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ASYMPTOTIC BEHAVIOUR OF THE SYSTEM 
OF TWO DIFFERENTIAL EQUATIONS 

JOSEF KALAS, Brno 
(Received August 26, 1974) 

This paper deals with asymptotic properties of solutions of a system 

* = P(X, r, t\ 
( 1 ) t = Q(X, Y, 0, 

. __d_ 
"~ dt ' 

The special case of this system was studied in [2]. There C. Kulig generalized 
Butlewski's theorem [3], [4] about trajectories of a system 

R = R(y)2, 
(R2<py = A(t)R2, 

which can be transformed into a system of the form 

.t = a(r) - X2 + Y2, 
Y = p(t) - 2XY 

by the substitution 
X = ivP_1, r = 9 ? . 

In the paper [1], there is shown the advantage of transferring the considered system 
into the equation with complex-valued coefficients 

z = u(t) - z2, 

where z = X + iY, u(t) = oc(t) + W(t). A similar method is used in the present paper. 
If we define 

h(z, 0 = P(X, Y, t) + iQ(X, Y, 0, 

where z = X + iY we can replace (1) by 

(2) z = h(z, 0-

We can easily see that z = z(t) is a solution of (2) if and only if z(t) = X(t) + iY(t) 
where X = X(t), Y = 7(0 is a solution of (1). The most part of considerations and 
formulations of results becomes essentially simpler if we investigate (2) instead of (1). 
Then it is suitable to give results in the complex form. 
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Let I denote an open interval (t0, oo), — oo ^ t0 < oo and let Q signify a domain 
in the complex plane. It will be always assumed that h(Z, t) is a continuous on Q x I 
complex-valued function. The description of the asymptotic behaviour of the 
trajectories of (2) in a neighbourhood of b e Q is the main object of this paper. The 
equation (2) can be written in a form 

(3) Z = G(z9t)g(z9t)9 

where G(Z, t) _ 0 is a continuous on Q x I real-valued function and g(z91) is a continu­
ous on Q x I complex-valued function. (We may take, e.g., G(Z, t) = 1 and g(z91) = 
= h(Z, t)). If the function g(z91) is in a certain meaning "close" to the (continuous) 
function of a form (Z — b)f(z) we shall show that on suitable assumptions the 
asymptotic behaviour of the trajectories of (3) depends substantially only on the real 
part of f(Z). The main means of investigation are Lyapunov functions. 

Complex numbers and functions are denoted by small Roman characters (except 
t9 s), real numbers and functions by capital Roman and small Creek characters 
(except I, K). d signifies the complex conjugate number of d, Re d and Im d the real 
and imaginary parts of d, | d | the absolute value of d. 

We shall put 

Kc = {Z: | Z - b | < C}, 

Kc>D = {Z :C< | Z - b | < D } . 

If F is a set, f will denote the closure of F, F the boundary of F. 
Let Q° bz an open subset of Qxl. A point (zl9 tx)e(Qx I) n Q° is called an 

egress point of 0° , with respect to the equation (2), if for every solution Z = z(t) 
of (2), satisfying the initial condition z(t{) = Zt, there is an e > 0 such that (z(t)91) e 
eQ° for ti — e < t < tt. The set of all egress points of 0° will be denoted by Q°e. 

Let F! be a topological space and F2 c Ft. A continuous mapping of Fx onto F2 

is called a retraction of Ft onto F2 if the restriction of this mapping to F2 is the 
identity. If there exists a retraction of Fx onto F2, F2 is called a retract of Fx. 

The real-valued function U(z91) defined on Qxl is said to be of class C1 if it has 
continuous partial derivatives with respect to t and the real and imaginary parts of Z. 

The real-valued function U(z91) defined on an open subset of Q x I is said to possess 
a trajectory derivative 0(z91) at the point (zi9 tt) along the solution Z = Z(t) of (2), 
z(tx) = zt if U(z(t)91) haS a derivative at t = tx\ in this case 

tI(zl9tx)^[U(z(t)9t%=h. 

This trajectory derivative exists if U(z91) is of class C1; there holds 

rV/ N 8U(z9t) 6U(z9t) n f / x dU(z9l) , x 
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An open subset Q° of Qxl will be called a (U, V)-subset of Ox I with respect 
to (2) if there exists a number of real-valued continuous functions 

Ux(z, t),..., UL(z, t)9 Vt(z,1), ..., VM(z, t), 

on Qxl such that 

Q° = {(z, 0 : UN(z, t) < 0 for N=l,2, . . . ,L 

and VN(z, t) < 0 for N=l,2, ...,M) 

and if %a, rp are the sets 

Wa = {(z, t): Ua(z, t) = 0, UN(z91) = 0 for N = 1, 2, ..., L 

and KN(z, 0 = 0 for N = 1, 2, ..., M), 

rp = {(z, t): Vp(z, t) = 0, UN(z, 0 ^ 0 for N = 1, 2, ..., L 

and VN(z,0^0 for N = 1, 2, ..., M}, 

then the trajectory derivatives (fa, Vp exist on Wa, rfi and satisfy 

tfa(z,t)> 0 for (z,t)e®a, 

Vp(z,t)<0 for ( z , 0 e f ^ , 

respectively, along all solutions through (z, t). In this definition, either L or M can 
be zero. 

Lemma 1 (Waiewski). (i) Lef 0° be a (U, V)-subset of Qxl with respect to (2). 
Then 

L M 

ê°= U^«- I M * ; 

(ii) Lef Q° be a (U, V)-subset of Qxl with respect to (2). Let E be a nonempty 
subset of Q° u Qe satisfying the condition that E n Q°e is not a retract ofE but is 
a retract ofQ°e. Let us assume that E is compact and let Ua(z, t), V0(z, t) be of class C1. 
Then there exists a point (zx, t^e E n Q° and a solution z = z(t) of (2), z(tt) = zx 

such that (z(t), t) e Q° for all t from the right maximal interval of existence. 

For a proof, the reader is referred to [5], 
Now, we shall bring two assertions the analogies of which can be found, e.g., 

in [6], [7]. 
Let functions W(t), C(t) be defined on an interval [a, /?] and let C(t) be continuous 

on [a, p\. 

Lemma 2. Let C(t) have left and right derivatives in each point of (a, p). Then the 
set of all points t* e (a, /?) satisfying C-(t*) < C+(t*) is at most countable. 
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Lemma 3. If C(t) = W(t) on [a, p] except on at most countable subset of [a> #] and 
fi W(t) is (Lebesgue) integrable, then 

lw(t)4t = C(ft)-C(a). 
a 

Theorem 1. Let e > 0, K = K8 c Q and let there exist a <5, 0 = 5 < ^ a time 
T > t0 and a function f(z) such that 

1° (z — b)f(z) is continuous on K; 
2° Ref(z) = 0f0ra^ZGK5 ,g; 
3° there holds 

(4) \z - b | | g(z, 0 - (z - b)f(z) | = <52 | Ref(z) | 

for all z e Kbt and all t = T; 
4° a trajectory z = z(t) of (3) satisfies at t = t± = T the inequality 

(5) | z(h) -b\<e. 

Then 

(6) ' | z(t) - b | = max (<5, | z(f t) - b\) 

for all t = tx. 
If moreover, 

5° Ref(z)<OforanyzeKs,e; 
6° there exists a continuous on K function F(z) such that 

G(z, 0 = F(z) > 0 
for all ZEK^B and all t = T, 

then to each et, 5 < ei < e there exists a time t2 = tl so that 

(7) | * (o -M<«i_ 
f0r a// / = /2. 

Proof. Let us define 

d(z,0 = * ( * ,0 - ( * -&) / ( * ) 
and 

V{z) = | z - b \\ 

The equations V(z) = C represent a family of circles the centres of which are 
in the point b. Each point z(t) of the trajectory z = z(t) belongs to a circle with 
a parameter C(t) = V(z(r)). 

Differentiation yields 
C(0 = 2Re[(^T)i]. 
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By substituting from (3) we get 

C(t) = 2Q(z,t)Re[(z - b)g(z,t)]. 

Now, we shall prove the first part of the theorem. Let conditions 1°, 2°, 3°, 4° be 
satisfied. If t = T and z(t) eKde9 then 

C(t) = 2G(z, /) Re [(7~b) ((z - b)f(z) + d(z91))] = 

= 2G(z, 0 (C(t) Ref(z) + \z-b\\d(z,t) \). 

Using (4) and Ref(z) ^ 0 we get 

(8) C(t) = 2G(z, t) Ref(z) (C(t) - S2). 

It is seen that C(t) S 0 if t = tt and <52 < C(t) < s2. The function C(t) is non-
increasing in each such a time. 

If | z(tx) - b | > <5, then C(t) g C(/j) for ^ ^ Thus the trajectory z = z(t) 
satisfies the inequality 

| z(0 - b I = I zfr) - b | 
for all t^tx. 

If | z(tt) - b | = <5, then 
| z(0 - * | ^ « 

for all t = tx because contrariwise we get a contradiction to the previous assertion. 
This completes the proof of the first part of the theorem. 

Now, we shall prove the second part. Let conditions 1° up to 6° be satisfied. Let 
sl9 5 < St < e be given arbitrary. 

If | z(tt) — b | < el9 then we have 

| z(0 - b | <; max (3, | z(tt) - b\) <e1 

for all t = tt and we may take t2 = / i . 
Let | z(/i) - b | = ex. It holds: 

| * ( 0 - f t ' | - S | * ( ' i ) - & | 

for all / = / i . There exist constants L > 0, M < 0 so that F(z) = L and Ref(-0 _J M 
for all zGK£l>l2(fl)_M. 

Using (8) we get 
C(t) ^ 2ML(z\ - b2) < 0 

as long as / = /x and C(t) = e2. Thus there exists a time t2 = /i so that C(/2) < e,. 
Clearly, 

I *(0 - A | _5 max (5, | z(t2) - b |) < si 

forallr = r2. 
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Theorem 2. Let e > 0, K = KB c Q and let there exist a function f(z) such that 

1° (z — b)f(z) is continuous on K; 
2° Ref(z) < 0 for all zeK; 
3° (z — b)g(z, /) -> (z — b)2f(z) uniformly on K as t -> oo; 
4° /her*? exists a continuous on KB function F(z) so that 

G(z, t) = F(z) = 0 

on Kexl and F(z) ^ 0 on the set K0 E. 
If there exists a sequence of real numbers {tN}9 N = 1,2,..., where tN -» oo, as 

N -+ oo, such that a trajectory z = z(t) of (3) satisfies 

(9) ' | *(/*) - b | < e 

f0rN= 1,2,...,. 
then 

lim z(/) = b. 
r-*oo 

Proof. Let the assumptions of the theorem be satisfied. Let el9 0 < e{ < e be 
an arbitrarily given number. Putting 8 = eJ2 we can observe that there exists 
a time T > t0 such that 

| (z - b)g(z9 t) - (z - b)2f(z) I < <52 min | Ref(z) | 
zeK 

for ail / = T and all z e £ 
Thus we have 

| z - b | | g(z, /) - (z - b)f(z) I S S2 | Ref(z) | 

for all z e K and ail / = T. 

From Theorem 1 it can be seen that there exists a time /* = T such that 

| z(/) - b | < ex 

for all / = /*. 
Hence we get 

lim z(t) = b. 
r-»oo 

Theorem 3. Let e > 09 K = Ke a Q and let there exist a 89 0 S* 5 < e9 a time 
T > t0 and a function f(z) such that 

1° (z — b)f(z) is continuous on K; 
2° Ref(z) = 0 for any z e Kde; 
3° there holds (4) for all zekd>e and all t = T; 
4° a trajectory z = z(t) of (3) satisfies at t = /x = F /he condition 

(10) <5 < | z(/A) - b | < e. 
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Then 
I z(t) - l> | = I z(tt) - b I 

for all t = tx for which the solution z = z(t) exists. 
If moreover, 
5° Ref(z) > 0 for any z e KdfE; 
6° there exists a continuous on K function F(z) such that 

G(z, t) = F(z) > 0 
for all zeK5tZ and all t = T, 
then to any given ei, 0 < ex < e, there exists a time t2 = tt such that 

| z(t) -b\> e, 

for all t = t2 for which the solution z = z(t) exists. 

Proof. The proof is similar to that of Theorem 1. 

Theorem 4. Let 5 > 0, Kb a Q, K = Kd and let there exist a function f(z) so that 
1° (z — b)f(z) is continuous on K; 
2° Ref(z) > 0 on K; 
3° lhere exists a time T > t0 such that 

G(z, 0 > 0 
and 

| g(z, t)-(z~ b)f(z) I < S Re f(z) 

for all zeK and t = T 
Then, for every tx > T, there exists a trajectory z = z(t) 0f(3) so that 

I z(t) -b\<6 
for all / ^ t!. 

Proof. Let us denote 
d(z, /) = g(z, t)-(z- b)f(z), 
U(z, t) = | z - b |2 - 5\ 
V(z, t) = T - /, 

Q° = {(z, t):\z - b\<5,t> T}, 
% = {(z, /): j z - b 11 -» 5, t k T} 

and 
f = {(z, /): | z - b j = 6, / = f }• 

We can see that 
U(z, t) = 2G (z, /) Re [(z - fc) g(?» 01 

on the set ^ . 
Similarly as in the proof of Theorem 1 we get 

U(z, /) = 2G(z, /) (| z - b |2 Ref(z) - | z - * I | d(z, t) |). 

181 



Using assumptions 2°, 3° we can see that 

C(zf 0 £ 2G(r, 0 5(5 Ref(z) - j d(z, 0 |) > 0 
on the set W. 

Clearly 
V(z, 0 = - 1 < 0 

on the set *K. 
Thus Q° is a (U, V)-subset of Ox I with respect to (3). 
Using the first part of Lemma 1 we see that the set of all egress points of 0° is 

Q°e = {(-, 0: | x - b | = 5, t > T}. 

Let tx > T be arbitrary and let us denote 

5 = {(z,t):\z-b\ g69t = tx}. 
The set 

3nQ°, = {(z9t):\z-b\ =5,t = tl} 

is a retract of Q°e, as it can be seen by choosing the retraction (z, t) -+-> (z, tt). 
S n Qj is not a retract of S. For if there exists a retraction w: S -> £ n .Q°, then 

there exists a continuous map of 3 into itself, e.g. — w, without fixed points, which is, 
by the fixed point theorem of Brouwer, impossible. 

Using Lemma 1 we can see that there exists a trajectory z = z(t) of (3) such that 

| z(t) -b\<5 
for all t = tt. 

Theorem 5. Let a > 0, K = KE c Q. Let there exist a function f(z) so that conditions 
1°, 3°, 4° of Theorem 2 are fulfilled and Ref(z) > Ofor all z e K. Phew there exists 
a trajectory z = z(t) of (3) such /haf 

lim z(t) = b. 
t-KXi 

Proof. There exists a time tx > t0 such that 

i z - b 11 g(z, o - (* - &)/(*) i < 4 - m i n R e ^ z ) 

for all r ^ tx and z e K. 

Hence | g(zf t) - (z - o)f(z) | < y Ref(z) 

for all z e Ks/2 and all t = r t. 
Let t2 > *i • By Theorem 4 there exists a trajectory z = z(t) of (3) so that 

(ID i z W - f e |<± 

for all f g <j-
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Let sl90 < ei < e be arbitrary. Putting 8 = ej/2 we can see that there exists a time 
t3 = t2 such that 

| z - A | | g(z, f) - (z - 6)f(z)) | < 52 min Ref(z) 
Z6JC 

for all t ^ r3 and z € K. 
Suppose that. 

5 < | z(t*) - 6 j < e 
for a time t* ^ r3. 

By Theorem 3 there exists a time r4 = r* so that 

\z{u)-b\>~. 

This gives a contradiction. Thus 

| *(0 - b | = 5 < sx 

for all l ^ J3 and the theorem is proved. 

Theorem 6. Let e > 0, K = Ke cz Q and let there exist a function f(z) so that 
1° (z — b)f(z) is continuous on K; 
2° ?here exis/ numbers L, M such that 

0 < M = | Ref(z) | ^ L 
for any ze K; 

3° /here ex/st constants Mx, M2 -?0 * Aat 

0 < Mt S G(z, t) ^ M2 

on the set KxI; 
4° there exists a time tt > t0 and a continuous function D(t) such that 

00 

Í D(t)di < oo 

and 
\g(z,t)-(z-b)f(z)\SD(t) 

for all zeK and all t^h-
Ifz — z(t) is a trajectory of (3) such that 

/ог а11 г = гх, гкеп 

апй 

| z(t) - b \ < e 

lim z(t) = b 
t-*oo 

í | z(í) - b | dí < oo. 

»i 
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Proof. Let us define 
d(z, t) = g(z, t)-(z- b)f(z) 

and 
V(z)=\z-b\. 

The equations V(z) = C represent a family of circles the centres of which are in the 
point b. Each point z(t) of the trajectory z = z(t) belongs to the circle with a para­
meter (radius) C(t) = V[z(t)] < e. 

There holds 

C(0 = ^ ^ 
C(t) 2C(t) 

as far as t = tl and z(t) # b. 
From the proof of Theorem 1 it follows that 

(C2(0)- = 2G(z, t)(\z-b\2 Ref(z) + Re [(z - b) d(z, t)]) 

for all / = tt. 
Thus the function C(t) is continuous in any time t = tx, z(t) # fe and there holds 

C(0«G(z,0(C(ORef(z) + ^ ^ ^ ) ^ ^ 
| z - f c | 

Now, we get 
| C(t) - G(z, 0 C(0 Ref(z) | = M2D(0 

and 
| <?(/) | = M2(LC(0 + | d(z, t) \) 

as far as / = ft and z(/) # 6. 

Let t* = i*! be such a time that z(t*) = b. A simple calculation shows that the right 
derivative 

<?+(**) = G(M*)|ir(M*)| 
and the left derivative 

£_(**)= -G(b,t*)\g(b,t*)\. 

Therefore the derivative C(t*) exists if and only if g(b, t*) =•= 0. One can see that 
in this case C(t*) = 0. 

Let us define 
\C(t) as far as t = tt and z(t) ^ b, 

( 1 2 ) ^ {0 as far as ( ^ ti and z(t) -= 6. 

The function W(t) satisfies estimates 

(13) | W(t) - G(z, i) C(t) Re/(z) | < M2D(t), 

(14) | W(t) | g M2(Lc(0 + | d(z, 01). 
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Observe that W(t) is continuous in any time t ^ tx, z(t) ^ b and in any time 
t* ^ tt, z(t*) = 6 in which the derivative C(t*) exists. The second argument follows 
from (14). 

Let t e (tx, oo). From Lemma 2 it follows that the set of all points of the dis­
continuity of W(s) in (tu t) is at most countable. Using (14) we can see that W(s) 
is bounded on a closed interval [tx, t]. Thus the function W(s) is integrable over [tt, t]. 

From Lemma 3 it follows 
t 

(15) I W(s)ds = C ( 0 - C(*i). 

Now, we shall only continue the proof for the case 

- L S Ref(z) ^ - M < 0 

because the proof of the case 

0 < M <> Ref(z) ^ L 
is very similar. 

Using (13) and (14) we obtain 

(16) -M 2(LC(0 + D(t)) S W(t) ^ -MtMC(t) + M2D(t) 

and 

(17) \W(t)\iZM2(LC(t) + D(t)). 

Let us integrate these inequalities over [tt, t] and let us suppose that 
OO 

(18) J C(t)dt =-= oo. 
ti 

From the integrated inequalities (16) it can be seen that 

W(s)ds = -co. lim I 
.-•00 J 

Hence 

and we get a contradiction. 
Therefore 

HmC(0 = -oo 
ř-*oo 

(19) C(i)dí <co. 

00 
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From the integrated inequality (17) we have 

>V(s)|ds< oo. í 
Thus 

00 

Í W(t)át 

converges and there exists a finite limit 

lim C(l) = 0. 

Therefore we have 

and 

The theorem is proved. 

00 

Í 

lim z(/) =-= b 

\z(t) - b\át < oo. 
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