## Commentationes Mathematicae Universitatis Caroline

Otomar Hájek<br>Homological fixed point theorems

Commentationes Mathematicae Universitatis Carolinae, Vol. 5 (1964), No. 1, 13--31
Persistent URL: http://dml.cz/dmlcz/104955

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1964

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Comentationes Mathematicae Universitatis Carolince

$$
5,1(1964)
$$

## HOMOLOGICAL FIXED POINT THEOREMS <br> Otomer HAJEK, Praha

A concept generalising the Lefschetz number of a map ping is introduced and examined, leading to a fixed point theorem. It is proved that for a map $f: S^{2 n} \rightarrow S^{2 n}, f^{2}$ has a fixed point.
The Hopf-Lefschets theorem [1, ch.XVII, § 1] states that a continuous map $f$ of a triangulable space into itself has a fixed point if a certain numerical characteristic associated with $I$ is nonzero. This characteristic, the Hopf index $J(f)$, may be obtained roughly as follows: $f$ determines an endomorphiem on a (sequence of) group; $J(f)$ is then the (sum of) trace of any trensformation matrix describing the endomorphism.
The fundamental idea developed in the prosent paper is that all transformation matrice describing a given endomorphism are oimilar, so that there are further invariants in addition to the trace. The one considered here is intimately associated with the characteristic polynomial; if non-zero, then some k-th iterate of $f$ has a fixed point, and we may even determine minimel $k$.
The auggestion is ventured that other invariants of matrix eimilarity (e.g. the minimal polynomial, the other elementary factors, the characteristic roots) may also prove interesting.
Of the three sections of this paper, the first two are - 13 -
algebraic, and preparatory in character.

## 1. Single groups

First, the conventions are listed. There is given an integral domain $J$; by a group $G$ we shall always mean an abelian group with $J$ as left operators, and with finite rank over J (denoted as rank G f. Similarly, a subgroup means a J-invarient subgroup, etc. A homomorphism (i.e., a J-inveriant homomorphism) taking a group $G$ into itself will be called a homomorphism of G . A maximal linearly independent aubset of a group $G$ will be called a w-base; thus, a base of $G$ is a wase which generates $G$. Note that w-basea always exist, but bases need not.

Consider a group $G$ and homomorphism $f$ of $G$. With these we may associate - in various ways - two matrices over $\boldsymbol{J}$,

$$
D=\operatorname{diag} \quad \theta_{1}, \quad A=\left(\alpha_{i j}\right)
$$

where the $\theta_{1,} \alpha_{i j} \in J$ are obtained as follows. Take any w-base $x_{1}, \ldots, x_{n}$. Since these elements are linearly independent and

$$
f x_{1}, x_{1}, \ldots, x_{n}
$$

are not; there exist $\theta_{1} \neq 0, \alpha_{i j}$ in $J$ with

$$
\begin{equation*}
\theta_{i} f x_{i}=\sum_{j} \sigma_{i j} x_{j} \tag{1}
\end{equation*}
$$

Thus both $D, A$ are nosquare matrices over $J$ ( $n=$ rank $G$ ), and D is nonsingular.

The next step is to assign a special type of function to each such $D, A$ : for any indeterminate $\lambda$ over $J$, set

$$
p(D, A ; \lambda)=\operatorname{det}\left(I-\lambda D^{-1} A\right)
$$

( I is the unit n-square matrix over $J$ ). We note that $p$ is a nonzero polynomial in $\lambda$ with coefficients in $d J$, the quotient field of $J$, and with degree $\leqslant$ rank G . Naturally, the construction is void if rank $G=0$, since matrices of type 0,0 are not defined; in this case we set

$$
p(\lambda)=1
$$

Lemme 1. Given $G$ and $\mathbf{f}$, the polynomial $p(D, A ; \lambda)$
is independent of $D, A$.
Thus we may Pormulate
Definition 1. Define $p(f)$ or $p(f ; \lambda)$ as $p(D, A ; \lambda)$.
Proof of Lamma 1. We may assume rank $G \neq 0$. In matric notation, relation (1) may be written as

$$
D f(X)=A X
$$

with $x$ a column-vector of the $x_{i}{ }^{\prime} s$. Now consider enother $w$-base $X^{\prime}: x_{1}^{\prime}, \ldots, x_{n}^{\prime}$ in $G$, and

$$
D^{\prime} P\left(X^{\prime}\right)=A^{\prime} X^{\prime}
$$

with $D^{\prime}$ nonsingular diagonal. Since both $X, X$ are $N$-bases, there exist $D^{*}, T$ with $D^{*}$ diagonal and both nonsinguler, which transform $X$ into $X^{*}$, i.e.

$$
D^{*} X^{\prime}=T X \quad .
$$

Left-multiply these three relations by adjoints of $D, D^{\prime}, D^{*}$ respectively, to obtain

$$
f\left(\sigma^{\prime} x\right)=D^{a} A X, \quad f\left(\delta^{\prime} X^{\prime}\right)=D^{-8} A^{\circ} X^{\prime}, \quad \delta^{*} X^{\prime}=D^{* a} T X
$$

Here $\delta^{\prime}=D^{a} D=(\operatorname{det} D)^{n} \neq 0$, etc. Then $P\left(\delta \delta^{\prime} \delta^{*} X^{\circ}\right)$ may be expressed in two ways, leading to

$$
\delta^{\prime} D^{\cdot a_{A}} D^{* a_{T}}=d^{\prime} D^{* a_{T}} D^{a} A
$$

Now continue in the quotient field $d J$ of $J$; here $D^{a}=\delta D^{-1}$, etc., yielding

$$
\left(D^{-1} A^{0}\right)\left(D^{-1} T\right)=\left(D^{-1}-1 T\right)\left(D^{-1} A\right)
$$

But $U=\mathbb{V}^{*-1} T$ is nonoingular, so that

$$
D^{-1} A=U\left(D^{-1}\right) U^{-1}
$$

and therefore also

$$
I-\lambda D^{-1} A_{A}=U\left(I-\lambda D^{-1} A\right) U^{-1}
$$

Taking determinants, $p\left(D^{\prime}, A^{\prime} ; \lambda\right)=p(D, A ; \lambda)$, es wes to be proved.

Definition 2. Let $f$ be a homomorphism of a group $G$; define
(2)

$$
j(f)=j(f ; \lambda)=-\frac{\frac{d}{d \lambda} p(f ; \lambda)}{p(f ; \lambda)}
$$

( $\alpha / d \lambda$ denotee algebraic differentiation of polynomiale). Then $f(f ; \lambda)$ is a rational function of $\lambda$ with coefficiente in dJ (or in $J$ ). Since $p(f ; 0)=1$, there is a formal power series expansion,

$$
\begin{equation*}
f(f ; \lambda) \approx \sum_{0}^{\infty} t_{k} \lambda^{k} \tag{3}
\end{equation*}
$$

where $t_{k}<d J$ are obtedned by the diviaion algorithm from (2); or also by formal differentiation,

$$
k!t_{k}=\frac{d^{k}}{d \lambda^{k}} f\left(f ; \lambda X_{\lambda=0} \in J,\right.
$$

at least if $\mathbf{\omega}$ has characteristic 0 .
The $\approx$ aign in (3) merely denotes a l-1 linear map of the rational functions in $\lambda$ over $J$ into infinite sequencee of elemente from dJ. Ae trivial examples, for $f=1 d$, the identity homomorphiem, we may take $D=A=I$ to obtein $p(i d)=\operatorname{det}(I-\lambda I)=(1-\lambda)^{\text {Peank } O}$,

$$
\begin{gathered}
f(1 a)=\frac{1}{1-\lambda} \operatorname{rank} \theta \approx \sum_{0}^{\infty} \operatorname{rank} \theta \cdot \lambda^{k} .
\end{gathered}
$$

If we take $\mathcal{L}=0$, then $s \in D=I, A=0, p(0 ; \lambda)=1$, $j(0 ; \lambda)=0 ;$ this is alway the case if rank $G=0$. If rank $G=1$, then for any homomorphisen $\mathcal{L}$ of $G$,

$$
j(P)=\frac{a}{1-\lambda a} \quad, \quad a<d v
$$

* The fundamental propertiec of $j($. ) are described in the two theorem to follow. The firat develops the algebraic tool needed later; the second is the besis for the topological applications.

Theoren le Let $I$ be a homomorphiam of a group $G$, mapping a subgroup $H$ into itself. Then $f$ induces homomorphisms $\boldsymbol{P}_{H}$ and $\boldsymbol{P}_{G / H}$ of $\mathrm{H}, G / \mathrm{H}$ reapectively, and

$$
f(f)=f\left(f_{H}\right)+j\left(f_{G / H}\right)
$$

Proof. Define $f_{H}$ ar $f(H$, the partial mapping; by assumption, $\mathcal{I}_{\mathrm{H}}$ is a homomorphisn of H . Let $\mathrm{h}: \mathrm{G} \rightarrow \mathrm{G} / \mathrm{H}$ be the natural homomorphism, define $f_{G / H}$ as $h f^{-1} \rightarrow G / H$
$G / H$; since $f(H) \in \mathbb{H}, \boldsymbol{f}_{G / H}$ is a single-valued homomorph18m G/H

Now take any w-bese $x_{1}, \ldots, x_{n}$ in $H$, and a w-bese of the form

$$
x_{1}, \ldots, x_{n}, \quad y_{1}, \ldots, y_{m}
$$

in $G$. Then $h y_{i}$ Posma wase in $G / H$. In the usual manner, there exist "coofficienta" in $J$ with
(4)

$$
\theta_{i} p x_{i}=\Sigma_{j} \alpha_{i j} x_{j}+\Sigma_{j} \beta_{i j} y_{j},
$$

$$
\theta_{i}^{\prime}=y_{i}=\Sigma_{j} \alpha_{i j}^{\prime} x_{j}+\Sigma_{j} \beta_{i j}^{\prime} y_{j} .
$$

Since 1 espe $H$ into itself, there mast be $\beta_{i j}=0$, so - 17 -
that the coefficient matrix has the form

$$
* \quad\binom{A, 0}{A^{\prime}, B^{\prime}}
$$

where matrices $A$ and $B^{\prime}$ are square. It follows immediately that

$$
\begin{equation*}
p(f ; \lambda)=\operatorname{det}\left(I-\lambda D^{-1} A\right) \operatorname{det}\left(I-\lambda D^{\prime-1} B^{\prime}\right) \tag{5}
\end{equation*}
$$

Obviously $\operatorname{det}\left(I-\lambda D^{-1} A\right)=p\left(P_{H} ; \lambda\right)$; consider the second factor. In $G / H$ we have the w-base hy $y_{1}, \ldots, h_{m} ;$ aleo $f_{G / H} h=h f ;$ from (4), then $\boldsymbol{\theta}_{1} f_{G / H} h y_{i}=\theta_{i} h f y_{i}=$ $=\sum \alpha_{i j}^{\prime} h x_{i}+\sum \beta_{i j}^{\prime} h y_{i}=\sum \beta_{i j}^{\prime} h y_{i}$. Thus $p\left(f_{G / H} ; \lambda\right)=\operatorname{det}\left(I-\lambda D^{-1} B^{\prime}\right)$, and (5) reduces to

$$
p(f)=p\left(f_{H}\right) p\left(f_{G / H}\right)
$$

yielding the required result immediately.
The reason for concentrating on $f($. ) rather than $p($. ) may now be apparent: sums are easier to work with than products - e.g. the proof of corollary 2 to theorem 2 would become unnecessarily unwieldy. On the other hand, some information may be lost in the transition from $p($. ) to $j($. ) : thus if $J$ has characteristic 2 and $p(f ; \lambda)=$ $=1+\lambda^{2}$, then $f(f ; \lambda)=0$.

The following consequence is immediate.
Corollary. Let

$$
G_{1} \supset G_{2} \supset \ldots \supset G_{n}=G_{n+1}=0
$$

be groupe, and $f$ a homomorphism of $G_{1}$ with $f\left(G_{k}\right) \in G_{k}$. Denote by, $f_{k}$ the homomorphism of $G_{k} / G_{k+1}$ induced by $f$. Then $j(f)=\sum_{1}^{n} j\left(f_{k}\right)$.

Lemma 2. Let $G$ be a group and $H$ the J-periodic part of $G$, consisting of all $x \in G$ with $\theta \times 0$ for some $\theta \neq 0$ in $J$. Then any homomorphism $f$ of $G$ maps $H$ into itself, and $j(f)=j\left(f_{G / H}\right)$.
The proof is trivial: rank $H=0$, so that in theorem 1 $\left.j\left(f_{H}\right)=0.\right)$

Thus $j($. ) does not account for the behavior of $f$ on the $J$-periodic part of $G$; in particular, if $P$ maps $G$ into $H$, then $f(f)=j\left(f_{G / H}\right)=j(0)=0$. There is also a converse result:

Lempa 3. Assume $J$ has characteristic 0 . If $f$ is a homomorphism of a group $G$ and $f(f)=0$, then $P$ maps $G$ into the $J$-periodic part of $G$. In particular, if $G$ is J-free, then $f(f)=0$ iff $f=0$.

Proof. $f(f)=0$ implies $p(f ; \lambda)$ has degree 0 , so that

$$
p(f ; \lambda)=p(f ; 0)=1
$$

Thus rank $f(G)=0$, completing the proof.
Theorem 2. Given a homomorphism $P$ of a group $G$. Take $D, A$ as in definition $l$; then trace $\left(D^{-1} A\right)$ does not depend on $D, A$, and will be denoted by $\operatorname{tr}(f)$. Furthermore $n$

$$
j(r ; \lambda) \approx \sum_{0}^{\infty} \operatorname{tr}\left(p^{k+1}\right) \lambda^{k}
$$

Proof. Consider $f$ fixed, so that $p(f ; \lambda)$ is a polynomial in $\mathrm{dJ}[\lambda]$. Let $F=\mathrm{dJ}\left[\lambda_{1}, \ldots, \lambda_{n}\right]$ be the root field of $\operatorname{det}\left(\lambda I-D^{-1} A\right)=0$ (the characteristic equation of $\left.D^{-1} A\right)$. Then $p(P ; \lambda)$ decomposes in $F$,

$$
p(f ; \lambda)=p_{0} \Pi_{j}\left(\lambda-\lambda \lambda_{j}\right)
$$

with $0 \neq P_{0} \in d J$ (we may even omit all $\lambda_{j}=0$ ). Hence

$$
\begin{aligned}
& j(f ; \lambda)=\sum_{j} \frac{\lambda_{j}}{1-\lambda \lambda_{j}} \approx \sum_{k=0}^{\infty}\left(\sum_{j=1}^{n} \lambda^{k+1}\right) \lambda^{k} \\
& \text { and obviously } \quad \Sigma_{j} \lambda_{j}^{k+1}=\operatorname{trace}\left(D^{-1} A\right)^{k+1}=\operatorname{tr}\left(f^{k+1}\right) \text {; } \\
& \text { this completes the proof. } \\
& \text { Corollary 1. } j(f ; 0)=\operatorname{tr}(f) ; \\
& j\left(f^{2} ; \lambda^{2}\right)=\frac{1}{2 \lambda}(j(f ; \lambda)-j(f ;-\lambda)) ; \\
& \text { if } P: G \approx G \text { is on isomorphism, } \\
& \lambda f(f ; \lambda)+\frac{1}{\lambda} f\left(f^{-1} ; \frac{1}{\lambda}\right)=\operatorname{rank} G .
\end{aligned}
$$

There are direct consequences. The next corollary will be needed later.

Corollary 2. The following assertions are equivalent: $1^{0}$ there is on $m$ such that $f\left(f^{m}\right)=j\left(f^{m+k}\right)$ for all $k \geqslant 0$ and $2^{0} \quad j(f ; \lambda)=\frac{c}{1-\lambda}, \quad$ ce J.

Proof. $2^{0}$ implies $\operatorname{tr}\left(f^{k}\right)=c$ for all $k \geqslant 1$, and in particular,

$$
j\left(f^{m} ; \lambda\right)=\frac{c}{1-\lambda},
$$

independent of m; a fortiori, $1^{0}$.
Assume $2^{0}$. Then in particular $\operatorname{tr}\left(f^{m}\right)=\operatorname{tr}\left(f^{m+k}\right)$;
with the notation used in the proof of theorem 2 ,

$$
\Sigma_{j} \lambda_{j}^{m}=\Sigma_{j} \lambda_{j}^{m+k}
$$

$$
\begin{aligned}
& \text { where we may assume all } \lambda_{j} \neq 0 \text {. Now collect all equal } \\
& \hat{\lambda}_{j}^{\prime} \text { s, so that } \Sigma_{t} m_{t} \lambda_{t}^{m}=\Sigma_{t} m_{t} \lambda_{t}^{m+k} \text { with distinct } \\
& -20-
\end{aligned}
$$

$\boldsymbol{\lambda}_{r}$ and positive integers $m_{r}$. Also, omit all $\boldsymbol{\lambda}_{i}$ with $\lambda_{j}=1$. Then we obtain

$$
\Sigma_{r} m_{r} \lambda_{r}^{m}\left(\lambda_{r}^{k}-1\right)=0
$$

Choose $k=1,2, \ldots$, (number of $\lambda_{r}{ }^{\prime} s$ ). It is essily shown that

$$
\operatorname{det}\left(\lambda_{r}^{k}-1\right)=\prod_{r}\left(\lambda_{r}-1\right) \cdot \prod_{r \in s}\left(\lambda_{r}-\lambda_{s}\right) \neq 0 ;
$$

therefore all $m_{r} \lambda_{r}^{m}=0$, i.e. oll $m_{r} \cdot 1=0$. Thus the characteritic of $J$ divides all $m_{r}$, i.e. all $m_{t}$ except that corresponding to $\lambda_{t}=1$. Thus, finnlly,

$$
\begin{aligned}
j(f ; \lambda) & \approx \sum_{k=0}^{\infty}\left(\sum_{j} \lambda_{j}^{k+1}\right) \lambda^{k}=\sum_{k=0}^{\infty}\left(\sum_{t} m_{t} \lambda_{t}^{k+1}\right) \lambda^{k}= \\
& =\sum_{k=0}^{\infty} m_{t} \cdot \lambda^{k} \approx \frac{m_{t}}{1-\lambda}
\end{aligned}
$$

as was to be proved.

## 2. Group sequences

A sequence of groups $\left\{\mathrm{G}_{\mathrm{q}}\right\}_{-\infty}^{\infty}$ shall mean a mapping $q \rightarrow G_{q}$ of the integers into a class of groups, such that $G_{q}=0$ except for a finite set of $q^{\prime} s$, i.e. essentiolly $\theta$. finite sequence. (The conventions of section 1 are preserved; in particular, all $G_{q}$ have the same integrity domain as left operators.) A lower sequence consists of o sequence of groups $\left\{G_{q}\right\}$ and a sequence of homomorphisms $\left\{8_{q}\right\}$ such that

$$
\partial_{q}: G_{q} \rightarrow G_{q-1}, \quad \partial_{q-1} \partial_{q}=0 .
$$

An exact sequence is a lower sequence with

$$
\text { image } \partial_{q}=\text { kernel } \partial_{q-1}
$$

Finally, a homomorphism $P: G \rightarrow G^{\circ}$ of lower sequences

$$
G=\left\{G_{q}, \partial_{q}\right\}, \quad G^{\prime}=\left\{G_{q}^{\prime}, \partial_{q}^{\prime}\right\}
$$

is a sequence of homomorphisms $f=\left\{f_{q}\right\}$ with

$$
f_{q}: G_{q} \rightarrow G_{q}^{\prime}, \quad \partial_{q}^{\prime} f_{q}=f_{q-1} \quad \partial_{q}
$$

(As a curious example, $\left\{\partial_{q}\right\}:\left\{G_{q}, \partial_{q}\right\} \rightarrow\left\{G_{q-1}, \partial_{q-1}\right\}$.) In the case that $G \equiv G^{\prime}, f$ will again be called a homomorphism of $G$.

The Euler characteristic $\boldsymbol{X}$ of a sequence of groups $G=$ $=\left\{G_{q}\right\}$ is defined 8 .

$$
x(G)=\sum_{-\infty}^{\infty}(-1)^{q} \operatorname{rank} G_{q} .
$$

Definition 3. Let $f=\left\{\tilde{I}_{q}\right\}$ be a homomorphiam of a sequence of groups. The Lefschetz number of $f$ is defined as the following element of $d J$ :

$$
J(f)=\sum_{-\infty}^{\infty}(-1)^{q} \operatorname{tr}\left(f_{q}\right)
$$

We define the generalised Lefschetz invariant of $f$
(6)

$$
g l 1(f)=g l i(f ; \lambda)=\sum_{-\infty}^{\infty}(-1)^{q} f\left(f_{q} ; \lambda\right),
$$

a rational function in $\lambda$ over d $J$ (or $J$ ).
As an example,

$$
j(i d)=\frac{1}{1-\lambda} \quad x \quad(G), \quad j(0)=0
$$

Further results may be obtained from those of the preceding section by assembling them as prescribed in (6). Thus, from theorem 2 there follows immediately

Lemma 4. $\quad \operatorname{gli}(1 ; \lambda) \approx \sum_{0}^{\infty} J\left(f^{k+1}\right) \lambda^{k}$.
From theorem 1 we have

$$
\begin{aligned}
g l i(f)=g l i\left(f_{H}\right) & +g l i\left(f_{G / H}\right) \\
& -22
\end{aligned}
$$

for homomorphisms $f=\left\{f_{q}\right\}$ on $G=\left\{G_{q}\right\}$ such that $f_{q}$ map subgroups $H_{q} \subset G_{q}$ onto themselves. In particular (cf. lems 2)

$$
\begin{equation*}
g l i(f)=g l i\left(f_{G / H}\right) \tag{7}
\end{equation*}
$$

where $H=\left\{H_{q}\right\}$ consists of the $J$-periodic parts of $G_{q}$ -
Theorem 3. Let $f$ be a homomorphism of a lower sequence $G=\left\{G_{q}, \partial_{q}\right\}$; consider the sequence of groups $G^{\wedge}=\left\{\right.$ kernel $\partial_{q} /$ /image $\left.\partial_{q+1}\right\}$ and the homomorphism $P^{\wedge}$ of $G^{\wedge}$ induced by $f$. Then $\operatorname{gli}(f)=g l i\left(f^{\wedge}\right)$.

Proof. Define

$$
\mathrm{B}_{\mathrm{q}}=1 \text { mage } \partial_{\mathrm{q}+1}, \mathrm{Z}_{\mathrm{q}}=\operatorname{kernel} \partial_{\mathrm{q}}, G_{\mathrm{q}}=\mathrm{Z}_{\mathrm{q}} / \mathrm{B}_{\mathrm{q}} .
$$

Since $G$ is lower, $B_{q} \subset Z_{q}$ and $G \hat{q}$ is defined. Set $g_{q}=$ $=P_{q} \mid B_{q}$, let $f_{q}^{\prime}$ be induced by $f_{q}$ on $G_{q} / B_{q}$, set $f_{q}=$ $=f_{q}^{\prime}\left(Z_{q}\right.$, let $P_{q}^{\prime \prime}$ be induced by $f_{q}^{\prime}$ on

$$
\left(G_{q} / B_{q}\right) / Z_{q}=G_{q} / Z_{q} .
$$

From the commutativity relation it follows that this is possible. Then theorem 1 applied twice yields

$$
j\left(f_{q}\right)=j\left(g_{q}\right)+j\left(f_{q}^{\prime}\right)=j\left(g_{q}\right)+j\left(f_{q}^{\prime}\right)+j\left(f_{q}^{n}\right) .
$$

Since $\partial_{q}$ maps $G_{q} / Z_{q}$ isomorphically onto $B_{q-1}$, we have $j\left(f_{q}^{n}\right)=j\left(g_{q-1}\right)$, and thus

$$
j\left(f_{q}\right)=j\left(f_{q}^{\wedge}\right)+\left(j\left(g_{q}\right)+j\left(g_{q-1}\right)\right) .
$$

Therefore
$g l i(f)=g l i\left(f^{\wedge}\right)+\sum_{-\infty}^{\infty}(-1)^{q}\left(j\left(g_{q}\right)+j\left(g_{q-1}\right)\right)=g l i\left(f^{\wedge}\right)$ since, for large $|\mathrm{q}|, \mathrm{G}_{\mathrm{q}}=0$ and thus $\mathrm{g}_{\mathrm{q}}=0$. This completes the proof.

For exact sequences kemel $\boldsymbol{\theta}_{\mathrm{q}}=$ image $\partial_{q+1}, f^{\hat{A}}=0$, and therefore

Theoren 4. For any homomorphiam $f$ of an exact sequence of groups, $g l i(f)=0$. There is a weak converse to this theo rem, applying to free groups.

Lemae 5. If $a$ is a lower sequence of free groups (of finite rank), and if $g l i(f)=0$ for every homomorphism $f$ of 0 , then $G$ is exact.

Proal. Assume the free lower sequence $G=\left\{G_{q}, \partial_{q}\right\}$ is not exact, so that there is a $q$ and a generator $x_{1}$ of $a_{q}=\left[x_{1}, \ldots, x_{n}\right]$ with

$$
\theta_{q} x_{1}=0, \quad x_{1} \neq \text { image } \partial_{q+1}
$$

Now define fq: $G_{q} \rightarrow G_{q}$ by

$$
f_{q} x_{1}=x_{1}, \quad f_{q} x_{i}=0 \quad \text { for } 1>1 ;
$$

and $f_{j}: G_{j} \rightarrow G_{j}$ by $P_{j}=0$ for $j \neq q$. It is easily seen that $f=\left\{\mathcal{P}_{q}\right\}$ is a homomorphism of the lower sequence $G$, and

$$
\begin{gathered}
p\left(f_{q}\right)=1-\lambda, \quad f\left(f_{q}\right)=\frac{I}{1-\lambda}, \\
g 11(f)=\frac{(-1)^{q}}{1-\lambda}+0 .
\end{gathered}
$$

Thus for lower sequences $G$, the generalised Lefschets invariant gli may be considered a measure of the departure of $a$ from exactness.
3. Homolery

The convention in this section is that the apaces $X$, and the cantinuous mape $\mathcal{I}$ of $X, f: X \rightarrow X$, belong to an - 24 -
admissible category for a homology theory [af. 2, ah.I]. with the further reatriction that the homology groups of a space are to form a sequence of groups in the sense of section 2 . In particular, triangulable apaces and their continuous maps atiafy these conditions.

If $f$ is a continuous map of a space $X$, we denote by $f_{n}=\left\{f_{* q}\right\}$ the associated nomomorphien of the sequence of homology groups of $X$. Then $f\left(f_{*} q\right.$ ) is defined, and will be denoted by $J_{q}(f)$; similarly $J\left(f_{*}\right)$ and gli $\left(f_{*}\right)$ are defined, and will be denoted by $J(f)$ and $g l i(f)$. Thie would be ambiguous if $X$ were, on its own, a group sequence, and we would epeak of both say $J(f)$ and $J\left(f_{\text {* }}\right)$; hem ever, this case will not occur here.

Then the Euler characteristic $\tau(X)$ and the Lefschets number $J(f)$ assume their clessical meaning [cf. 1, ch. IVII , 8 l.3]. Theorem 4 has several applications. As an illuatration, consider a proper triad [2, ch.1] of spaces ( $A \cup B ; A, B$ ) and its Mayer-Vietoris sequence

$$
\begin{aligned}
\cdots & \rightarrow H_{q}(A \cap B) \rightarrow H_{q}(A)+H_{q}(B) \rightarrow H_{q}(A \cup B) \rightarrow \\
& \rightarrow H_{q-1}(\dot{A} \cap B) \rightarrow \ldots
\end{aligned}
$$

Let $P$ be a continuous map of $A \cup B$, taking $A, B$ into themselves. Since the Mayer-Vietoris sequence is exact, $g l i(f)=0$. Assembling terms,

$$
0=g l i(f)=g 11\left(f_{A \cup B}\right)-\left(E l i\left(f_{A}\right)+g l i\left(f_{B}\right)\right)+g l i\left(f_{A \cap B}\right)
$$

on applying theorem 1 to be the direct sum terms. Hence

$$
g l 1\left(f_{A \sim B}\right)+g l i\left(f_{A \cap B}\right)=g l i\left(f_{A}\right)+g 11\left(f_{B}\right),
$$

the generalised Mayer-Vietoris Pormula: it reduces to the
classical one on taking $f=$ identity and multiplying througk by $2-\lambda$.

Similar arguments may be carried out for other exact sequences of homology groups. E.g.

Lemma 6. $\quad \operatorname{gli}\left(f_{A, C}\right)=\operatorname{gli}\left(f_{A, B}\right)+\operatorname{gli}\left(f_{B, C}\right)$
for a triple $A=B=C$ of spaces and a continuous map $f$ of $A$, taking $B, C$ into themelves.

Homotopic maps $f_{1}, f_{2}$ of a space $X$ have coinciding $f_{1 *}=f_{2 *}$, so that also $j_{q}\left(f_{1}\right)=j_{q}\left(f_{2}\right)$ and $g l i\left(f_{1}\right)=$ $=g l i\left(f_{2}\right)$. A related result is

Lemma 7. To every triangulable metric space $X$ there is an $\varepsilon>0$ such that if two continuous maps $f_{1}, f_{2}$ of $X$ are $\varepsilon$-near, then $j_{q}\left(f_{1}\right)=j_{q}\left(f_{2}\right)$ for all $q$.

Proof. Take a triangulation of $X$, and let $\left\{U_{i}\right\}$ be the covering of $X$ by open stars of vertices; let $2 \varepsilon$ be the Lebesgue number of this covering.

Now take $\varepsilon$-near continuous maps $f_{1}, f_{2}$ of $X$. Then, in $X \times X$, each point of

$$
\left\{\left[f_{1} x, f_{2} x\right]: x \in X\right\}
$$

is $\varepsilon$-near the diagonal, so that $\left\{U_{i} \times U_{i}\right\}$ cover this set. Then $\left\{\mathrm{P}_{1}^{-1}\left(U_{1}\right) \cap \rho_{2}^{-1}\left(U_{i}\right)\right\}$ cover $X$. It onfy remains to proceed as in the classical simplicial approximation theorem [2, ch.II, § 7 ] to obtain a common simplicial approximation $g$ to both $f_{1}, f_{2}$, whereupon $f_{q}\left(f_{1}\right)=j_{q}(g)=j_{q}\left(f_{2}\right)$.

Lemma 7 may also be formulated thus: consider the set of rational functions over $J$ in the discrete topology, and the aet of continuous mappings of a triangulable epace with the uniform topology; then $j_{q}$ is uniformly continuous.

Our main interest is in the Lefschetz-Hopf homological fixed-point theory, and specifially, with these four statements [c尺.1; ch.XVII, § 1] :
$1^{0}$ The Lefschetz number $J(f)$ may be computed within the chain complex (Hopf formula),
$2^{0}$ It may also be computed within the weak homology groups (Betti groups modulo their periodic parta),
$3^{0}$ It may also be computed within the homology groups with integers-mod 2 as coefficient group,
$4^{\circ}$ If $J(f) \neq 0$ then $f$ has a fixed point.
Assertion $1^{0}$ is reduced to a group-theoretic proposition, andgeneralised to the gli invariant in lemma 2 and formula (7). Similarly for $2^{\circ}$, in theorem 3 ; in fact, this holds also for the $j_{q}$ - invariants. Assertion $3^{\circ}$ is not group-theoretic, and will be noticed in lemme 8 .

Concerning $4^{\circ}$, we may apply this result itself to obtain the following generalisation of the Hopf-Lefschetz theorem: Let $f$ be a continuous map of a triangulable space into itself. If $g l i(f)+0$, then some iterate of $f$ hes a fixed point. More precisely, if the $k$-th coefficient $J\left(f^{k}\right)$ of the formal series of gli( $f ; \lambda$ ) is nonzero, then $f^{k}$ has a fixed point.

This generalisation is rather trivial (nevertheless, see the corollary below). A more interesting result may be obtained in conjunction with lemma 6 (with $C=0$; a formulation for triples is also possible):

Theorem 5. Let ( $\mathrm{X}, \mathrm{Y}$ ) be a triangulable pair of spaces, and $f$ a continuous map of $X$ taking $Y$ into itself. If

$$
g l i(f) \neq g l i(f \mid Y)
$$

then some iterate of $f$ hae a fixed point in $\overline{X-Y}$. More precisely, if $\frac{\rho^{\underline{K}}}{d \lambda^{\underline{Z}}}\left[g 11(f ; \lambda)-g l i\left(f \mid x ; \lambda \|_{2=0} \neq 0\right.\right.$, then $f^{k+1}$ hee a Pixed point in $\overline{X-\bar{Y}}$.

Corollany. For every continuous map $f$ of an even-dimenaional aphere into iteelf, either $f$ or $f^{2}$ has a fixed point.

Proof. The statement is manifestiy true for $S^{0}$; therefore consider $s^{2 n}$ with $n>0$. Take the integere $C$ as coefficient group. It is well known that $H_{0}\left(S^{2 n}\right)=C=$ $=H_{2 n}\left(S^{2 n}\right)$, the remaining groups being trivial. Also, it is known that

$$
\operatorname{tr}\left(f_{* 0}\right)=1, \quad \operatorname{tr}\left(f_{* 2 n}\right)=d
$$

where the integer $d$ is called the degree of $f[1$, XVII, 5 1.43]. Since the corresponding groupe have rank 1 , we mat have

$$
j_{0}(f)=\frac{1}{1-\lambda}, \quad j_{2 n}(f)=\frac{d}{1-\lambda d}
$$

and therefore

$$
g 11(f)=\frac{1}{1-\lambda}+\frac{1}{1-\lambda d} \approx \sum_{0}^{\infty}\left(1+d^{k+1}\right) \lambda^{k} .
$$

Thus either $1+d \neq 0$, the first coefficient $J(f)$ is neam sero, $P$ has fixed point; $\mathrm{pr} \mathbb{d}=-1$, whereupon the second coefficient $j\left(f^{2}\right)=2$, and $f^{2}$ has a fixed point.

Coniecture. Let $I$ be a continuous map of a product of $n$ oimplexee and even-dimensional apheres. Then one of $f$, $\mathbf{r}^{2}, f^{4}, \ldots,{r^{2}}^{(2)}$ hae a fixed point.

For odd-dimensional spheres, the situation is also odd: it is posible that no iterate of a map $f$ hes any fixed points
(e.g. in $s^{1}, f(z)=e^{2 s i \alpha} z$ with real irrational). However, then $P$ must map onto, since otherwise it would be inessential [2, ch. XI, § 2 ], i.e. homotopic to a constant map $c$, which then hes $g l i(c)=j_{0}(c) \neq 0$ : more general$2 y$, all retractions have some $j_{q} \neq 0$. A further generalisation of this is the following

Theorem 6. Let $f$ be a continuous map of a space $X$, and let $f^{n} \rightarrow f^{\infty}$ uniformily with $n \rightarrow \infty$. Then $Y=$ $=f^{\infty}(x)$ is the set of fixed points of $f$, and

$$
J_{q}\left(I^{m}\right)=\frac{r \operatorname{senk} H_{q}(Y)}{1-\lambda}
$$

for all $q$ and $1 \leqslant m \leqslant \infty$.
Proof. Firat take the apecial case that $P$ is a retraction: then $f^{n}=f$ for all $n \geqslant 1, f^{\infty}=f, Y=f(X)$ is indeed the set of fixed points of P . Let $1: Y \subset X$ be the inclusion map, and $g: Y \rightarrow Y$ the map induced by $I$; thus $P=18$, and $g i=1 d_{Y}$, the identity map of $Y$. Furthermore [2, ch.I, exerciae C2],

$$
H_{q}(X)=\text { image } i_{* q}+\text { kernel } \varepsilon_{* q}
$$

From theorem 1 , then, $f_{q}(f)=j_{q}\left(f_{1}\right)+j_{q}\left(f_{2}\right)$ where $f_{1}$, $s_{2}$ are induced by the direct summends.

For $x \subset$ image $i_{* q}$ we have $f_{1} \times=f_{* q} i_{* q} y=$
$=i_{* q} g_{* q} i_{* q} q^{y}=i_{* q} y=x$, i.e. $f_{1}$ is the identity map of image $1_{q}$. Since $i_{k q}$ is $1-1$,

$$
j_{q}\left(f_{1}\right)=j_{q}\left(1 d_{\gamma}\right)=\frac{\operatorname{rank} H_{q}(Y)}{1-\lambda}
$$

As for the second term, take $x \in$ kernel $g_{k q}$; then $f_{2} x=$
$=f_{\text {* } q} x=i_{\text {a } q} g_{x+7} x=0$, so that $f_{2}=0$ and $j_{q}\left(f_{2}\right)=0$. Thus finally

$$
j_{q}(f)=j_{q}\left(f_{1}\right)+j_{q}\left(f_{2}\right)=j_{q}\left(f_{1}\right),
$$

proving the special case of our theorem.
Now return to the general case described in the assumptLons of the theorem. It is simple to show that $Y$ is the set of Pixed points of $P$. Obviously $f^{\infty}$ is a retraction of $X$ to $Y$, so that the apecial case applies,

$$
j_{q}\left(f^{\infty}\right)=\frac{\operatorname{rank} H_{q}(x)}{1-\lambda}
$$

Since $f^{n} \rightarrow f^{\infty}$ uniformly, $f_{q}\left(f^{n}\right)=j_{q}\left(f^{\infty}\right)$ for all sufficiently large $n$; now merely apply corollary 2 to theorem 2 . This concludes the proof of theorem 6 .

Problem. Frove that $J_{q}(f)=\frac{\text { rank } H_{q}(Y)}{1-\lambda}$ whenever $f$ Is a continuous map of a space $X$, and $Y$ is the set of fixed points of $f$. (mhat is, without assuming that $f^{n}$ converges uniformly.)

As an elementary illustration to theorem 6 , consider a contraction map $f$ of the unit ball in euclidean n-space. By the Banich theorem, $f^{n}$ converges uniformly to a constant map, whose value is the unique fixed point of $\mathbf{P}$. Hence

$$
\begin{aligned}
& j_{q}(f)=0 \quad \text { for } \quad q \neq 0 \\
& g l i(f)=j_{0}(f)=\frac{1}{1-2}
\end{aligned}
$$

Finally, we shall consider the dependence of the gli characteristic on the coefficient group of the homology theory. The argument depencis, essentially, on these two assertions: the
invariance of homology theory theorem [2, ch.III, 10], and our theorem 3 applied to show that gli may be computed within, say, the ordered chain complex.

Thus, consider two homology theories $\mathscr{H}, \overline{\mathscr{H}}$ on triam gulable spaces; $\mathscr{H}$ is to have as coefficient groupa the integers; the coefficient group of $\overline{\mathscr{R}}$ is $G$, an abelian group with an integrity domain $J$ as left operators. Let $a$ be the unit element of $J$. Let $j_{q}, \bar{J}_{q}$ and gli, $\overline{g I I}$ be the corresponding characteristics of continuous maps. Then

Lemma 8. $\overline{\operatorname{III}(f)}=g l i(f) e$
(Note that $g l i(f)+0 \geq \overline{g I I}(f)$ is not excluded.)
Proof. By invariance of homology theary, $\mathscr{H}$ may be obtained from the ordered chain complex $0=\left\{C_{q}(K), \partial_{q}\right\}$ corresponding to a simplicial complex $K$, and $\overline{\mathscr{H}}$ may be obtained similarly from $\bar{O}=\left\{C_{q}(K)(2) G, \partial_{q}\right\}$. Take a simplici al map $f$ of $K$, and the homomorphism $f_{*}$ of 0 induced by $f$. To define $f\left(f_{*}\right)$, matrices $D, A$ over $C$ were employed. But then $D_{0}, A e$ may be used to define $\bar{j}\left(\bar{f}_{* q}\right)$ for the homomorphism $\bar{f}_{*}$ of $\bar{\delta}$ induced by $f$, and thus $\bar{J}\left(\bar{f}_{* q}\right)=j\left(f_{* q}\right)$ e. References
[1] ALEXANDROV P.S., Combinatorial Topology (in Russian), 1947, Gostechizdat., Mos cow-Leningrad.
[2] EILENBERG S.,STEENROD N., Foundations of Algebraic Topology, Princeton University Press, Princeton, 1952.

