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ON SOME SPECTRAL PROPERTIES OF RADON-NICOLSKI OPERATORS AND
THEIR GENERALIZATIONS'
Ivo MAREK , Praha

1. Introduction

1.1, Let X be a complex Banach space. We shall denote
its elements by small Roman characters; the zero element will
be denoted 0 . The set of linear bounded operators mapping
space X into itself also forms a Banach space, which we
shell denote [X] (similarly as in [6] ). The norm in [X] is
defined as

1Tl mﬁﬂ Txll, Te[X]-
Unless the contrary is stated we shall use the denotations
and definitions introduced in [6] .

1.2. Definition [3]. The value , € 6 (T) is callea a
dominent point of the spectrum 6 (T) o the operator T ,
if the imequality |A1<|@®,] holds for every point
Aeb(T)y A+, .

2. Radon-Nicolski operators

2.1. Definition. Operstor T & [X] 1s celled Redon-Ni-
colski operator, if it can be expressed as T = U+v » where
VelX] ; WU is a linear compact operator mapping X in-
to #self emd ng (T)> Rg (V) far the spectral radii
1g (T, #g (V).

2.2. The Radon-Nicolski operators have some of the spec—
tral properties of compact operators. We shall list such of
these which will be of use below. Let T=U+V  be a Ra-
don-Nicolski operator end T the operator adjoint to T .
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Then we have

(a) Every point A , for which | & 1> 4:(V) is either a
reguler point of the operator T or an isolated pole of the
resolvent R (-;\-,T) and the corresponding projector
ELA, T] has a finite-dimensional renge R (E[X,TI ).
(b) Operator T' is Redon-Nicolski operator,

(¢) The eigenvalue Ay, IAdol >4 (V) o the operator

is a simple eigenvalue if and only if the equations

(1) Ao =Tx=0, Ay'-T'y'=0

have no orthogonsal solutions, i.e. Xx¥F 0, f"* 0: y'(x)$0.
The proof of (a) can be found in [1_] s lemma 2, page 709; (b)
is evident and (c¢) can be proved similarly as in the case of
compact operators. (See also [4],[5].)

It is'easy to prove, that (a) and (c¢) &lso hold for o=~
perators, some iteration of which is a Radon-Nicolski opera=
tor. The authors of [7] call such operators strongly quasi-
compact.

Let T be a closed linear, generally unbounded operator
mepping the domein D(T)c X imto X . We shall investi-
gate the spectral properties of operatar T' under the ass-
umption that +(T) is a Radon-Nicolski operator for some
function f€ o (T)-

2.3. Let fe U (T), 1et f(T)=U+V bve a Radon-Ni-
colski operator and A, € 6 (T), If (A,)[> g (V) . Then
A'o is a pole of the resolvent R(l, T) and the projector
B, correspondihg to the spectral set {l,} has a finite-di~-
mensional range i.e. the dimension of the eigenmanifold of
the operator | , corresponding to the value J\.o is finite.

Proof. Let S = f(T), =1 (A,) . According to
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theorem [6] 5. ?l - A page 302 we have 4, € 6 (S) . Let
6= (T)ﬂ{‘F (z“'. } , vhere § (T) is the ex -
tended spectrum of the operator T . According to (a) & §
2.2 M, is en isolated point of the spectrum 6(S) ,{ .}
is the spectral set of operator S and according to theo=
rem [6] 5.71 - D page 304 the corresponding projector is
Es = 37 J, R(2,T1dA,

where ( is the boundary of the Cauchy domain J , contai=-
ning the set 6 and not having any other common points
with the spectrmn 6 (T) ., Let Xg =R (Eg) be the
range of the operator Eg and 50 the restriction of ope-
retor S onto Xg . According to theorem [6] 5.7 - B page
299 6‘(59)={ruo} , 80 that %z (5,)=lm, 1> 25 (V).
For the restriction V, of operater V we have
tg (Vo) & 24 (V) ena thus S, 1s slso Radon-Nicolski ope-
retar. Thus if J Al is large enough, we have for all M ex-
cept perheps a countable number of isolated points the expres—
sion -1
R(X,S.)=[I-R(A,Vo) U] R(A,Vs).
Let C, be a circle with its centre in Mo , with such a
radius that (, 1lies in the region |M> 4g (V) endno
point of the spectrum 6(T) except N, 1lies inside (, or
on C,, . The operator-function [IvR(l,Vo) uo]-4 exists
and is enalytical in every point A € (, . For A with |Al
large enough identity

[T-ROMVGI L] "= T+ ROV U, [T-R (A, V%17
holds. With the help of an analytical continuation we can ex=-
tend this to (, . Thus '

R(%,5,0= RO, Vo) # ROV U [I-R 4, V) UTRQL, VS ).
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Since R(A,Ve)  is analytical on (, , we obtain
= —4_ , =
e8] -m,f R(X,S.)da

jmx V)u[l R(AVOUIR(A,VI A .

Since according to the assumption u is a compact o=
perator, the integrand is also compact for all A 55, o As
a unﬁorm limit of compact operatars = the Riemann sums =
ELX,, T] is a compact operator. Space Xg must have a
finite dimension since E [A'o ’ TJ is an identity -
operator im Xg -
Let T, be the restriction of operator T onto Xg o Accor=
ding to theorem [6] 5.7 - B psge 299, 6, (T,) = 6 . The
set 6, (T), evidently cennot be the whole extended plame, sin-
ce 6, (Ty)c 6 (T) but the resolvent set @ (T)
is not empty. It follows from here that D (T) > Xy , for
otherwise the range of the operator Al - T, would not form
the whole Xz for any M and this is not possible. Thus
T.e [ Xg] and 6= 6(Ty) 1is a finite set. Since
A,o €6, A, is an isolated point of the spectrum of opere—
tor T . According to corollary VII.3.21 of [1]
Es=B,+P,BP=0, PB4 =0 | yhere @ denotes the ze-
ro-operator, P 1is the projector corresponding to the set
6-{A)and B, is defimed in the formulstion of the theo -
rem. Since R (B,)c Xg, R (B,) has a finite dimension.
The restriction of operator T onto R (51) has the proper-
ty, that ), is a pole of its resolvent and hence that in a
certain basis this restriction is determined by a square ma-
trix with a finite number of rows. It is.not difficult to ob-
tain from here that M\, is a pole of the resolvent R (X,T),
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Since the eigenmanifold JN (A, I~T) is a part of & (B,)
it must also have a finite dimension.

The proved theorem is an smalogy of theorem [6] 5.8 - F
page 312, where it is supposed that T is a compact opera~
tor for a suitable function fe€ U, (T).

204, We have already mentioned strongly quasicompact o=-
perators the spectral properties of which are similar to tho-
se of a Radon-Nicolski operators. For a given strongly quasi-
compact operator T e[X], T™= U+V ,m2 1 , it is
easy to £ind a function f € w (T)  such that $#(A)= 2™
in the neighborhood of the spectrum 6 (T) i.e. £(T) = Tm,
so that the property (a) of strongly quasicompact operators
mentioned in § 2.2, is a consequence of the theorem proved in
§ 2.3 . Another important exemple is the class of operators
with the property, that their resolvents for some A are Rad-
on-Nicolski operators. Let T be a linear, in genersl umboun-
ded operator, the resolvent R (A, T) of which is a Redon-
Nicolski operator for A in some region "C P (T) . Let
a«€l ena R(x,T)=U+V be a Radon-Nicolski o=
perator, Then R (<, T) =f(T) | where f (A) = (x-27"
According to the theorem of § 2.3, every point A, € 6(TY,
for which le -2, |> zg (V) is a pole of the resolvent
R (X2, T) and the corresponding projector E[Xx,,T1] has
a finite-dimensional range. Examples of such operators can be
found in physical applications, for instance in some boundary
problems,

2.5« In this paragraph we shall investigate the case:
Tel X] and there exists such an f € (o (T) that
fF(T)=U+V is Radon-Nicolski operator. According'to
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theorem (a) of § 2.3 every point A, of the spectrum 6 ( T)
for vwhich If (X, 1> 1, (V) is a pole of the resolvent
and the corresponding projector E [ A, , T] hes a fini-
te dimensional range. It is also easy to prove the modifica-
tion of assertion (c) of 2.3 .

The eigenvalue A, , Jf(A,)[> %2, (V) of operator T
is simple if and only if equatioms (1) have no orthogonal so-
lutions. This assertion is used in the proof of the existen—
ce of positive eigenvectors of operastors reproducing a cone
in a Bgnach space.

3. K =positive operstors

In this chepter we use the definitions of [2].

3.1. Let Y be a real Banach space end K a cone in
space ¥ . Let X be a complex extension of space Y , i.
e. the space of pairs % = x+iy, x e, rye)’(izs -1)
with a norm defined as o

Mlha?ﬂﬁz« lIx cos % + y sim # |
or with an equivalent norm.

If T 4is a linear operator mapping space > into it=
self, we define its‘ complex extensions (denoted by the same
symbol) by the formula

Tx = Tx+¢ Ty, 2=x+iy -
Evidently Te[X] , if T is a bounded linear operator
mepping ¥ into itself.

Further let K €)Y  be a "productive" cone in space
Y. Operator T € [ Y] is called K -positive, for
short positive, if Tx e K for x € K.

3.2. Let Te[¥], TKc K snd fel, (T) be such a
function, that £(T) = U +V 1is a Radon-Nikolski operator.
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i
Then a positive eigenvalue (%o lies in the spectiam of o-
perator T and

IM € ®ey X2eb(T).

At lesst one eigenvectar X, € K, Ix,ll=1 of the opera-

tor T corr&sponds to the eigenvalue %, and at least one
eigenfunctional y, € K' ¥, Il = 1 ( K' is the cone
adjoint to cone K ) of the operator T
Tx, = @axXo, T'tgo = oo -
Proof, We shall prove that operator T hes at least o-
ne eigenvalue, ile have assumed that F(T)=U+V is a

Radon-Nicolski operator. Hence an isolated point

A6 (F(TV), 12,0218 (V)

exists. Let
6= 6'(T)ﬂ{'f-4(l.)} . According to theorem [6] 5.71 = D,
the projectors Eg = E[6, T] and E[A,, F(T)]

are identical. It follows that a point , € 6 (T)
such that f(m&,) = A,

exists
« According to the theorem of §
2.3, @, 3is & pole of the resolvent R (X ,T) and thus
an eigenvalue of the operator | . Purther the proof can
be performed similarly as the proof of theorem 6.1 in [2].

3.3. According to e.g. [2] the cone K - is volume type
if it has interior points. The operator Te€[ Y] is called
strongly K =positive, for shor strongly positive, if for
every vector xe K, x+ 0 a natural number n=nix)
exists, such that vector T™x 1is an interior element of
the cone K .

Space Y can be partially ordered with the help of the
cone K . We @efine that y ¥ x if y-xeK . I£ K is a

volume-type cone and Y —X 1is an interior element of K

we write y ¥ X . Evidently 4 X follows from y » X |

’
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3e4. Let us assume that the following conditions are sa-

tisfied: -

1) K is a volume-type cone.

2) Operator T € [)’J is strongly positive.

3) Such a T € Ty (T) exists that f(T)=U+V is Radon-Ni-
cglski operator.

Then: (&£ ) Operstor T has just one eigenvector X, ;

Wx, l=1 , inside K .

() The sdjoint operator T' hss just one eigenfunce
tional Yo , Hyoll=1 ; T'ye = a, Yo s Yo (x)> 0 for
xeK, x+0.

(T) The eigenvalue (%o ¢orresponding to the eigen—
vectors x, , 45; is simple and

Al < &,
for all A€ 6(TY,A#+ ™, ( &4, is a dominant point of
the spectrum of operator T).

On the other hand, if T satisfies condition 3 and has
the properties (<), (), (f),_then T is strongly positi-
ve. A

Theorem 3.4 is the same as theovem 6.3 in [2], only
the assumption of [2] that T is a compact operator is re -
placed by the weaker assumption 3 .

Theorem 3.4 can be proved similarly as theorem 6.3 in
[2]. It is only necessary to ensure the existence of an ei =
genvalue (W, of the operator T fulfilling the condition
| f ((u,)l> Ay (V) o According to the theorem of § 3.2 ,
operator T =~ has an eigenvalue (%, > O for which

1A & o
ir 2eb6(T) ., an eigenvec;or x, € K of the operator T
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and an eigenfunctional y; e K' of operator T' corresponds
to the eigenvalue (%, . The rest of the proof is the same
as the corresponding part of the proof of theorem 6.3 in [2].

3.5, Let us demonstrate a further interesting and impor-
tent in applications spectral property of strongly positive
operators.

Let TelY]  ena
” -
@ R(TI=E (@) T +5 (2= w) ™8,

be the Leurent series for the resolvent R (A ,T) in the
neighborhood of en isolated singularity &, . It is well-

known ([6], p. 305) that T, € [x] for k=0,1,...
and
51’2‘111:1:.[ R(A.,T)d-h, Bk1-4= (T_@’I)Bk7 k= 412y
(#

where (, is the boundary of the circle K, with the pro-
perty Z, n6 (T)’{c“.} (symbol E: means the
closure of set K, ).

@ fed, (T), f(T)=U+YV is a Radon-Nicolski

operator and (@, is the dominant eigenvalue of thé strongly
positive operastor T , then Bk =0 for k2 2 , where 6
is a zero operator.
Let the following conditions be satisfied:
1) K is a volume~type cone in Y .,
2) Te[¥Y] 1is a strongly positive operator.
3) Punction f e (L, (T) is such, that f(T)=U+V
is a Radon-Nicolski operator.
4) (, is the dominant eigenvalue of operator T .
Then operator B, in expression (2) for the resolvent is
- 28 =



strongly positive,
Proof. We shall prove that for x € K ; X # 0 we have
B1x ¢Fro . According to lemma 6.1 of [2] a positive

constant ¢ , independent on M , exists such that
lae™ T™x = N ™™ T yll2e>o0,
where 4 = T 'X. It follows from assumption 2 that y++0
for a suitable non-negative v . According to theorem 1 in
[3] the norm of the vector w,” T™x  converges to zero:
" T™x-B, x ¢l @™ T™- 8,1l Ixll> 0.
Thus B, X+ 0 and hence B, x = X, is an eigenvector
of the operator T corresponding to the value (%o » Accor-
ding to the theorem of § 3.4 vector X, is strongly positi-
ve, i.e. X, 540 .
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