Archivum Mathematicum

Josef Kalas

Asymptotic behaviour of the system of two differential equations

Archivum Mathematicum, Vol. 11 (1975), No. 3, 175--186
Persistent URL: http://dml.cz/dmlcz/104855

Terms of use:

© Masaryk University, 1975
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ASYMPTOTIC BEHAVIOUR OF THE SYSTEM OF TWO DIFFERENTIAL EQUATIONS

JOSEF KALAS, Brno

(Received August 26, 1974)
This paper deals with asymptotic properties of solutions of a system

$$
\begin{align*}
\dot{X} & =P(X, Y, t), \\
\dot{Y} & =Q(X, Y, t), \tag{1}\\
& =\frac{\mathrm{d}}{\mathrm{~d} t}
\end{align*}
$$

The special case of this system was studied in [2]. There C. Kulig generalized Butlewski's theorem [3], [4] about trajectories of a system

$$
\begin{gathered}
\ddot{R}=R(\dot{\varphi})^{2} \\
\left(R^{2} \dot{\varphi}\right)^{\cdot}=A(t) R^{2}
\end{gathered}
$$

which can be transformed into a system of the form

$$
\begin{aligned}
\dot{X} & =\alpha(t)-X^{2}+Y^{2} \\
\dot{Y} & =\beta(t)-2 X Y
\end{aligned}
$$

by the substitution

$$
X=\dot{R} R^{-1}, \quad Y=\dot{\varphi}
$$

In the paper [1], there is shown the advantage of transferring the considered system into the equation with complex-valued coefficients

$$
\dot{z}=u(t)-z^{2}
$$

where $z=X+i Y, u(t)=\alpha(t)+i \beta(t)$. A similar method is used in the present paper.
If we define

$$
h(z, t)=P(X, Y, t)+i Q(X, Y, t)
$$

where $z=X+i Y$ we can replace (1) by

$$
\begin{equation*}
\dot{z}=h(z, t) \tag{2}
\end{equation*}
$$

We can easily see that $z=z(t)$ is a solution of (2) if and only if $z(t)=X(t)+i Y(t)$ where $X=X(t), Y=Y(t)$ is a solution of (1). The most part of considerations and formulations of results becomes essentially simpler if we investigate (2) instead of (1). Then it is suitable to give results in the complex form.

Let I denote an open interval $\left(t_{0}, \infty\right),-\infty \leqq t_{0}<\infty$ and let Ω signify a domain in the complex plane. It will be always assumed that $h(z, t)$ is a continuous on $\Omega \times I$ complex-valued function. The description of the asymptotic behaviour of the trajectories of (2) in a neighbourhood of $b \in \Omega$ is the main object of this paper. The equation (2) can be written in a form

$$
\begin{equation*}
\dot{z}=G(z, t) g(z, t) \tag{3}
\end{equation*}
$$

where $G(z, t) \geqq 0$ is a continuous on $\Omega \times I$ real-valued function and $g(z, t)$ is a continuous on $\Omega \times I$ complex-valued function. (We may take, e.g., $G(z, t) \equiv 1$ and $g(z, t)=$ $=h(z, t)$). If the function $g(z, t)$ is in a certain meaning "close" to the (continuous) function of a form $(z-b) f(z)$ we shall show that on suitable assumptions the asymptotic behaviour of the trajectories of (3) depends substantially only on the real part of $f(z)$. The main means of investigation are Lyapunov functions.

Complex numbers and functions are denoted by small Roman characters (except t, s), real numbers and functions by capital Roman and small Creek characters (except I, K). d signifies the complex conjugate number of $d, \operatorname{Re} d$ and $\operatorname{Im} d$ the real and imaginary parts of $d,|d|$ the absolute value of d.

We shall put

$$
\begin{aligned}
K_{C} & =\{z:|z-b|<C\} \\
K_{C, D} & =\{z: C<|z-b|<D\}
\end{aligned}
$$

If Γ is a set, $\bar{\Gamma}$ will denote the closure of $\Gamma, \hat{\Gamma}$ the boundary of Γ.
Let Ω° be an open subset of $\Omega \times I$. A point $\left(z_{1}, t_{1}\right) \in(\Omega \times I) \cap \hat{\Omega}^{\circ}$ is called an egress point of Ω°, with respect to the equation (2), if for every solution $z=z(t)$ of (2), satisfying the initial condition $z\left(t_{1}\right)=z_{1}$, there is an $\varepsilon>0$ such that $(z(t), t) \in$ $\in \Omega^{\circ}$ for $t_{1}-\varepsilon \leqq t<t_{1}$. The set of all egress points of Ω° will be denoted by Ω_{e}°.

Let Γ_{1} be a topological space and $\Gamma_{2} \subset \Gamma_{1}$. A continuous mapping of Γ_{1} onto Γ_{2} is called a retraction of Γ_{1} onto Γ_{2} if the restriction of this mapping to Γ_{2} is the identity. If there exists a retraction of Γ_{1} onto Γ_{2}, Γ_{2} is called a retract of Γ_{1}.

The real-valued function $U(z, t)$ defined on $\Omega \times I$ is said to be of class C^{1} if it has continuous partial derivatives with respect to t and the real and imaginary parts of z.

The real-valued function $U(z, t)$ defined on an open subset of $\Omega \times I$ is said to possess a trajectory derivative $\dot{U}(z, t)$ at the point $\left(z_{1}, t_{1}\right)$ along the solution $z=z(t)$ of (2), $z\left(t_{1}\right)=z_{1}$ if $U(z(t), t)$ has a derivative at $t=t_{1}$; in this case

$$
\dot{U}\left(z_{1}, t_{1}\right)=[U(z(t), t)]_{t=i_{1}}
$$

This trajectory derivative exists if $U(z, t)$ is of class C^{1}; there holds

$$
\dot{U}(z, t)=\frac{\partial U(z, t)}{\partial t}+\frac{\hat{\partial} U(z, t)}{\partial \operatorname{Re} z} \operatorname{Re} h(z, t)+\frac{\partial U(z, t)}{\partial \operatorname{In} z} \operatorname{Im} h(z, t) .
$$

An open subset Ω° of $\Omega \times I$ will be called a (U, V)-subset of $\Omega \times I$ with respect to (2) if there exists a number of real-valued continuous functions

$$
U_{1}(z, t), \ldots, U_{L}(z, t), V_{1}(z, t), \ldots, V_{M}(z, t)
$$

on $\Omega \times I$ such that

$$
\begin{gathered}
\Omega^{\circ}=\left\{(z, t): U_{N}(z, t)<0 \quad \text { for } \quad N=1,2, \ldots, L\right. \\
\text { and } \left.\quad V_{N}(z, t)<0 \quad \text { for } \quad N=1,2, \ldots, M\right\}
\end{gathered}
$$

and if $\mathscr{U}_{\alpha}, \mathscr{V}_{\beta}$ are the sets

$$
\begin{gathered}
\mathscr{U}_{\alpha}=\left\{(z, t): U_{\alpha}(z, t)=0, U_{N}(z, t) \leqq 0 \quad \text { for } N=1,2, \ldots, L\right. \\
\text { and } \left.V_{N}(z, t) \leqq 0 \quad \text { for } N=1,2, \ldots, M\right\}, \\
\mathscr{V}_{\beta}=\left\{(z, t): V_{\beta}(z, t)=0, U_{N}(z, t) \leqq 0 \text { for } N=1,2, \ldots, L\right. \\
\text { and } \left.V_{N}(z, t) \leqq 0 \quad \text { for } N=1,2, \ldots, M\right\},
\end{gathered}
$$

then the trajectory derivatives $\dot{U}_{\alpha}, \dot{V}_{\beta}$ exist on $\mathscr{U}_{\alpha}, \mathscr{V}_{\beta}$ and satisfy

$$
\begin{array}{lll}
\dot{U}_{\alpha}(z, t)>0 & \text { for } & (z, t) \in \mathscr{U}_{\alpha} \\
\dot{V}_{\beta}(z, t)<0 & \text { for } & (z, t) \in \mathscr{V}_{\beta}
\end{array}
$$

respectively, along all solutions through (z, t). In this definition, either L or M can be zero.

Lemma 1 (Ważewski). (i) Let Ω° be a (U, V)-subset of $\Omega \times I$ with respect to (2). Then

$$
\Omega_{e}^{0}=\bigcup_{\alpha=1}^{L} \mathscr{U}_{\alpha}-\bigcup_{\beta=1}^{M} \mathscr{M}_{\beta}
$$

(ii) Let Ω° be a (U, V)-subset of $\Omega \times I$ with respect to (2). Let Ξ be a nonempty subset of $\Omega^{\circ} \cup \Omega_{e}^{0}$ satisfying the condition that $\Xi \cap \Omega_{e}^{0}$ is not a retract of Ξ but is a retract of Ω_{e}^{0}. Let us assume that Ξ is compact and let $U_{\alpha}(z, t), V_{\beta}(z, t)$ be of class C^{1}. Then there exists a point $\left(z_{1}, t_{1}\right) \in \Xi \cap \Omega^{\circ}$ and a solution $z=z(t)$ of $(2), z\left(t_{1}\right)=z_{1}$ such that $(z(t), t) \in \Omega^{\circ}$ for all t from the right maximal interval of existence.

For a proof, the reader is referred to [5].
Now, we shall bring two assertions the analogies of which can be found, e.g., in [6], [7].

Let functions $W(t), C(t)$ be defined on an interval $[\alpha, \beta]$ and let $C(t)$ be continuous on $[\alpha, \beta]$.

Lemma 2. Let $C(t)$ have left and right derivatives in each point of (α, β). Then the set of all points $t^{*} \in(\alpha, \beta)$ satisfying $\dot{C}_{-}\left(t^{*}\right)<\dot{C}_{+}\left(t^{*}\right)$ is at most countable.

Lemma 3. If $\hat{C}(t)=W(t)$ on $[\alpha, \beta]$ except on at most countable subset of $[\alpha, \beta]$ and fi $W(t)$ is (Lebesgue) integrable, then

$$
\int_{\alpha}^{\beta} W(t) \mathrm{d} t=C(\beta)-C(\alpha) .
$$

Theorem 1. Let $\varepsilon>0, K=K_{\varepsilon} \subset \Omega$ and let there exist a $\delta, 0 \leqq \delta<\varepsilon$, a time $T>t_{0}$ and a function $f(z)$ such that
$1^{\circ}(z-b) f(z)$ is continuous on K;
$2^{\circ} \operatorname{Re} f(z) \leqq 0$ for any $z \in K_{\delta, \varepsilon}$;
3° there holds

$$
\begin{equation*}
|z-b||g(z, t)-(z-b) f(z)| \leqq \delta^{2}|\operatorname{Re} f(z)| \tag{4}
\end{equation*}
$$

for all $z \in K_{\delta, \varepsilon}$ and all $t \geqq T$;
4° a trajectory $z=z(t)$ of (3) satisfies at $t=t_{1} \geqq T$ the inequality

$$
\begin{equation*}
\left|z\left(t_{1}\right)-b\right|<\varepsilon . \tag{5}
\end{equation*}
$$

Then

$$
\begin{equation*}
|z(t)-b| \leqq \max \left(\delta,\left|z\left(t_{1}\right)-b\right|\right) \tag{6}
\end{equation*}
$$

for all $t \geqq t_{1}$.
If, moreover,
$5^{\circ} \operatorname{Re} f(z)<0$ for any $z \in K_{\delta, \varepsilon}$;
6° there exists a continuous on K function $F(z)$ such that

$$
G(z, t) \geqq F(z)>0
$$

for all $z \in K_{\delta, \varepsilon}$ and all $t \geqq T$,
then to each $\varepsilon_{1}, \delta<\varepsilon_{1}<\varepsilon$ there exists a time $t_{2} \geqq t_{1}$ so that

$$
\begin{equation*}
|z(t)-b|<\varepsilon_{1} \tag{7}
\end{equation*}
$$

for all $t \geqq t_{2}$.
Proof. Let us define

$$
d(z, t)=g(z, t)-(z-b) f(z)
$$

and

$$
V(z)=|z-b|^{2}
$$

The equations $V(z)=C$ represent a family of circles the centres of which are in the point b. Each point $z(t)$ of the trajectory $z=z(t)$ belongs to a circle with a parameter $C(t)=V(z(t))$.

Differentiation yields

$$
C(t)=2 \operatorname{Re}[\overline{(z-b}) \dot{z}]
$$

By substituting from (3) we get

$$
C(t)=2 G(z, t) \operatorname{Re}[\overline{(z-b}) g(z, t)] .
$$

Now, we shall prove the first part of the theorem. Let conditions $1^{\circ}, 2^{\circ}, 3^{\circ}, 4^{\circ}$ be satisfied. If $t \geqq T$ and $z(t) \in K_{\delta, \varepsilon}$, then

$$
\begin{aligned}
& C(t)=2 G(z, t) \operatorname{Re}[\overline{(z-b)}((z-b) f(z)+d(z, t))] \leqq \\
& \leqq 2 G(z, t)(C(t) \operatorname{Re} f(z)+|z-b||d(z, t)|) .
\end{aligned}
$$

Using (4) and $\operatorname{Re} f(z) \leqq 0$ we get

$$
\begin{equation*}
C(t) \leqq 2 G(z, t) \operatorname{Re} f(z)\left(C(t)-\delta^{2}\right) \tag{8}
\end{equation*}
$$

It is seen that $C(t) \leqq 0$ if $t \geqq t_{1}$ and $\delta^{2}<C(t)<\varepsilon^{2}$. The function $C(t)$ is nonincreasing in each such a time.

If $\left|z\left(t_{1}\right)-b\right|>\delta$, then $C(t) \leqq C\left(t_{1}\right)$ for $t \geqq t_{1}$. Thus the trajectory $z=z(t)$ satisfies the inequality

$$
|z(t)-b| \leqq\left|z\left(t_{1}\right)-b\right|
$$

for all $t \geqq t_{1}$.
If $\left|z\left(t_{1}\right)-b\right| \leqq \delta$, then

$$
|z(t)-b| \leqq \delta
$$

for all $t \geqq t_{1}$ because contrariwise we get a contradiction to the previous assertion. This completes the proof of the first part of the theorem.

Now, we shall prove the second part. Let conditions 1° up to 6° be satisfied. Let $\varepsilon_{1}, \delta<\varepsilon_{1}<\varepsilon$ be given arbitrary.

If $\left|z\left(t_{1}\right)-b\right|<\varepsilon_{1}$, then we have

$$
|z(t)-b| \leqq \max \left(\delta,\left|z\left(t_{1}\right)-b\right|\right)<\varepsilon_{1}
$$

for all $t \geqq t_{1}$ and we may take $t_{2}=t_{1}$.
Let $\left|z\left(t_{1}\right)-b\right| \geqq \varepsilon_{1}$. It holds:

$$
|z(t)-b| \leqq\left|z\left(t_{1}\right)-b\right|
$$

for all $t \geqq t_{1}$. There exist constants $L>0, M<0$ so that $F(z) \geqq L$ and $\operatorname{Re} f(z) \leqq M$ for all $z \in \bar{K}_{\varepsilon_{1}, 1 z\left(t_{1}\right)-b 1}$.

Using (8) we get

$$
C(t) \leqq 2 M L\left(\varepsilon_{1}^{2}-\delta^{2}\right)<0
$$

as long as $t \geqq t_{1}$ and $C(t) \geqq \varepsilon_{1}^{2}$. Thus there exists a time $t_{2} \geqq t_{1}$ so that $C\left(t_{2}\right)<\varepsilon_{1}^{2}$. Clearly,

$$
|z(t)-b| \leqq \max \left(\delta,\left|z\left(t_{2}\right)-b\right|\right)<\varepsilon_{1}
$$

for all $t \geqq t_{2}$.

Theorem 2. Let $\varepsilon>0, K=R_{\varepsilon} \subset \Omega$ and let there exist a function $f(z)$ such that $1^{\circ}(z-b) f(z)$ is continuous on K;
$2^{\circ} \operatorname{Re} f(z)<0$ for all $z \in K$;
$3^{\circ}(z-b) g(z, t) \rightarrow(z-b)^{2} f(z)$ uniformly on K as $t \rightarrow \infty$;
4° there exists a continuous on K_{ε} function $F(z)$ so that

$$
G(z, t) \geqq F(z) \geqq 0
$$

on $K_{\varepsilon} \times I$ and $F(z) \neq 0$ on the set $K_{0, \varepsilon}$.
If there exists a sequence of real numbers $\left\{t_{N}\right\}, N=1,2, \ldots$, where $t_{N} \rightarrow \infty$, as $N \rightarrow \infty$, such that a trajectory $z=z(t)$ of (3) satisfies

$$
\begin{equation*}
\left|z\left(t_{N}\right)-b\right|<\varepsilon \tag{9}
\end{equation*}
$$

for $N=1,2, \ldots$,
then

$$
\lim _{t \rightarrow \infty} z(t)=b
$$

Proof. Let the assumptions of the theorem be satisfied. Let $\varepsilon_{1}, 0<\varepsilon_{1}<\varepsilon$ be an arbitrarily given number. Putting $\delta=\varepsilon_{1} / 2$ we can observe that there exists a time $T>t_{0}$ such that

$$
\left|(z-b) g(z, t)-(z-b)^{2} f(z)\right|<\delta^{2} \min _{z \in K}|\operatorname{Re} f(z)|
$$

for all $t \geqq T$ and all $z \in K$.
Thus we have

$$
|z-b||g(z, t)-(z-b) f(z)| \leqq \delta^{2}|\operatorname{Re} f(z)|
$$

for all $z \in K$ and all $t \geqq T$.
From Theorem 1 it can be seen that there exists a time $t^{*} \geqq T$ such that

$$
|z(t)-b|<\varepsilon_{1}
$$

for all $t \geqq t^{*}$.
Hence we get

$$
\lim _{t \rightarrow \infty} z(t)=b
$$

Theorem 3. Let $\varepsilon>0, K=K_{\varepsilon} \subset \Omega$ and let there exist a $\delta, 0 \leqq \delta<\varepsilon$, a time $T>t_{0}$ and a function $f(z)$ such that
$1^{\circ}(z-b) f(z)$ is continuous on K;
$2^{\circ} \operatorname{Re} f(z) \geqq 0$ for any $z \in K_{\delta, \varepsilon}$;
3° there holds (4) for all $z \in K_{\delta, \varepsilon}$ and all $t \geqq T$;
4° a trajectory $z=z(t)$ of (3) satisfies at $t=t_{1} \geqq T$ the condition

$$
\begin{equation*}
\delta<\left|z\left(t_{1}\right)-b\right|<\varepsilon \tag{10}
\end{equation*}
$$

Then

$$
|z(t)-b| \geqq\left|z\left(t_{1}\right)-b\right|
$$

for all $t \geqq t_{1}$ for which the solution $z=z(t)$ exists.
If, moreover,
$5^{\circ} \operatorname{Re} f(z)>0$ for any $z \in K_{\delta, \varepsilon}$;
6° there exists a continuous on K function $F(z)$ such that

$$
G(z, t) \geqq F(z)>0
$$

for all $z \in K_{\delta, \varepsilon}$ and all $t \geqq T$,
then to any given $\varepsilon_{1}, 0<\varepsilon_{1}<\varepsilon$, there exists a time $t_{2} \geqq t_{1}$ such that

$$
|z(t)-b|>\varepsilon_{1}
$$

for all $t \geqq t_{2}$ for which the solution $z=z(t)$ exists.
Proof. The proof is similar to that of Theorem 1.
Theorem 4. Let $\delta>0, \widehat{K}_{\delta} \subset \Omega, K=\hat{K}_{\delta}$ and let there exist a function $f(z)$ so that $1^{\circ}(z-b) f(z)$ is continuous on K;
$2^{\circ} \operatorname{Re} f(z)>0$ on K;
3° there exists a time $T>t_{0}$ such that

$$
G(z, t)>0
$$

and

$$
|g(z, t)-(z-b) f(z)|<\delta \operatorname{Re} f(z)
$$

for all $z \in K$ and $t \geqq T$.
Then, for every $t_{1}>T$, there exists a trajectory $z=z(t)$ of (3) so that

$$
|z(t)-b|<\delta
$$

for all $t \geqq t_{1}$.
Proof. Let us denote

$$
\begin{gathered}
d(z, t)=g(z, t)-(z-b) f(z), \\
U(z, t)=|z-b|^{2}-\delta^{2}, \\
V(z, t)=T-t, \\
\Omega^{\circ}=\{(z, t):|z-b|<\delta, t>T\}, \\
\mathscr{U}=\{(z, t):|z-b|=\delta, t \geqq T\}
\end{gathered}
$$

and

$$
\mathscr{V}=\{(z, t):|z-b| \leqq \delta, t=\mathcal{I}\} .
$$

We can see that

$$
\dot{U}(z, t)=2 G(z, t) \operatorname{Re} \overline{[(z-b}) g(z, t)]
$$

on the set \mathscr{U}.
Similarly as in the proof of Theorem 1 we get

$$
\dot{U}(z, t) \geqq 2 G(z, t)\left(|z-b|^{2} \operatorname{Re} f(z)-|z-b||d(z, t)|\right)
$$

Using assumptions $2^{\circ}, 3^{\circ}$ we can see that

$$
\dot{U}(z, t) \geqq 2 G(z, t) \delta(\delta \operatorname{Re} f(z)-|d(z, t)|)>0
$$

on the set \mathscr{U}.
Clearly

$$
\dot{V}(z, t)=-1<0
$$

on the set \boldsymbol{V}.
Thus Ω° is a (U, V)-subset of $\Omega \times I$ with respect to (3).
Using the first part of Lemma 1 we see that the set of all egress points of Ω° is

$$
\Omega_{e}^{0}=\{(z, t):|z-b|=\delta, t>T\} .
$$

Let $t_{1}>T$ be arbitrary and let us denote

$$
\Xi=\left\{(z, t):|z-b| \leqq \delta, t=t_{1}\right\}
$$

The set

$$
\Xi \cap \Omega_{e}^{0}=\left\{(z, t):|z-b|=\delta, t=t_{1}\right\}
$$

is a retract of Ω_{e}^{0}, as it can be seen by choosing the retraction $(z, t) \leftrightarrow\left(z, t_{1}\right)$.
$\Xi \cap \Omega_{e}^{0}$ is not a retract of Ξ. For if there exists a retraction $w: \Xi \rightarrow \Xi \cap \Omega_{e}^{0}$, then there exists a continuous map of Ξ into itself, e.g. $-w$, without fixed points, which is, by the fixed point theorem of Brouwer, impossible.

Using Lemma 1 we can see that there exists a trajectory $z=z(t)$ of (3) such that

$$
|z(t)-b|<\delta
$$

for all $t \geqq t_{1}$.
Theorem 5. Let $\varepsilon>0, K=R_{\varepsilon} \subset \Omega$. Let there exist a function $f(z)$ so that conditions $1^{\circ}, 3^{\circ}, 4^{\circ}$ of Theorem 2 are fulfilled and $\operatorname{Re} f(z)>0$ for all $z \in K$. Then there exists a trajectory $z=z(t)$ of (3) such that

$$
\lim _{t \rightarrow \infty} z(t)=b
$$

Proof. There exists a time $t_{1}>t_{0}$ such that

$$
|z-b||g(z, t)-(z-b) f(z)|<\frac{\varepsilon^{2}}{4} \min _{z \in K} \operatorname{Re} f(z)
$$

for all $t \geqq t_{1}$ and $z \in K$.
Hence

$$
|g(z, t)-(z-b) f(z)|<\frac{\varepsilon}{2} \operatorname{Re} f(z)
$$

for all $z \in \hat{K}_{z / 2}$ and all $t \geqq t_{1}$.
Let $t_{2}>t_{1}$. By Theorem 4 there exists a trajectory $z=z(t)$ of (3) so that

$$
\begin{equation*}
|z(t)-b|<\frac{\varepsilon}{2} \tag{11}
\end{equation*}
$$

for all $t \geqq t_{2}$.

Let $\varepsilon_{1}, 0<\varepsilon_{1}<\varepsilon$ be arbitrary. Putting $\delta=\varepsilon_{1} / 2$ we can see that there exists a time $t_{3} \geqq t_{2}$ such that

$$
|z-b| \mid g(z, t)-(z-b) f(z)) \mid<\delta^{2} \min _{z \in K} \operatorname{Re} f(z)
$$

for all $t \geqq t_{3}$ and $z \in K$.
Suppose that.

$$
\delta<\left|z\left(t^{*}\right)-b\right|<\varepsilon
$$

for a time $t^{*} \geqq t_{3}$.
By Theorem 3 there exists a time $t_{4} \geqq t^{*}$ so that

$$
\left|z\left(t_{4}\right)-b\right|>\frac{\varepsilon}{2} .
$$

This gives a contradiction. Thus

$$
|z(t)-b| \leqq \delta<\varepsilon_{1}
$$

for all $t \geqq t_{3}$ and the theorem is proved.
Theorem 6. Let $\varepsilon>0, K=K_{\varepsilon} \subset \Omega$ and let there exist a function $f(z)$ so that $1^{\circ}(z-b) f(z)$ is continuous on K;
2° there exist numbers L, M such that

$$
0<M \leqq|\operatorname{Re} f(z)| \leqq L
$$

for any $z \in K$;
3° there exist constants M_{1}, M_{2} so that

$$
0<M_{1} \leqq G(z, t) \leqq M_{2}
$$

on the set $K \times I$;
4° there exists a time $t_{1}>t_{0}$ and a continuous function $D(t)$ such that

$$
\int_{i_{1}}^{\infty} D(t) \mathrm{d} t<\infty
$$

and

$$
|g(z, t)-(z-b) f(z)| \leqq D(t)
$$

for all $z \in K$ and all $t \geqq t_{1}$.
If $z=z(t)$ is a trajectory of (3) such that

$$
|z(t)-b|<\varepsilon
$$

for all $t \geqq t_{1}$, then

$$
\lim _{t \rightarrow \infty} z(t)=b
$$

and

$$
\int_{i_{1}}^{\infty}|z(t)-b| \mathrm{d} t<\infty
$$

Proof. Let us define

$$
d(z, t)=g(z, t)-(z-b) f(z)
$$

and

$$
V(z)=|z-b|
$$

The equations $V(z)=C$ represent a family of circles the centres of which are in the point b. Each point $z(t)$ of the trajectory $z=z(t)$ belongs to the circle with a parameter (radius) $C(t)=V[z(t)]<\varepsilon$.

There holds

$$
\dot{C}(t)=\frac{\left(C^{2}(t)\right)}{2 C(t)}
$$

as far as $t \geqq t_{1}$ and $z(t) \neq b$.
From the proof of Theorem 1 it follows that

$$
\left.\left(C^{2}(t)\right) \cdot=2 G(z, t)\left(|z-b|^{2} \operatorname{Re} f(z)+\operatorname{Re}[\overline{(z-b}) d(z, t)\right]\right)
$$

for all $t \geqq t_{1}$.
Thus the function $\mathcal{C}(t)$ is continuous in any time $t \geqq t_{1}, z(t) \neq b$ and there holds

$$
\dot{C}(t)=G(z, t)\left(C(t) \operatorname{Re} f(z)+\frac{\operatorname{Re}[\overline{(z-b}) d(z, t)]}{|z-b|}\right) .
$$

Now, we get

$$
|\dot{C}(t)-G(z, t) C(t) \operatorname{Re} f(z)| \leqq M_{2} D(t)
$$

and

$$
|C(t)| \leqq M_{2}(L C(t)+|d(z, t)|)
$$

as far as $t \geqq t_{1}$ and $z(t) \neq b$.
Let $t^{*} \geqq t_{1}$ be such a time that $z\left(t^{*}\right)=b$. A simple calculation shows that the right derivative

$$
C_{+}\left(t^{*}\right)=G\left(b, t^{*}\right)\left|g\left(b, t^{*}\right)\right|
$$

and the left derivative

$$
C_{-}\left(t^{*}\right)=-G\left(b, t^{*}\right)\left|g\left(b, t^{*}\right)\right| .
$$

Therefore the derivative $C^{C}\left(t^{*}\right)$ exists if and only if $g\left(b, t^{*}\right)=0$. One can see that in this case $C\left(t^{*}\right)=0$.

Let us define

$$
W(t)= \begin{cases}C(t) & \text { as far as } t \geqq t_{1} \quad \text { and } \quad z(t) \neq b \tag{12}\\ 0 & \text { as far as } t \geqq t_{1} \quad \text { and } \quad z(t)=b\end{cases}
$$

The function $W(t)$ satisfies estimates

$$
\begin{gather*}
|W(t)-G(z, t) C(t) \operatorname{Re} f(z)| \leqq M_{2} D(t) \tag{13}\\
|W(t)| \leqq M_{2}(L C(t)+|d(z, t)|) \tag{14}
\end{gather*}
$$

Observe that $W(t)$ is continuous in any time $t \geqq t_{1}, z(t) \neq b$ and in any time $t^{*} \geqq t_{1}, z\left(t^{*}\right)=b$ in which the derivative $C\left(t^{*}\right)$ exists. The second argument follows from (14).

Let $t \in\left(t_{1}, \infty\right)$. From Lemma 2 it follows that the set of all points of the discontinuity of $W(s)$ in $\left(t_{1}, t\right)$ is at most countable. Using (14) we can see that $W(s)$ is bounded on a closed interval $\left[t_{1}, t\right]$. Thus the function $W(s)$ is integrable over $\left[t_{1}, t\right]$.

From Lemma 3 it follows

$$
\begin{equation*}
\int_{i_{1}}^{t} W(s) \mathrm{d} s=C(t)-C\left(t_{1}\right) \tag{15}
\end{equation*}
$$

Now, we shall only continue the proof for the case

$$
-L \leqq \operatorname{Re} f(z) \leqq-M<0
$$

because the proof of the case

$$
0<M \leqq \operatorname{Re} f(z) \leqq L
$$

is very similar.
Using (13) and (14) we obtain

$$
\begin{equation*}
-M_{2}(L C(t)+D(t)) \leqq W(t) \leqq-M_{1} M C(t)+M_{2} D(t) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
|W(t)| \leqq M_{2}(L C(t)+D(t)) \tag{17}
\end{equation*}
$$

Let us integrate these inequalities over $\left[t_{1}, t\right]$ and let us suppose that

$$
\begin{equation*}
\int_{i_{1}}^{\infty} C(t) \mathrm{d} t=\infty . \tag{18}
\end{equation*}
$$

From the integrated inequalities (16) it can be seen that

$$
\lim _{t \rightarrow \infty} \int_{i_{1}}^{t} W(s) \mathrm{d} s=-\infty
$$

Hence

$$
\lim _{t \rightarrow \infty} C(t)=-\infty
$$

and we get a contradiction.
Therefore

$$
\begin{equation*}
\int_{i_{1}}^{\infty} C(t) \mathrm{d} t<\infty \tag{19}
\end{equation*}
$$

From the integrated inequality (17) we have

$$
\int_{i_{1}}^{\infty}|W(s)| \mathrm{d} s<\infty .
$$

Thus

$$
\int_{i_{1}}^{\infty} W(t) \mathrm{d} t
$$

converges and there exists a finite limit

$$
\lim _{t \rightarrow \infty} C(t)=0
$$

Therefore we have

$$
\lim _{t \rightarrow \infty} z(t)=b
$$

and

$$
\int_{t_{1}}^{\infty}|z(t)-b| \mathrm{d} t<\infty
$$

The theorem is proved.

REFERENCES

[1] Ráb M.: The Riccati differential equation with complex-valued coefficients, Czechoslovak Mathematical Journal, 20 (90) 1970, Praha.
[2] Kulig C.: On a system of differential equations, Zeszyty Naukowe Univ. Jagielloňskiego, Prace Mat. Zeszyt 9, LXXVII (1963).
[3] Butlewski Z.: Sur un mouvement plan, Ann. Polon. Math. 13 (1963).
[4] Butlewski Z.: O pewnym ruchu plaskim, Zeszyty Naukowe Polit. Poznanskiej, 2 (1957).
[5] Hartman P.: Ordinary differential equations, New York. London. Sydney 1964.
[6] Jarnik V.: Diferenciálni počet II, Praha 1956.
[7] Jarnik V.: Integrálni počet II, Praha 1955.

J. Kalas

61700 Brno, Ksírova 10

Czechoslovakia

