|z() —b| £ 6 < ¢

for all # = ¢; and the theorem is proved.

Theorem 6. Let ¢ > 0, K = K, = Q and let there exist a function f(z) so that
1° (z — b) f(2) is continuous on K;
2° there exist numbers L, M such that
0<M<|Ref()|SL
for any z € K;
3° there exist constants M, M, so that

0< M, £G(z,t) S M,
on the set Kx I,

4° there exists a time t; > t, and a continuous function D(t) such that

@

jD(t)dz < ®©
t
and

|g(z,0) — (z = b) (2| < D)
forallzeKand all t 2 t,.
If z = z(t) is a trajectory of (3) such that

|z() - b| <e
for all t = t,, then
limz(t) = b
1=

and

J.lz(t)——b|dt<oo.
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Proof. Let us define
d(z,t) = g(z,t) — (z = b) f(2)
and
Viz)=|z-b].

The equations V(z) = C represent a family of circles the centres of which are in the
point b. Each point z(t) of the trajectory z = z(t) belongs to the circle with a para-
meter (radius) C(z) = V[z(t)] < e.
There holds
N (0))
C(t) = 300)
as far as ¢t = t; and z(t) # b.
From the proof of Theorem 1 it follows that

(CX1)) = 2G(z,t)(| z — b|* Re f(z) + Re [(z — b) d(z, 1))

forall t > ¢,. f
Thus the function C(¢) is continuous in any time ¢ = ¢,, z(t) # b and there holds

C(1) = G(z, t)(C(t) Re f(z) + X8 [(T - _‘_’)bdl(z, 0] )

Now, we get

| C(#) — G(z, 1) C(t) Re f(z) | < M,D(1)

and
| C(1)]| £ My(LC@) + | d(z, D) |)

as far as ¢t = ¢, and z(t) # b.

Let t* > ¢, be such a time that z(t*) = b. A simple calculation shows that the right
derivative
C(t*) = G(b, 1) | g(b, 1) |
and the left derivative
C_(t*) = —G(b, t*) | g, t*) [

Therefore the derivative C(¢*) exists if and only if g(b, t*) = 0. One can see that
in this case C(t*) = 0.
Let us define

I PRt et
The function W(t) satisfies estimates

(13) | W(t) = G(z,1) C(t) Re f(z) | £ M,D(1),

(14) | W(t)| £ My(LC(t) + | d(z, 1) ).
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Observe that W(t) is continuous in any time t = t,, z(t) # b and in any time

t* 2 t;, z(t*) = b in which the derivative C(t*) exists. The second argument follows
from (14).

Let te(t,, ). From Lemma 2 it follows that the set of all points of the dis-
continuity of W(s) in (, t) is at most countable. Using (14) we can see that W(s)

is bounded on a closed interval [¢,, t]. Thus the function W(s) is integrable over [t,, t].
From Lemma 3 it follows

t

(15) j W(s)ds = C(t) — C(1,).

Now, we shall only continue the proof for the case
—L<Ref(z) £ -M<0
because the proof of the case’

0<M<Refi2) <L
is very similar. '

Using (13) and (14) we obtain

(16) —M,(LC(t) + D(t)) = W(t) = —M,MC(t) + M,D(t)
and
17 | W(t)| = M(LC(t) + D(1)).

Let us integrate these inequalities over [fy, ?] and let us suppose that

o]

(18) JC(t)dt - .

t

From the integrated inequalities (16) it can be seen that

t

lim f W(s)ds = —oo.

t— o
31

Hence
lim C(t) = —o0
t—+

and we get a contradiction.

Therefore
(19) J C(t)dt < co.

31
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From the integrated inequality (17) we have

o

jlW(s)lds<oo.

Thus

o

J W(t)dt

converges and there exists a finite limit

lim C(t) = 0.
t—
Therefore we have
lim z(t) = b
t—

and

le(t)—bldt<oo.

The theorem is proved.
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