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TWO THEOREMS CONCERNING COMMON FIXED POINT OF COMMUTATIVE
MAPPINGS ’

Zdendk HEIRLIN , Prahs

We use the following ﬁotation: if F 1is 2 system of
meppings from the set X into itself, then, for any YcC X ,
F(Y) dis the set of nll f(y), £ € F, y € Y ;instend of
F({y)), F(y) is written. If ¥Yc X, F(Y) € ¥, then FIY dé-
notes the set of 211 f€ F restricted to Y .

The operation in 2ll semi=-groups throughout this remark
is the composition of mappings.

i‘.,et F be a commutative semi-group of mappings from the
set X into itself. F is said to be a maximal commatative
semi-group of mappings, if there exists no mapping from X
into X which cormutes with all mappings from F and does
not belong to F .

Let F be a system of mappings from a set X into it~
self. By r(F) we denote the set of all fe F such ‘that
for each fy & F there exists £, F and £ =£; 0f,

holds. By fl o f2 we denote, as usual, the composition of
meppings f; and f, , that is, fl’o fz(x) = flfrz(x-ﬂ for
every x€ X .

We now examine the situation in which all m;appings from
a system F commute and each of them has a fixed point.

In ordzr to illustrate, let us consider the extvremely

simple system of mappings. Let X consist of six points,
1,24...,6, and F consist of four mappings, fl, fz', f3, f4,

from the set X into itself defined as follows:
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fl. 1 2 3 5 6
f2. 2 1 4 3 5 6
fy: 2 1 3 4 6 5
£yt 1 2 4 3 6 5

Obviousi_y, F 1s & commtative semi-group of meppings. Each
mapping from F has a fixed point, but there exists no com—
mon fixed point of &ll mappings from F . Therefore it is not
true that every commutative semi-group of mappings from a fi=
nite set into itself has common fixed point provided that
each mapping from the semi-group has a fixed point. But this
assertion is true under fassumption that F is a maximal com=
matative semi=group. We prove:

Theorem l., Let F be a maximal commutative semi-group of
mappings from a set X into itself, =»(F) # 8 . If each
f e F has a fixed point, then all meppings from F have pre-
cisely one common fixed point.

If X 1is a finite set, then also F is finite and the
composition of all mappings from F belongs to r(F), and
therefore r(F) # ©¥ . Ve obtain immediately from Theorem 1 :

Corrolary: Let F be a maximal cormutstive semi-group
of mappings frém a finite set X 1into itself, If each f € F
has a fixed point, then all mappings from F have precisely
one common fixed point.

' Proof of Theorem 1 :

Let f’e r(F) . Define a mapping- u from the set X in-

to exp X as follows:

u(x) = F [f"(x)] .
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Assuredly, F [u(x)] ¢ u(x) .
Let yeu(x) . Then y=¢f o £ (x) for some feF.
Therefore F(y) ¢ u(x) . As f’er(F), £ o f e F ,, there
~ exista g € F such that '
o ' £f°=f"0fog,
and hence f£°(x) =f£° o f o glx) = gly) .
This implies u(x) ¢ F(x) , and finally u(x) = F(y) .
If X, X, € X , then either u(x;) =u(x,) or

ulxy) n u(iz) = f . 1Indeed, if x € u(xl).r‘l u(x,), then
x=9f; 0£(x;) =£, 0 £°(x,), where f; & F, £, € F, end
F(x) = ulxg) = ulx,) .

Therefore we can choose x, , a € pf puch that

U u(x,) = U u(x), end u(x, ) N u(x, ) =8 for
aeD xeX 1 2

8 # 8.

Foreach x € X and £€F we have
1 [ex)] e FE'x)]
and hénce »

>~
u [£x)] = u) .
This implies the imsge of % [u(x)] under F 1is contained

-1 -1 .
in u [u(x)] . The sets u [u(xa)] , a € D, cover X

.

and are dis,joiht.
If any of the sets u(x,) contains only one point, then this

point is 2 common fixed point of all mappings from F .

Let u(x,) contain at least two points. We obtain a con-
tradiction.

Denote P, = F | u(x)). F, is a group of mappings from
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the set ulx,) into i’cself; for each a €D, as F,(x)=
= u(x,) for egch x € ulx,) . (See lemma in [1]) . Hence
theré mist exist, for each a € D , a mapping fa € F such
that £l u(x,) # 1lu(x,) , vhere by i we dencte the

identical mapping from X into itself, "e‘ introduce en su-

xiliary mepping g from x into itself as follo's' ,
glu[u(x)] flu[u(x)} ifflu[u(x)]i‘
# 1 u [u(x )] I

and

-1 =1
gl u [u(xa)_] =f£,0¢° | [u(xa)] otherwisw.
-1 i
Ad the sets u [u(xa)] cover X and are disjoint, g is

a mepping from X into X . Certainly, g commutes with
each f€F . As F 1is maximal conﬁmtative semi-group, we
obtain g € F ,

But g~ has no fixed point on X , as for each

xeXglx) e u(x,) for some a € D. glu(xa) €T,
and g [.u(xa) is not identicsl mapping frem ufx,) into
itself. 4s F, 1is a group, g has no fixed point on
u(x,) (See lemma 11n [1});_&18 is a contradiction. All

mappings from F have at least one common.fixed point.
Let Xyr X be common fixed points of all mappings

" from F . Then the mepping f(xY = x; for every x X

commutes with each mapping from F and therefore f € F o
f(xz) =x and therefore X X . The theorem is proved.

Theorem 2. Let f .and g be mappings from an arbitrary

set X into itself, fog=gof . Let f have precisely
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n fixed points, n naturael number. Then, there exi;ts a
natural number k , 1S k& n , suchthat £ and g =

= g2 08 O o0 0 g have a common fixed point.
k—~times

Proof. Let us dencte the set of &all fixed points of f
by Y . Obviously, g(Y)c Y . Hence g|Y is a mapping from
a set Y , vhich has n points, into itself. There must

e.ist @ ¥, 1£kSn, suchthat glYoglYo..og Y
k-times

has a fixed point in Y , and this is the assertion of the
theorem.
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