Commentationes Mathematicae Universitatis Carolinae

Jozef Gruska
Structural unambiguity of ALGOL MOD

Commentationes Mathematicae Universitatis Carolinae, Vol. 6 (1965), No. 3, 281--327

Persistent URL: http://dml.cz/dmlcz/105018

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1965

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/105018
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinee

6, 3 (1965)

STRUCTURAL UNAMBIGUITY OF ALGOL MOD
Je. GRUSKA, Bratislava

1. Introduction

The developing of the language ALGOL 60 was a very jmpor-
tant event in the development of automatic programming.

The form and exéctnese by which the language ALGOL 60 was
described (in contradistinction to description of languages
developed until that date), the abundance and generality of
its means of expression, the difficulty arising from the con-
struction of translators, particularly effective translators,
considerably stimulated the interest in progamming languages,
especially in ALGOL 60, in problems of translation, and, more=
over, in context=free grammars as one of the succesful means
for language description.

In developing the language ALGOL 60 it was desired to
create a machine independent language that would be suita\ble
for the description of algorithms of numerical mathematics
and approach as closely as possible the standard mathematic
notation. Good readibility with little further explanation and
the capacity of being translated into machine programs were
to be the features of that language. Further, there had to bé
developed a language with such high degree of exactness of de-
scription that an algorithm described in this language and

translated by means of translators designed for different

~ 281 -

computers would yield the same result when used on different
computers (with the exception of differences caused by diffe-
rent preoision of arithmetic), Soon, however, it became obvious
that this objective has not been attained. At the construction
of translators it had been found that the description of that
Janguage is not as clear and precise as it has been assumed
and needed. As a consequence of this authors of translators
inclined to divergencies in explaining the description of
ALGQL 60, [1] and one of the most important objectives - the
unifor;xity of translation - was not achieved.

The use of context-free grammars for the description of
syntax of ALGOL 60 not only essentially increased the interest
in the study of these grammars but in connection with ALGOL 60
some new problems arose in this field: structural unambiguity
of context-free grammars (see [5]) and a definition of seman-
tics for lt;nguagea the syntax of which is given as a context=-
-free grammar.

The importance of structural unambiguity comes forward in
connection with the language ALGOL 60. It has been pointed
out by many authors that some ambiguities of the semantics of
ALGOL~60 were coixsequencee of the structural ambiguity of con-
text-free grammar describing the syntax of ALGOL 60. (For ex-~
ample statement: if a then for i : =1 ghile n do
a then b glse ¢ .) It seems that the opinion that
ALGOL 60 was structurally unambiguous was generally accepted
when the Report [1] was published and also each time after &
change was made to remove an ambiguity pointed out by an ex-~

ample. Thus, the experience with ALGOL 60 shows that it may
happen that a context-free grammar, the structural unambiguity

- 282 -

of which is quite obvious, is not, in fact, structurally unsm-
biguous.

The problem of the definition of semantics has been studied
by V. Fabian, [7) for more general systems, called languages in
his paper, than context-free grammara. He investigated such se-
mantics S (a semantics is simply a transformation defined on
the set of terminal texts derivable in a given language) that

S[A,t], for a text + derivable from & symbol A 1is de-
termined, roughly speaking, by the way in which the text
is derivative from the symbol A , and showed that for such
definition of semantics the structural unambiguity of a given
language is very important. (More exactly the weak structural
unambiguity.) A

It would be very desirable if there could be given an al=
gorithm for deciding for any context-free grammar, whether or
not it is structurally unambiguous. Such an algorithm does not
exist (D.G. Cantor [2], R.W. Floyd [8], N. Chomsky and M.P.
Schutzenberger [4)) even for very simple context-free grammar
(A. Greibach [11)). Hence, for some grammers it can be very
difficult to decide‘whether or not it is structurally unambi-
guous.

Of course, this does not mean that it is impossible to de-
vise methods which may be useful to decide at least for some
context-free grammars, whether or not they are structurally
unambiguous. Some methods of this kind have recently been in-
vestigated by V. Fabian [7) and J. Oruska [12] for languages
defined in [7).

The present paper is devoted to showing that the results
of papers [7] and [12] have made it possible relatively simply:

-283 -

to prove the structural unambiguity of language ALGOL MOD (the
definition of ALGOL MOD is given in Section 5), which is the
slight modification of ALGOL 60.

In the following two sections we introduce basic notations,
definitions and some results from papers [7,12,13,14] which will
be useful in Section 6. In Section 4 the structural unambiguity
of the language ALGOL 60 is investigated. The definition of AL-
GOL MOD is given in Section 5 and the proof of structural unam-
biguity of ALGOL MOD in Section 6.

2, Bapic notations and defipitions
In this section we introduce basic notations and definitions
from Fabian’s paper [7].
2,1, Setg. By { x; €(x)} we denote the set of all such
X which satisfy condition ¥ (x) . {x; € (x,0)} is
an abbreviation for {Xx ; there is a @ such that €(x,8)
holds} . A denotes the empty set.
2.2, Trapsformations. If F is a transformation, then by
0 F and r F we denote the domain and the range, respecti-
vely, of F ; by F(x) or FXx = if there is no danger
of misunderstanding - we denote the value of F at x . If
F and G are transformations then F G X means F(G(x)) -
It Mcd F , then symbol F, denotes the partial trans-
formationon M
2.3. Sequences. If t is a sequence (we shall consider on-
1y £inite ones), then by t(i) or t1 we denote the
i~ th element of t . (Since t can be considered as the
transformation defined on a set of integers.) At 1is the

- 284 -

length of t, A denotes also the empty sequence.
By [a;,Qy,--:) @p1,(or a,a,.-- X, = in examples)

ve denote the sequence t of the length m. such that t1 = &
tor 1 €1 & n .

If t isasequence, 1 & 1 £ At, 1&7 & At , then by
t %7 we denote the sequence of the length 7+1-1 (or
0)if 4 24 (if 4 < 1) such that t™9 k)=t (irh-1).

If M 1is a set of sequences, we define the sets
pymby M ={t1; At 2 4, t M} -
’.“_"L"_"bé M={tat; At =21,te M}
pymtr M={ti;teM 1¢i <€ At}
of all first symbols, last symbols and symbols, respectively,
of sequences in M
If M 1is a set we define the set
HAM={t;t is a sequence and ayml {t}c M}
of all sequences of the elements in M .

2.4. a h s .8

By x we denote the operation of concatenation of two se~-
quences.

If 2 1is a sequence the elements of which are sequences,
then by TTx we denote the sequence TI1x 2 x...xTAT .
T is a decomposition if T € 4 A M , e if T is a
sequence of sequences. We say that < is a decomposition of
t 1ir Te=t.

Exapple 1. T, =~ [alc,ce, ef] and 1:2=£a.b-c,/t,ce, ef)
are two decompositions of the sequence t = alreceef .

With every decomposition < we associate the sequence

LT (so-called the index-decomposition of T) of integers
such that A(LT)=AT +1 and x4 = (M)X xGE+1)

- 285 -

if we denote X = (7 .

Exagple 2. If T, and 7, ere as in Example 1, then
vey=01,4,6,81, ¢%, =(1,4,4,6,81 .

If 7, and 7T, are decompositions such that AT T, =
= JL‘C’z » then we define a new decomposition = = T, © T,
as the decomposition of the length A T, such that Ti=
- n-t,z(x,i,x,ru N-1 L ore x, = L%, -

Example 3. If v, =lat;c,de, f1, ¥ =[ab;e,g,4j,A,c d]
then T = ¥, @ T, = [ate, 9 ij; ed] -

2.5. Lgnguages. The concept of language which is intro-
duced in the following (what we call here a language may al-
80 be called a grammar of a language) is a generalization of
the concept of context-free grammar of N. Chomsky [3]. A ge-
neralization consists in that the set of rules and the set of
non-terminal symbols can be infinite.

2.5.1. Detinition. (Def. 5.1,[7]) £ 4s a language if
£ 1s a transformation, if there exists a set A such that

(1) d€cA,rLc{MAF+FMcnr A}

2) [AJE LA ¥ 2on every Aed £ .

Hence, for every A € ol £ , £ A 1s a non-empty
set of finite sequences (but it is possible that £ A = {A},
i.e., LA consists of one sequence- the empty sequence)
the elements of which are from A .

With a language 3 we associate the alphabet at £ de-
fined as the smallest set A for which (1) holds. The ele-
ments of a L will be called symbols of £ . The elements
of the sets dl L, al=aX-aL, L= paL, GL= s, L
are called metaaymbols,(non—terminal symbols),terminal sym-

bols, strings, terminal strings, respectively, of £ ..
%) see the following page

- 286 -

XX) 45 an abbreviation

We shall write &L: [Al=a b
for Aedl L, beXA . The expression [Al=2 b can
be called the rule of language with the left side [A] and
the right side b . The concept of language can also be i-
dentified with the concept of a set (in general infinite) of
rules such that no rule has the form [A] => [A] (see con=
dition (2)). The rules of the form [Al => A and LA]) =
=>[B] are permitted. oy

We write £ : Q@ w=p b if there are strings 9., @,
qQ; end a metasymbol A such that a =@, x[AIxq;, b=
=@, %q,%xqy, L:[Al= g, . We say that 6 1is a derivation
of a string tz from t, if 6 is a sequence, A6 > 1,
61=t,,6A6=t, and 6i =) 6 (i + 1) for © = 1,2,...
e A6~ 1.We write t, — ¢, if there is a derivation
of tz from t1 . We write t1 = t, if either t, = tz
or t, — tz .

If there is no danger of misunderstanding the symbol spe-
cifying the language will be deleted in = , —> . Now

we define the ““t(:ﬂ,A)-{t;[A]—-)t}

tL=U{t(L;A);Acd L}

tL=tLng L
{t; (A=t }

x) We distinguish between a symbol A and the sequence [A]
which has the length 1 .

xx) The symbol ==<) and the symbols w=» , —> introduced
below are used in this paper in the same meaning as in [7]
and hence in an other meaning than in some other papers (for
example [3]).

- 28%-

¢f all A =~texts, texts, terminal texts, r-texts (rule texts),
respectively, of & -

The fact that for every metasymbol A , the set of all ru-
les of the form [A] ==> b can be infinite, seems to be the
most important in this generalization of the concept of context-
-free grammar. The consequence of this is that any set of
strings can be generated by a language in our sense (it is suf-
ficient to 'consider languages such that the set of metasymbols
and the set of all r-~texts which are not terminal, are finite),
which is not true for context-free grammars and which can be
important in some cases. Moreover, context-free grammars are
used as t‘he means for defining some sets of strings chiefly be-
cause by using these grammars it is possible to define simul=~
taneously a structure of strings. If for some sets of strings
the structure of strings is not too important (for example for
identifiers, s'trings, comments in ALGOL 60), it might be sim~
pler to define these sets otherwise. Moreover, finiteness of
the set of rules seems to be irrelevant to the study of struc-
tural unambiguity. The generative capacity of the language is
not the object of our study.

Example 4. Languages X, , %, eand £, are given by

their set of rules.
i,1zA=-7&cAd ZZ:A—PBC ,'is:A—p Al

B = e B =D A=> Ac
A= f C =D A= a
A = ecfd B = a

A= FD cC.= &4

F = ec D =A

D = fd

- 288 -

2,6, Gprammgtical elements. [A, t] is a (terminel)
grammatical element if A is a metasymbol and ¢+ is8 a
(te:'minal) text such that [A] — ¢t , By gt (g &£)
we denote the set of all grammatical elements (terminal gram-
matical elements) of the language & -

2.7. Stryctureg. We say that & is an o =-decomposi-
tionof t if < 1is a decompositionof ¢ , X 1is a
string such that Aot = A T and [xi1] => =i for
1 &1 & Ao .

We say that [oc, 2] is the strugture of a grammati-
cal element [A, t] if one of the following conditions is
satisfied.

(1) LAl = &« = t | ~ 1is an o« =-decomposition
of t .

(2) LAl=>t and « =[A), ==L(t].

If a grammatical element g =L[A,t] has a structu-
re [o,T] such that (1) holds, then [« ,] characteri=
zes in a certain meaning, the way by which t has been deri-

vated from A (see Fig.l).

P PN O 2 1 o o & J‘t
T Tz[7 T
\ |t /
N %2, 43 %4
. @
A
FI6.1

- 289 -

It seems to be convenient to define [[AJ, [t]] as
the structure of [A, t] ir [Al =)t ., (0f course, if
[Al=>t then [A,t] can have a structure [oc, 7]
such that (1) holds.)

Ir 9 is a grammatical element of the language £
then by Sx g (ng.) we denote the set of all structu-
res [t , =] (such that o %+ [A]) of 9 and by Qg
the set {gy3[x, v) €§t9.,éed.oc,gv,-50ci, rileg L} -

Bxagple 5. Consider languages &£, eana &, from ix-
ample 4. The grammatical element [A, ecfdleg £, has
three structures: [[AJ, fecfd]] ,[BcAd,[e,c,f,d]1] ana
[FD,Lec,fd 1] . The grammatical element [A,D]e g%,
has two structures [BC, [A,D]] and [BC,[D, A])] .
For g = [A, ecfdleg &£, we have
B9 = {(B,el,[A f1,[F,ecl, [D,fd]} -

2.8. Structural ungmbjguity. Every grammatical element
has a structure (Theorem 6.5, [7]). If a grammatical element
g has exactly one structure, then g is said to be struc-
turally unambiguous (shortly s.u.). If every (terminal) gram-
matical element of a language £ 1is s.u., then &£ is
séid to be (weakly) structurally unambiguous.

Exagple 6. Languages 1 and X , from ixample 4
are not s.u.; 23 is s.u.. It is easy to see that .‘fz is

weakly structurally unambiguous but not structurally unambi=

guous (see Example 5).

3. Stpructural upagbiguity of lansuages
In papers [7,12] some necessary and sufficient conditions

~ 290 -

for a language £ to be s.u. have been proved. Many of the=
se conditions are in such form that a given language £ is
s.u. if and only if so is a simpler language i,' . In this
section some of these results, which are needed in Section 6,
are given, 4

3.1. Henceforth only such languages will be considered in
which the following conditions are satisfied:

(1) ad end{a;AecdsL,[Almyonég L} are
finite sets, .

(2) £:t -t fornostring t € 6 &£
although the results in paper [71 have been proved for langua=-
ges without limitations (1) and (2).

The condition (1) means that the set of metasymbols is fi=-
nite and for every metasymbol A there is only a finite num-
ber of rules [AJ => b such that b is not terminal
string. However, the set of all rules can be infinite. If the
condition (2) is not satisfied then & is not s.u. (Theoren
2.6,[141).

3.2, Theorem. (Theorem 9.12,[7]) Let &£ be a language
and A a set of metasymbols such that if Be d ¥ -4 ,
[B]=» t then (@ n M!_’ {t} = A . Let every[A,tle

€gXL bes.u if A e @ . Then £ is s.u. if and only

. . x)
if so is ';('al£~a- .

One of the most important concepts of paper [7] is that
of reducing transformation.

3.3. Definjtion, (See Def. 9.1,[7] and Theorem 2.12,[14]),
Let there be transformations V, R and o defined on

x) See 2.2, i.e. & is a language such that

de -a
A, ,~d-a ama £, (A)=LA.

-291 -

qz such that for every g=[Aj5;tle g & , every
structure [oL, ¥] of g we have:

(1) pg =LA, Vgl ,

(2) Rg isa Vg =-decomposition of t ,

(3) there is an & =decomposition § of Vg, such that
v =§® Rg,

(4) if [Al=> t , then Vg €{LA], t },

(5)if pg = ¢, ¢, €Qg then pg, = g,
Then @ 1is said to be a reducing transformation.

If g =LA, t],then, by (2) and (3),[A)=> vg=t.
Hence either g = [A,[A]] or pge gL . If
Vg =LAl | then, by (3), [A] => ¢t and the grammatical ele-
ment [A, t] is s.u. If Vg # [A],then, with respect
to (3), the grammatical element g has exactly so many
structures as g -

The importance of reducing transformations follows from

the following theorem.
3.4. Ihcorem. (Theorem 9.4, [7]) Let @ be a reducing

transformation for a language & . Then X is s.u. if and
only if every (@ -invariant grammatical element g (i.e.
such that p g = @) is s.u.
Thus, investigating structural unambiguity it is not ne-
cessary to examine all the set 9 4 but only
{9,; g =g f where P is a reducing transformation.
A further important concept in paper [7] is that of isolab-
le set.
3.5. Definition. (Def. 9.7,[7], Theorem 4.1,[12]) A non-
empty set Q. of metasymbols is said to be isolable if there
is a reducting transformation (@ such that

1) if eg = ¢9,9,€Q@g, ¢, =[A,t),then A ¢ Q4 .
-292-

As a consequent of Theorem 9.13,[7] we have:

3.6. Theorem. Let @ be an isolable set of metasymbols

of £ and let every [A,tle€gX, Aed be s.u. Then
&£ is s.u. if and only if so is xd‘c_a .

Now we shall investigate the relations between the struc-
tural unambiguity of a given language &£ and a new languar~
ge é&, which is created from <€ ° in a way that in r-texts
of & all symbols from a set . of metasymbols are repla=-
ced by new terminal symbols.

3.7. Definition, Let & be a language, @ a set of
metasymbols and ¢ & transformation such that

1) dg =af, ga=a ita¢l, ga ¢ 3L
if ael .

Denote by ,‘Cz the language defined as follows:
A= df and XJA={Fox; xeXLA}

where At

gt =£E Lgtil]l for every string t .

A further important result for isolable sets is:

3.8, Theorem., (Theorem 9.11,[7]) If (A is an isolable
set of a language &£ and ¢ an one-to-one transformation
satisfying (3.7.1), then &£ is s.u. if and only if so is
2

3.9. Definition. Let < be a transformation such that
(3.7.1) holds and, moreover,

(1) (A, A, e AIN(PA; =g A,) 1if and only if
(LA A R (L, A) ¢ KAT -

If both languages £ and :CZ are s.u. or both are not
8.u., then Q. 1is said to be a weakly isolable set.

Hence, if (A is an (weakly) isolable set of metasym—-

bols of & language o€ , then & 1s s.u. if and only if so

- 293 -

is a simpler language.’ The rest of this section is devoted to
the sufficient conditions for a set @ to be .isolable(or
weakly isolable. Here the concepts of recognizable and strong=-
1y recognizable set play an important Tole. Roughly speaking
aset A of metasymbols is recognizable (or strongly recog-
nizable) in a language L if it is possible to recognize
in texts of the language the presence of inserted texts

t,e {t;[Al—>t A e A}(and their beginnings and
ends) in a way that certain recursive properties are satis-
fied (see (3.10.2) and (3.11.2)),

3.10. Defipition.X) (Def.3.1,[12]) A subset @ c d £

is said to be recognizable (f =-recognizable) if there ex=-
ists a function f euch that df c gL , 1€
€f[A,t]1 £At for eachfLA,t] e ol f
ing c;)ndit:ions are satisfilead:

and the follow-

(1)1 Aea, [Al—>t ,then [A,t] e df ; if
(Al = t,[Atledf,then Acd -
(2) 1r
(2a) [A,tledt , fax,2l1eS[A,t],
y X7 & FLA,t1< xlgi+1)
then

X=L7T

(2b) Lx F1= T4 implies f[A,x]l =7 and
[XGor TFoledf forno 1€ 7. & A et

(2¢) [¢jl— vj implies flaj, vj1 =
-4[A,‘£]"‘Xj+4 .

x) The examples of recognizable and strongly recognizable sets
are given in Section 6.

- 294 -

(3) £ 9.&9,:8 and Gg N df £ A, then
g € df.
3.11. Definition. (Def. 3,2[12]) Let @ be an F =-re-

cognizable subset of of £ . We shall say that the functions
£, end f, indicate the beginning and the end for f if
df,=df=df, ,1a£g &« fg ££g %At for each g =
=[A,tledf and the following conditions are satisfied:
(1)1 [AJ=> 1t then £,[A,t]=1,f[A tl=At.

(2) 1 .
(2a)[Al=t, [x,T]e 3[A,t], x=tT, xj#flAt]l<
then <(Fj+1),

(2b) [t j] =75 4mplies £,[A,t]=1,f, [A,t]l=At
(2¢) Locj] - 5 implies £, [A,t]=f [ocg,z7I+xj~1
for A=0,1.
” 3.12, Definition. A subset @ c o & is said to
be strongly recognizable if there exist functions £ , f
and f, such that @ is f -recognizable and the func~
tions £ and f;, indicate the beginning and the end for
+ . Now we define the sets of left and right delimiters for
aset A cd

Ldel A= pymly (t;Ac A, [(AlDa; 16i€Ao, il 20,81 Qs
“’(1,1- 1)_’ *;
ndel Q= symb; {t; Acad &, [Aldx, 1564 %A, Lail=>, AALEL ;

The following lemma gives certain sufficient conditiona
for a set (I to be strongly recognizable.

Roughly speaking, it is the case that if for a text ¢
and an 1 such that 1 £ i % At we know that a sub~
string t@'*) | 7 £ i & R , was derivated from
an A € A then either & = At or _k is determined

- 29§ -

by the first pair of symbols such that the first of these sym~
bols belongs to the set symb Q and the second one is
the right delimiter for @& . Similarly for 3F :

3.13., Lepmge (Lemma 3.5,[12]) Let QA be an f -recogniz-
able subset of A £ . Put @ ={xi;i=f[Ax], EA]ga?,-x'..ge_a
and, for each g€ @, B, = {x;[A)=boc,im fL[A], ctim g2,
a‘c{A}[AJ-pacﬁag‘;) B%s{u;A €a, [A)=d o,
f[A,ch.- j, acj-g;:fﬁac“”":’u}; Eg_"{“—)Ae a, [Als «x,

, . ir A o)

flA,xl=g, xj=ai&:a 0 3.
Let Q@ ¢ >, 4 and let the following conditions are sa-
tisfied for every ¢ ¢ & :

(1) If wu,,u, € E, end 4 =u xt, t+ A then
t1 ¢ adel Qg

(2) If ,, 4, € Bg and «, =t x4, t # A then
taté¢ ddeld az

Then @ 1s strongly recognizable.

.

The importance of strongly recoghizable sets follows
from the following result.

3.14. Theorem.(Theorem 4.4,[12)) Let O be a strongly
recognizable subset of ol & . Let, for every A, , A, € 4,
Ay + A implies t(L,A;)) RGL,A)) = A . Then
4 is an isolable set.

The following lemma, very often used in Section 6, gives
sufficient conditions for a set (I to be strongly recogniz-
able or weakly isolable in such & case that there is a set @
of terminal symbols such that (A J =) b 1s a rule of &
and b1 & @ ifand only if A e A, i =7 . Thus,
it 1s easy to recognize the beginning of an inserted text

-296.

derivated froman A € @ . Lemma 3.16 corresponds to the
case in which it is easy to recognize the end of an inserted
text and can be proved similarly as Lemma 3.15.

3.15. Lemmg. (Lemma 5.7,[12])) Let A +Q c d X, let
AedlA forno Aell,let Qu{fon1;x6Z A,
AcQic d%xf i

(1) Aed hﬁ,[AJ=)ac,oci=2 €@ impliesAeQ, i= 1.
Denote, for every ¢ € & , 432'-'{“-; [Al=pox, x1=¢ ¢,
Qp={A; LAl € By} y L= L,y g - If for each
9 € B at least one of the conditions:

(2) pymbfuc 24 ;51:“.;;“,xc@}nm{u;z,m#a,au@}r/\,

(3)ymb{u?“} L > w, x € Byjnadet Gy= A
holds then 4 1is a strongly recognizable set,

If for each ¢ € (either conditions (2),(4) anda (6)
or conditions (3),(5) and (6) hold where

(4) by {me s Lyt s, c € Byjcay £,

(5) 12 Ay, A eQ, £(L,A)n £ (LA N, Acadel &,
then A, ¢ W{ua’a“; Lyxuww, we By

(6) if BedXjx,)x)eLByox, ko), A =Ac, then
there exists an 1« such that 7 &% i € A oc, and either
{®1%) %, i1 ¢ A or t(L,x, i)t (X, Xi)=A.
Then @ 1is a weakly isolable set.

3.16. Lempa. Let A *+ Q2 c d L | 16t AN¢ LA far
Ael et B={xArax;aelA Acdica L, Lot

(1) Aed®, [Al=a, ai=9€@ implies A €,
1= AL,

Denote, for every ¢ € @, %f’ {oc; [Al=D e, Aok =g §,
Q={AlAIR<ce B}y L =LYy g . If for each g€ G
at least one of the conditions (2) and (3) holds, where:

-29%-

(2)aggmb {ud a,a.«.zg,“_,“)ow%}nw&b{u;z,:ot;“a,aceﬂgj=A

(3) pymbfus wWhAn- 4) °‘='“»°°€’3¢,?"“‘—-°—[%"‘ .

Then (A 1s a strongly recognizable set.
If for each Q€ & either conditions (2),(4) and
(3.15.6) or conditions (3),(5) and (3.15.6) hold where:
(4) W{u;:f Rz u, xe@}c%&f
(5) 1£ A,,A e, L (L,A)0 (LA« N, Aeldela, then
A, ¢ aymb{u" N iamu, e B g,
then A is a weakly isolable set.
3.17. Defipition. A set QA cd X is said to be
paranthesized if there are two sets R and Lc @, 4 such
that
(1) Aed £ ,[Al=pox,xi€l(e R) if and only if
Ael, i=A4(= Aex) -

As a-special case of Lemma 3.15 we have

3.18. Theorem. (Theorem 6.2,[12]) Let O be a paranthe-
sized subset of d &£ and let conditions (3.15.6) be satis-
fied. Then .d 1is weskly isolable.

At last we give one result from paper [13].

3.19. Theoreg. Let &, &, ,... <, be languages
such that for every ¢+ = 1, 2,:..., n there exist
Aiy®irdi, R, X, such that

1) Ajedd, o e, (A, 167 5k, 52, X ¢,

and, moreover,
(2)d:€$=dz;‘._4u{)(¢}, % ng B J.f B ¢{ X ;’

- 1,20, &;)
LA = Ao o {x, % -0, X Ixa, ™20, xx {.x"*' 1.
Then the language &, 1is said to be the extension of &,

Moreover, X 1s s.u. if and only if so is ¥, .

- 298 -

4, ALGOL 60 and the structura
The language ALGOL 60 (speaking of it in the following we

shall keep in mind the syntax of this language without -the li=-
mitations given in the non-formal parts of [1]) is neither
structurally unambiguous nor weakly structurally unambiguous.
Some ambiguities have already been referred to by different
authors and a few have been removed (see [15]). But even after
these modifications ALGOL 60 is not structurally unambiguous.
Structurally ambiguous (s.a.) are grammatical elements‘
[<open string>, t]. For example a grammatical element [<open
string> ,a"] x) has m + 2 different structures. More~-
over, the grammatical element [¢ procedure headingy ,<empty>]
is s.a. even then each terminal grammatical element [<procedure
heading > ,t] is s.u.. In both cases it is possible to remove
this structural ambiguity by slight modification of ALGOL 60.
From the point of view of the definition of semantics it is
sufficient for a given language to be weakly structurally un-
ambiguous and therefore it is not necessary to remove the am=
biguity in [< procedure heading > ,<empty>] .
' The second group of structurally ambiguous grammatical
elements deserves a more profound attention. To this group be-
logg grammstical elements [< primery),t] [<expression> AN I
[< actual parameter> ,t] where t 1is an ¢ identifier) -
text and t, an < expression) - text which does not con=-
tain symbols of arithmetic and logical operators. For example
t,= if (if a then b glose c) then a else (s).

x) by a™ we denote the sequence of length 7, Z-th-ele-
ment of which is a .

-299 -

In all these cases we have structurally ambiguous grammatical
elements (for example the grammatical element [< expression> ,t,]
has structures [[< arithmetic expression >J ,[¢,1J,
[[<boolean expression>] ,[t,]] and [[¢ designational ex-
pression ») , [t 1]) and, moreover, if [ax,,T,] and
L “<,,T,] are two different structwes, then «, #+ o, ,
T,= T, . In some cases it is possible "from a context to
determine the only structure"” but not always. For example, for
the grammatical element [< actual parameter >, [&a]] it is
sometimes possible only dynamically to determine whether &
is an identifier of the variable of the real or the boolean
type or an identifier of procedure etc. There are troubles
with removing of structural ambiguity of this type due to the
fact that identifier may denote elements of various character
and that operators () amd if tnen abse
may have operands of various character (for example: arithme-
tic expressions, boolean expressions, statements and so on).
It has been proved (see R.W. Floyd,[9]) that there is no lan-
guage) which has a finite set of rules and such that for
some A€ d X theset T,(L,A) contains all texts
which "are obviously” ALGOL® & programs. and does not contain
such texts which "obviously are not" ALGOL® s programs (if we
take into consideration the limitations given in non-formal
parts of [1]).
. As ALGOL 60 is neither structurally unambiguous nor weak-
ly structurally unambiguous we have made changes in its ayntai
in order to obtain the structural unambiguous language which
differs from ALGOL 60 as little as possible and contains all

- 300 -

ALGOLs texts. We have called the language obtained in this
way ALGOL MOD and its definition is given in Section 5.

At the construction of ALGOL MOD the syntax of ALGOL 60 was
modified as follows:

1. .Coments are defined similarly as the other elements of
the language. For this purpose new metasymbols < begin >,
<end » , < comment » and < ; > are introduced.

2, We do not divide expressions into arithmetic expressions,
boolean expressions and designati onal expressions. This is the
mein change and it agrees with Wright's proposal (see [16))
for a generalization of ALGOL.

3. In expressions if t then t, else ?, for t

any conditional expression can be given.

(These are the essential arrangements that change the set
of terminal text generated by language ALGOL 60. Besides, so~-
me additional arrangements have been made but they have no in-
fluence on the set of terminal texts.)

4. We do not use the metasymbols denoting various types of
identifiers (see K. Culfk [6]).

5« <« function designator > denotes only a function
with parameters.

6. The modification of syntax for < open string ? ,

{ unlabelled block » , < unlabelled compound > and for so-

me other metasymbols.

5. ALGOL MOD.
In the next section the proof of structural unambiguity of

language ALGOL MOD will be given. For this purpose we shall
construct the sequence of languages s{ = ALGOL MOD,)

- 301 -~

11) ey 5612 such that the language .;84._‘_4 is s.u. if
and only if so 18 &, . The language &,, 1s already so
simple that it is easy to verify its s.u. . Definition of
ALGOL MOD is given below in such a form which enables us to
" see the analogy between ALGOL 60 and ALGCL MOD as well ss pos-
sible. We shall use symbol :: = 1instead of =» . Sequence
of characters en;loaed in the brackets < ... ? repre=
sents, similarly as in ALGOL 60 the orly metasymbol and this
sequence will be chosen in a way to display the analogy with
the corresponding metasymbol of ALGOL 60 (for example metasym-
bol < form.par.part > corresponds to the metasymbol
<{formal parameter part » of the language ALGOL 60. Similar-
ly as in ALGOL 60, underlining is used for defining indepen—
dent terminal symbols, for example begin , DE . The for-
mulas by which the sets £, A, A e d £, are defined
(similarly as in [1) we shall speak about metalingvistic for-
mulas) are preceded by some integers. The first integer deno-
tes the current number of this formula and the others the cur-~
rent number of the given formula, or formulas which arose from

)

the given formula at the extension X/ of the language .‘:5, ,in
the sequence of formulas by which the language a‘f_, is defi-~-
ned. Definition of the language &, 1s given in the next
section. This numeration is made in order to display the rela-
tion between languages f, and L, , because in the sequen-
ce of formulas defining language <, there is a different

- x) See Theorem 3.19

-302 -

ordering of formulas being discussed in the next section.

5.1s Definition of the language ALGOL MOD.
5.1.1. Bagic concepts.
5.1.1.1. Basic symbols.

(1-53) (lettery>::= alblclalel £l glhlilJlix!dl ml
nlolpliqirisitiulviwlxlyl s
AIBICIDIE(FIGIHIXIIJIK(LI M|
NIOIPIQIRISITIUIVIWIXIY|Z

(2-54) (aigit>::= 0111213141516171819

(3-55) <log.valuey :: = true | false

(4-1) (delimiter): : = <operator) | <separator) | ¢ bracket>|
I<declarator> | < specificator »

(5=2) <operator?: : = <arith.op.> | <rel.op.> | <log.op.>|
| < seq.0ps ?

(6-3) Caritheoped::= + (=[x~ %117

(7-56) <releoper::= < Il £l=121>| #
I2lul nl A

(8“‘4) ‘10800p. >

(9-5) (8eQ.opey :: = Qg to | if | then | else | fox | do
(10-6) ¢separator> ::= wl.l 11 ;1:=1,] sten |until
|while | comment

(11-7) <bracket) :: C1)1C131r]7] fegin |l end
(12-8) (declarator> :: = own|boolegn | integer |2eal | anray |
| swriteh | provedute
(13-9) (specificator) :: = string | £abel | value
(14-10) (babic symbol> ;:: = <letter> | < digit> | < log.value)
[<Adelimiter >

(15-69) £, (empty)) = {A} -

-303 -

5.1.1.2. Comments.
(16-14) o, < sequencel » = 2(a, L - {end,;, etoei)™
(17-15) &£, <sequ2> = A(a & -{;})

(18-16) £, <seq.3> = s (@, ¥ -{r,1})-{N}
(19-11) (end>» :: = end ¢ sequencel)

(20-12) <comment) :: = comment < seq.2 >

(21-18) ¢3>:t= ;1; < comment> < ;>

(22-19) <beginy :: = <Legin | Legin < comment>< ;>

5-101.3. Identifiers.
(23=70) < ident.> :: = <letter>|<ident.) < letter > |
| < ident.> < digit >

5.1¢1le4. Numbers.

(24-71) ¢ uns.integer> ::= ¢digits | <uns.integer> <digit>

(25=72) < integer) :: = (uns.integer> | ¢(add.op.> <uns.integer>

(26=57) <decimal fraction) :: = . ¢ uns.integer >

(27-58) Cexponent part»:: = <integer?

(28-73) <decimal number> :: = < uns.integer> | <decimal

fraction > |

I<uns. integer > < decimal fraction>

(29-74) < uns.number) :: = ¢ decimal number> | ¢ exponent part>|

I<decimal number> < exponent part»

5.1¢ls5. Strings.
(30-17) (¢open string > :: = < seq.3>|”<open string)<open stringl
1< 8eq.3>” ¢ open string)<open stringl
| ¢ empty >

x) Thus 5 : < sequencel > ::=t if andonly if t is a termi-
nal string such that ti & {end ,:, else } for no 4

== .

- 304 -

(31-13) ¢string ¥ :: = <open string>”

5.1.2. Expressions.

5¢.1¢2.1. Variables.
(32-35) ¢subscr.listy :: = <expr.> | < subscr.list>, <expre
(33=21-44) <¢subscr.variable) :s = ¢ident.> [< subscr.list >]
(34-75) < variable) ;:= <ident.> | < subscr.variable >.

5.1.2.2. Function designators. .
(35=37) ¢act.param.) :: = < string> | < expr. >
(36=43) ¢ letter stringy :: = <letter) | ¢(letter string>
< letter >
(37=-51-20) <param.del.y:: = »))<¢letter string » :
(38=36) < act.par.list? :: = <act.param. > | < act.par.list> |

| < param.del. » < act,param. >
(39-22~45) <(f.design.»::= <ident.> (<act.par. list »>)

5¢1le2.3. Expressions.

(40-59) <(addeope? ::= + | -

(41-60) < multeopey :: = X1/ +

(42=114~ < primary > :: = < uns.number> | ¢ variable> | <f.designs>!

-30-50) t< loge.value > | (< expr.>)

(43=76) <term=1»::= < primary>|<term=1> T ¢ primary >

(44=77) <(term=2> :: = < term=1> | term-2 > < mult.op.>

< term=1>

(45=78) <term-3) :: = < term=2> | < add.op.> < term=2 >)
I<term=3 » ¢ add.op.) < term-2 >

(46-79) <(term=4) :: = <(term=3> < rel.op.> <term=3>|

1< term=3 >
(47-80) <term=5)%::

< term-4 >| r<term=-4 >

- 305 -

(48-81) <Cterm-6> ::= < term=5)>|<term=6> n < term-5 >
(49-82) < term=7> :: ¢ term=6> | < term=7> v < term=6 >

(50-83) Cterm=8) :: = < term=7> < term8)> 5> < term7>

(51-84) <Cterm=9)> :: = < term=8>l<term-9) = < term~-8 7

(52-46) <¢if clause > :: = if < expr. > then

(53-62~33=23) <(expr.»::=<term=9> | ¢if clause> ¢ expr.?’
efsg < expr.?

(54=-85) <¢label) :: = ¢ ident.> | ¢ uns.integer >

5.1.3. Statements.
5¢1le3.1. Compound statemenfs and blocks.
(55-86) < unlab,b.stat. ? ::= ¢ assign.stat.> | < go to stat.>
| ¢ dummy stat.> | < procedure stat.)
(56~87) < basic stat.>:: = (unlab.b.stat.? |
[<label > : . basic stat,. >
(57-88) . ¢unc.stat. »::= < basic stat.? | < compound stat.>|
| < block >
(58-89) <(statement) :: = <unc.stat.) | < cond.stat. > |
{ < for stat.)
(59-64-110) ¢stat.list> :: = ¢ statement> | ¢ stat.list.>
< ; > <statement >
(60-65-111) < declar.list > :: = < declar.> | < declar.list>
< ; > <declar.>
(61-90) < unlab.compound > :: = (begin) ¢ stat.list> < end)
(62-66=112) ¢ unlab.block » :: = <begin> < declar.list><;>
¢ stat.list > < end >

(63=32) ¢ compound stat.:: = < unlab.compound > |
1< labely ¢ < compound stat.)

- 306 -

(64-31) ¢ block) ;; = <unlab.block» | < label> : < block?

(65-91) < program) :: = ¢ block » | < compound stat. >

5¢1¢3.2. Assignment statements.
(66=92) <left part > ::= <(variable > : =
(67-93) <l.p.list » :: = ¢left part> | < l.p.list >
< left part >
(68-94) < assign.stat.” ::= <l.p.list > < expr.>

5.1e3.3¢ Go to statements.
(69=52) <go to stat. > :: = go lo <expr.>

5¢1e3¢4. Dunmy statements.
(70-95) <dummy stat. » :: = < empty >

5¢1e3¢5. Conditional statements
(71-24) <if stat.y : : = <if clause » < unc.stat. >
(72-63-26~ < cond. stat, »::= <if stat.> | < if clause>
-34-25) < for stat.» | <if clause > < unc. stat.>
¢Pse < statement > | < label > : < cond.stat.?

5.1.3.6. For statements.
(73=38) < f.l.element > ::= < expr. > | < expr.> stefr
< expr.) untif ¢ expr.) | < expr. dwhile
< expre. ?
(74=39) < for listd:: = < f.l.element > | < for list > »
¢ f.1. element >
(75=47) < for clause > :: = foy ¢ varisble> : =
<{for list > d¢
(76=96=27) < for stat.» :: = < for clause > < statement > |
< label) : < for stat. >

- 30%

5.143.7. Procedure statements.
(77-97) < procedure stat.):: = < f.design.> | < ident.)>

5.1.4. Declarations.
(78-98) ¢ declar. > :: = < type decl.> | < array decl.> |
| < switch decl.> | < proc.decl. >

S5elegele Typ. declarations.
(79-99) < type list >:: = ¢ ident.> | Ctype list> , ¢ ident.)
(80-61) <type > :: = neal | bovlean | integer

(81-100) Cl.or oetype » :: = < type> | own < type>
(82-101) {type decley :: = < leor o.type » < type list >

5¢le4.2. Array declarations.
(83-40) <bound pair» :: = <expr.> : < expr.>
(84-41) < b.p.list > :: = ¢ bound pair > | < b.p.list>
< bound pair >

(85-28-48) ¢ array segm. > : : = < ident.> [< b.p.list >]|

| < 1dent. > 9 < array segm. >
(86=102) (< array list > :: = < array segm. > |

| ¢ array list > 4 < array segm.>
(87~103) < array decl. > :: = axtay < array list > |

1 < l.or o.type > axtay < array list)

~

5¢1le4.3. Switch declarations
(88-104) < switeh 1isty :: = (expr.> | < switch list) ,

< expr. >
(89=105) < switch decl. > :: = swytch <ident.>; = cawitch list)

5¢1+4.4. Procedure declarations.
(90-42) (form.par.list > :: = (ident. > |
| < formpar.list > < param.del.> <ident.>

- 308 -

(91-29-49) ¢ form.par.part »:: = <ident.> (< ident.>
(< form.par.list >)
(92-106) ¢ ident.list) :: = < ident.> | < ident.list >,<1dent>
(93-107) < specifier):: = stzingl<type > lamayl < type > artay |
| Latet | switely | procedure
| < type > frrocedwxe
(94-68) < specif.party ! = wvalug < ident.list>» <; >/
| < specifier < ident.list><; >/
| € specif.part » < specifier »
< ident. list> <3 >
(95-67-113) (proc.head.>::= < form.par.part ><;> <specif.part>|
I< form.par.part » <; >
(96-108) ¢ proc.body > :: = (statement » | ¢ code >
(97-109) < proc.decl.? :: = queopedwute <proc.head.)
< proc.body > | < type> srocedwte
¢ proc.head » < proc.body >

6, Struct ambigujty of ALGOL MCD.
In the preceding section it has been mentioned that in
proving the structural unambiguity of ALGOL MOD we shall con~-
struct the sequence of languages :81, %2 g 5'612 . The
sequence of metalingvistic formulas by which these languages
are defined is given below. To the definition of language
3&13 s +=41,2,...,8 belongs that part of the given se-
quence which begins with the formula preceded by : &

A
ends with the formula preceded by the symbol &; : . For ot-

£

11
ponding metalingvistic formulas form two seaparate sequences

and

her languages, i.e. for :ﬁs N :fu , the corres-

10 ?

designated similarly for both parts.

It is easy to see, from the definition of languages <,
and x1 , that a'f, is the extension of & . At the exten-
sion those metalingvistic formulas of language <&, Were
changed which are marked on the left by an =z =tuple of inte-
gers with m & 2 ., These integers, except the first, deno-
te the formulas of language .‘51 which arose from the given
formula. This designation enables us easily to determine how
the extension has been made and which new metasymbols have
been introduced.

Each formula by which the language x,, is defined is
preceded by a pair of integers. The first one denotes the cur-
rent number of tle given formula and the second one the corres-—
ponding formula of language &, . In order to arrange & com-
pact and clear inscription of languages X, to X, ,the
order of metalingvistic formulas of language :(1 differs
from the order of formulas in the definition of &£ -

6.1. Definition of languages ¥,, £,, .-, £,, -

: &, (1-4) ¢ delimiter>::= <¢operator) | ¢ separator > |
| < bracket > | < declarator > | < specificator >
(2=5) < operator ¥ : : = <arith.op. > | < rel. op.> |
| < log.ope » | < seq.ox;. >
(3-6) <arith.ope? ::= +/=-Ixl- 1+1%
(4-8) <logeOpe? :: = = l23|lulnlr
(5-9) < 8eQe0pe) :: = go to | if | then [else |fox | do|
(6-10) <« separator> :: = wlel l:l;l:=1, | stenl
luntil | while | comment
(7-11) < bracket> ::= (I)ICIJI7|*] beginlend
(8-12) ¢ declarator > t: = own | Lootean |integer | neal |
lastay | swdteh | puocedcte

- 310 -

(9~13)
(10-14)

(11-19)
(12-20)
(13-31)
(14-16)
(15-17)
(16-18)
(17-30)

(18-21)
(19-22)
(20=37)
(21-33)
(22-39)
(23-53)
(24-71)
(25~72)

(26=72)
(27-76)

(28~85)

(29~91)

< speciricator > :: = plaing | fabel| value
< basic symboly :: = ¢ letter) [< digit >/

{ < log.value > [¢ delimiter >
<end » :: = end ¢ sequencel>
{comment >:: = commenl <8eq.2)
< string? :: = f<open string »”?
&£, <sequencel’ = d(ﬂit X, -{end ,; , else})
£, <sequ2> = B(a X, - {;1) '
Lq <8eq.3) = B (a, Ly~ (",)~}
< open string » :: = (8eqs3 > | “¢open string
<open string) | <empty » | < seq.3>”
< open string »? <open string >
<372::= ;|3 <coment) <3 >
<begin> :: = Aegin | begin < comment> <; >
{PARDEL) :: =) < letter stringy : (
< subscr.variable > :: = ¢ ident.> < INDEX)>
¢ f.design.» :: = < ident.) < PARAM »
{ COND.EXPR.,1y :: = < if clause) < expre.’efse
{if stat.? :: = <if clause) < unc.stat.>
¢ BsCOND,STAT.17:: = <if clause >

< unc.stat. > efae

{ FOR COND.STAT.”:: = ¢if clause®> < for stat.>

¢ UNL.FOR STAT.? :: = (for clause >
< statement >
< array segm.) :: = < ident.> < SEGMENT > |
I<ident. > , ¢ array segm. >
¢ form.par.part » :: = (ident.> | ¢ ident. >
¢ FORM.P.P. >

-311-~

..

(30~42)
(31-64)
(32-63)

(33-53)
(34=72)

(35-32)
(36-38)

(37=35)
(38-73)

(39-74)

(40-83)
(41-84)

(42-90)
(43-36)

(44-33)
(45-39)
(46-52)
(47-75)
(48-85)
(49-91)

{PRIMAR > :: = (PRIM)>
<block » :: = <unlab.block » | ¢ label> : <block?>
¢ compound stat.>:: = <unlab.compound > |
| < label > : < compound stat.?
{ COND.EXPR. > ::= (COND.EXPR.1> < expre.)
¢ B.COND.STAT. > : ¢ = (B.COND.STAT.1 >

¢ statement >

¢ subscr.list » :: = <expr. > | < subscr.list > »
< expre.>

¢ act.par.list > : : = < act.param.> |
|¢act.par.list > ¢ peram.del.? < act.param.?

< act.param. ? :: = <string > | < expr. >

< f.l.element) : : = <expr.>|<expr.) slen

< expr. » until < expr.) | < expr.) while cexpr.?

€ for list):: = {(f.l.element> | < for list > »

< f.l.element >
<bound pair ? :: = < expr.> ¢ <expr.?
< bep.list » :: = ¢ bound pair > | < b.p.list > ,
{bound pair >
< form.par.list ¥ :: = < ident.> | <form.par.list>|
¢ param.del. > < ident.)
¢ letter string > ¢: = <letter > | < letter string»
! < letter?
(INDEX > :: = [<subscr.list >
(PARAM > :: = (cact.par.list >)
Cif clause > :: = if < expr.> then.
(for clause ¥ :: = foy <variabley:=<for list>do”
(SEGMENT > :: = [b.p.list »J
{ FORM.P,P,) :: = (< form.par.list >)

- 312 -

(50-42)
(51-37)
(52=69)
(53-1)

(54=2)
(55-3)
(56-7)
(57=-26)
(58-27)
(59-40)
(60-41)
(61-80)
(62-53)
(63=72)

(64-59)
(65-60)
(66~62)

(67-95)

(68-94)

(PRIM » :; = (<expr.>)

< param.del. » :: =,|KPAR.DEL.>

<go to stat.y :: = go Lo < expr.>

(letter) ::= alblcldlelfiglhiil jI k|
1lininlolplqirlisltiulvl
Iwl x| yl zl Al Bl cIDI EIFI GI
{HITIJIKILIMINIOIPIRISI
IQITIUIVIWIXIYIZ ‘

{digity ::= 0111213 141516171\819

(log.value ¥ :: = true | false

<releop. > :: = <1 gl=121>14%

{decimal fraction) :: = . ¢ uns.integer ?

¢ exponent part > :: = <integer >

10
<addeope? : : = + | -

<malteopey :: = x |/ 1| +
<type » :: = read | integen | Loofean
<expr.?::= < term=9> | < COND.EXPR, >

<(cond.stat, ? :: = <if stat.> | <B.COND,STAT.> |

|< FOR COND,STAT,> | <label > : < cond.stat.>
¢stat.list > ::=<statement > | < STAT > < statement >
¢declar.list. > :: = ¢declar. > |<DECL. > < declar.)
<unlab.block » : ;= ¢begin> ¢UN,BL.1><stat.list >

<end >
< proc.head.y ::= (PR.HEAD) < specif.part > |
| < PR.HEAD >
(specif.part» :: = vafue <ident.list> <3 |

| ¢ specifier > < ident.list)<;<specif.part)
< specifier) ¢ ident.list > <5 >

-313 -

1 %,,(69-15) L <empty> = {A}
(70=23) < ident.> :: = (letter > | < ident.> < letter > |
| < ident. > < digit >
(71-24) < uns.integer > :: = ¢digit > | < uns.integer >

< digit >
(72=25) <integer» :: = ¢uns.integer > (< add.op. >
< uns.integer >
(73-28) <decimal number ? :3: =<uns.integer> |
I<decimal fraction > | < uns.integer >
< deocimal fraction >
(74-29) < uns.number » : : = <decimal number > |
|1< exponent part > | <(decimal number >
< exponent part >
(75-34) < variable » :: = ¢ ident. > | < subser. variable .
(76=-43) ¢ term=1 » :: = ¢ primary > | < term-1> 1
< primary >
(77-44) (term2> :: = {term=1> | < term=2 >
< mult.ope > ¢ term=l1>
(78-45) (term=3 > :: = (term-2) | < add.op.> < term=2>|
| <term=3 > ¢ add.op.> <term-2 >
(79-46) (term=4>:: = <term3 > < rel.op.> < term=3>]
1< term=3 >
(80-47) (term=5> :: = Cterm=4 > | = ¢ term-4>
(81-48) (term6? :: = <term=5> [< term6> n <term=5>
(82-49) (term=7%:: = (term=6)> | < term=7> U <term6>
(83-50) (term8>:: = <term7? | < term8> > (term-T>
(84=51) (term=9? :: = (term-8) | < term-9) = < tern-8>
(85=54) (labely :: = < ident.> | ¢ uns.integer »

-314 -

(86=55) <¢unlab.b.stat.? t: = Cassign.stat.? [<go to stat.)|

| < dummy stat.? |< procedure atata
(87=56) < basie stat.? ::=<unlab.b.stat.> | < label ? :
< basic stat.>

(88-57) <unc.stat.? :: = < basic stat. > | < compound stat.>!

I<block >
(89-59) <¢statement) :: = ¢ unc.stat. > | < cond.stat. > |

|1< for stat.>
(90-61) ¢ unlab.compound > :: = < begin> < stat.list >

< end >
(91~65) (program ? :: = <block > | < compound stat.)
(92-66) < left part »*':: = <(variabley : =
(93-67) <(l.p.list) :: = <left part » | < l.p.list >

< left part >

(94-68) ¢ assigh.stat.) :: = < l.p.list > < expre?
(95-70) ¢ dummy stat. > :: = <empty >
(96-76) < for stat.> :: = < UNL,FOR.STAT.> | < label>:

{ for.stat. >
(97-77) < procedure stat.? :: = < f.design. > | < ident.>
(98-78) < declar.? :: = {type decl. > | < array decle> |

| { switch decl. > | < proc. decl. >
(99=79) <type list » ::= (idenmt.)|<type list)>,
<ident.?
(100-81) ¢ 1l.or o.type > :i = <type > | own < type>
(101-82) (type decl.) :: = < l.or o.type » < type list)
(102-86) < array 1ist » :: = <array segm.> | < array list >,
< array segm.) '
(103-87) <array decl.) :: = avray < array list > |
1{l.or o.type? astay carray list)

- 315 -

(104-88) ¢ switch list > :: = < expr.> | < switch listy,
< expr.>
(105-89) < switch decl.> :: = switch ¢ idente): =
< switch list »
(106-92) < ident.list » :: = (ident.> | < ident.list> ,
< ident.>
(107-93) < specifier > :: = alringctype >lartgy | <'type>
artay | Label | switeh | procedure |
K type » potedute

(108-96) ¢ proc.body » :¢ = <statement > | < code »

(109-97) ¢ proc.decl.> :: = smrocedute < proc.head >
< proc.body > | < type) oeeduse <proc.head >
£ proc.body >

(110-59) (STATS :: = (stat.list > <; >

(111-60) CDECL » :: = < declar.list > <; >

(112-62) <UN.BL.1> :: = <declar.list> <3 >
(113-95) < PR.HEAD > :: = < form.par.part» <; >
-f,-.‘é: (114-42) ¢ primary > :: = <uns.number > | < variable> |
' - | < £.designy | < log.value > | < PRIMAR »
<COND.EXPR.1 > :: = J€ < expr.> else
¢ B.COND.STAT.1 > :: = 1B < unc.stat.> efs¢
::Cg { FOR COND,STAT> :: = JE < for stat.>
<if stat. » z: = I€ <¢unc.stat.>
CUNL.FCR STAT.> :: = £ < statement >
: :Cw’i" , L4y < subscr.varisble > :: = <ident.> 1N
<f.design.? :: = <ident.> PA
<array segm. > :: =<ident.> Y€ [¢ident.> ,
{array segm. ?
(form.par.part > :: = <ident.)> | < ident.> PA

-316 -

< PRIMAR Y :: = PA

<block > :: = Y J3I<label > : < block >

&, ¢ < compound stat.> :: = UG I<label) :
< compound stat. >
{COND.EXPR.,?> :: = ﬁ < eXpre 2

:68 , %) x”:(B.COND.STAT. Y 1= _‘€_§ < statement >

<expre. > :: = <term-9 > | €O

&, : <cond.stat.> ::=<if stat.> | ¥&
< FCR COND,STAT.) |<label> : < cond.stat. >

¢(stat.list > :: = <(statement » | 7 < statement>
< declar.list > ::

<declar. > | DE < declar. >

<unlab.block > :: = < begin » DE < stat.list >

<end)

<proc.head » :: = T JE | T
xﬂ:(apecif.part> :: = yafue < ident.list><;>|

| < specifier > < ident.list><;>|
| DE < specifier > < ident. list><3?>

It is obvious that all these languages satisfy condition
(3.1.1) and it is easy to prove, by using the results of paper
[14] that condition (3.1.2) is also satisfied.

6.2, In Section 6.4 it will be proved, for < = 1, 2,...,11
that, languages %‘;M and a"f,-, are in one of the following
three relations:

Rl £, = £; at-a; where

Rl.l Q; c d ae:': , each grammatical element [A,t] where
Ae @ is s.u. and, moreover, if B e df, -Q, and

[B]1=>t then mymb{t}n aq =A

- 31% -

R2 ;(1,'*1 'x".uq‘-a- where

(2

R2.1 AQ; 1s a strongly recognizable set,
- R2.2 each grammatical element [A, %] where A e 4 is s.u.
and if A,,A,ed, A —»t, A >t fora ¢t , then
A=A, .
R3 &,, = :6;'" where
R3.1 a4, 1isa ;.leakly isolable set,
R3.2 transformations ¢ satisfy conditions (3.7.1) and
(3.9.1).

But this means that the language £, , <« 1,2,...,11,is

s.u. if and only if so is .“l;.+1 . Indeed , if languages
i, ,, and £, are in relation Rl, then it follows from Theo-

rem 3.2; if they are in relation R2, then from Theorem 3.14 and
Theorem 3.6; if they are in relation R3, then it follows from
the definition of weakly isolable set (see Def.3.9).

6.3. If, in the following, we shall want to prove that a
language :{i*q is in relation R; with &, , then we shall
have to prove that

(1) condition Rj.1 (and Rjs2 if j € { 2,34, too) holds
and,moreover, languages .‘51:*1 and '{i are in the relation

@ L =L, o M ieit2]am 4, - :e,.’:i
if 4 = 3 foraset Q; (and a transformation ¢, if
7 =3)e

Ir Q, and g, are given, then it is easy to verify,
from the definition of languages x,; and £ s+q » Whether
condition (2) is satisfied. In order to prove (1) we shall often
use Lemma 3.13, Lemma 3.15, Lemma 3.16 and Theorem 3.18. But we
shall not prove in detail that the assumptions of these lemmas

and this theorem are satisfied, to the verification of which

- 318 -

it is sufficient to review the metalingvistic formulas of gi-
ven language in finite number times, although it gives much
labor in some cases (for example if it is necessary to deter-
mine the set adef (A for some (d c d &). In such cases
we shall either not speak about these assumptions at all or
we shall sgy (as in the case of other aseertions about langua~
ges which may be verified in this manner) that they follow :
from the definition of language & (shortly, from D1).
In order to show that the condition R2.1 holds we shall
use either Lemma 3.15 or Lemma 3.16 or directly define & func~-
tion f such that the set (Q; is f -recognizable, ve-
rify conditions of Definition 3.10 and then prove, by using

Lemma 3.13, that Q;

. 1s strongly recognizable.

For the proof of R 3.1 we shall use either Lemma 3.15 or
Lemma 3.16 or Theorem 3.18.
In order to verify condition (3.15.6) we need to know

from which metasymbols of (.

¢ it is possible to derive the

same text. For this purpose we shall write (wanting to show
that languages x;,., and x_; are in relation R3) the set
A; inthe form B, vB,u... v B where B, , 4,,...
..., 83, are disjoint sets and ApAeQ, (L, ,AINLE,,A e (AT
if and only if there is a 4 such that A,, A, € B; -

To make the verification of last condition easier we shall gi~-
ve 80 called characteristic sequence of texts for &, ,

Cty, ty,:eey 1 (the arranging of M3,, B,,..., B, will
be such that the sets #,, 43,,..., A4, will have more than
one element and the sets /3‘",..., A3, will have just one
element), such that t’- et (X;,B) forany Be B;.In
that cage we shall define ¢, by = -tuple of symbols

- 319 -

()(1, Xz’..., X,) which will mean that ¢y a = a

if a¢ A; and ga = X4 if a€ By -

In all the cases (; will be such that Rl.l and R2.2,
respectively, follow from Dt .

6.4. The proof of structural unambiguity of the langua=-
ge ALGOL MOD.

As already mentioned the language &£, is the extension
of :ﬁ, and hence, by Theorem 3.19, ;81 is s.u. if and on-

ly if so is8 &

', + We extended the language &, in a way to

obtain the language in which, after removing some metasymbols
(< sequencel >, < seQ.2 > , < seq.3 ? ,<open string),
< PAR.DEL »)there already exists a paranthesized set (see set
a‘ below; for this purpose "we have extended” the metalingvis—
tic formulas 33,37,39,42,85 and 91 from the definition of lan-
guage a‘ﬂ,) and,moi'eover, it is possible to apply Lemmas
3.15 and 3.16.
By &£,,, @ £; we shall indicate that the langua-
ge &;,, 1is in relation Rj with &,
From D1 it is gasy to see that the set
Q, = § ¢ delinmiter 3, <operator > ; <arith.op. > , < logeop > ,
{seq.0p. >, ¢ separator), (bracket >, <declarator> ,
< specificator > , basic symbol > }
satisfies Rl.l and, therefore, we can eliminate (, from X .
We ohtain language &, and it holds Z, @ X, . By eli-
minating the set
a, = {¢(comment >, (end >, (string > }
from the language £, we obtain language xs . Now we shall
prove that £, @ X, . Indeed, from D2 it is easy to see

-320-

that (1, satisfies R2.2. Now we prove that condition R2.1l
is also satisfied. Put
@ = {eemment, end ,” 7, BB, = {< sequencel? ,<seq.2
<seq.3 >, {open string > 7 -
Let 7 be a function defined on a &, in the fol-
lowing menner: 7 (7)=1, 7(?)=-1 and (@) =10 Iif
aea t-f {" } - Let
Z{(ft)forany te6, .
By using structural induction (see Theorem 6.7, [7]) it

is easy to prove;

(1) If [<string>]>t ,then 7t = 0 ana 7t7*'> 0
ir 1 £1 < At .
From D2 it follows:

(2) el { < comment>?={;, <;>}%,

{5,<521n oymb{t, [<comment>]z>t } =
(3) ndef {<end>}e={<end> end,;<;>,elsef=N,
N A symb{t?? [cendrlz>t 3= A

Let us define the function f as follows:

(4) df={[A,t1;A¢eB,icdt, tie@}, FIAt]=min{i;tiecQ}.
Now we shall prove th.at all conditions of Definition 3.10 are
satisfied, i.e. (A, is an F -recognizable set. (3.10.1) fol-
lows from D2. Now let (3.10.2a) hold., If [ajl= 74 , then
xF € @ and from D2 it follows: A€ A, , flAx]l=1=F,
[xi, il ¢ df if i € d . Thus (3.10.2b) holds. If
Lej]l — T 7 , then from D2 it follows A ¢ A, u 43,
and oo j ¢ A3, . Now (3.10.2¢c) follows from (4). For the proof
that (4, is an f =-recognizable set we must still show that
(3.10.3) holds. Let g eg&,, g, €@g . 1Iftg edf,

then g9, 1 ¢ 032 according to (4) and either g 1 € 432
or gedf. But from D2 it follows g, 1€ B, irgfedB,.
Hence and by previous g € df .

In proving that 6{.2 is strongly recognizable we shall
use Lemma 3413.(3.13.2) holds trivially since B%= {q1 for
each ¢ € @ and (3.13.1) holds according to (1),(2) and (3).

Thus, Q4 is a strongly recognizable set and R2,1 holds.

In t;e language &; the set
A, = { <sequencel> ,<8eq.2 > ,<8eq.3>, < open string> }
satisfies R1.1 and therefore we can eliminate &, from <, -
We obtain exactly the language &£, which has the finite
set of rules, and it holds :C,' 0] ia . If we eliminate
from :f,r the set
a,lra{ <begin>, < ; >}
we obtaim the language &, . From D4 it follows that the
set a,,‘, satisfies R2.2. Now we prove that condition R2.1
holds also and hence o£; @ £, -
Put @ ={;, Begin } and let us define a function
¥ as follows:
df={[At]1;[Atlegd tieQ}, FLA,t]=mat{i;ticR}.
Similarly,as in proving Lemms 3.15 (i.e. Lemma 5.7,[12)) we
can prove that the set (1, 1s f -recognizable. Since
< comment » ¢ rde€ {<; >, Legin 3,1t is easy to see, by D4, that

all assumptions of Lemma 3.13 are satisfied and therefore &,
satisfies condition R2.1,

The language {; we obtain by eliminating the set
. Qs ={<PAR.DEL>}
which, by D5, satisfies the condition R2.2. Now we prove that

- 322 -

condition R2.1 is also satisfied and, therefore, @ & . Put

G ={)} and let us define a function # in the following
manner:

dlf={[A,tl;iedt, tic@, tE+1N¢ M{t; [<letter string)la>t})=N}
flA,tlemin{istieQ, t(i+ 1 e N}
First we shall prove that the set d‘. is f -recognizable, i.e.
that conditions (3.10.1) to (3.10.3) of Lémma 3.10 are satis-
fied. (3.10.1) follows from D5 and (3.10.3) from the definition
of f . Now let (3.10.2a) hold. If [xj] = =Z, them, by D5,
AeQg; 7=1=f[A,a] and (3.10.2b) holds. If [az] — 737
and f[A,t1<x(F7+1) -1 then (3.10.2¢) holds trivially.

From D5 we get that if A e d £, and e aymb {t; [AYD ¢}
then Nnrdel{A}=A .

Thus, it can not be #LA,t1=x(G+1) -1
(3.10.2¢) holds and a,s is f -recognizable set. Further it is
obvious that all conditions of Lemma 3.13 are satisfied and

hence CLs satisfies R2.1.

From D6 i3 is easy to see that the set
@, = { ¢ PARAM> ,(FORM.P.P.> ,<PRIM>} U { <INDEX>}u {<if clauserfu
u{<for clauser} v { ¢ SEGMENT)>} u { < unlab.block > } v
u{<unlab,compound > }
is paranthesized and its chaﬁacter:lstic sequence of texts is
[(< ident.>] X), If we define 9 by T-tuple [PR, JN, J¢€,
FE, L€, UB, UL], then condition R3.2 is obviously satisfi-
ed and, by Theorem 3.18 and D6,R3.1 holds, too. It is easy to
/)
verify that £, = ée‘af‘ and hence ef,@ & .LIE A egtsel
is the characteristic text for the set
(L, = { (COND.EXPR.1> , < B.COND.STAT.17
in ¥, and if we define ¢, by symbol Y€ then, by D7,
condition R3.2 holds. R3.1 follows from Lemma 3.16 (conditions

x) i.e. the characteristic sequence of textshas only one text.
-323% -

(3.16.2) and (3.16.4) are satisfied) and from D7. Since
:ﬂ;’a’ = &, we have -‘te 6] a‘t’? . In the language &,
the set
aa = { < subscr.list > , < act.par.list) , < act.param. > ,
¢ f.l.element > , < for list >, < bound pair > ,
< bup.list >, ¢ form.par.list> ,< letter string >,
{INDEX > , < PARAM >, <if clause > , <SLGMENT > ,
¢ FORM.P.P. > , < PRIM » , < param.del., < COND.EXPR.1>,
¢B.COND.STAT.1> }
satisfies condition Rl.1l and can be eliminated from &f’a . We
ot ain the language &y and it holds oy @ &£, . 1In

this language the set
a,9 = { <go to stat.>, ¢ letter) , ¢ digit >, < log.value),
{rel.op.> ’ < decimal fraction > , < exponent part >,
< add.ops. >,< mult.op. > , <type >, <FOR COND.STAT.?,
<if stat.» , <UNL.FOR STAT. ? }
satisfies, by D9, condition R2.2 and, by Lemma 3.15 (conditions
(3.15.3) and (3.15.5) hold) condition R2.1l, too. Hence we can

eliminate @Ay from &g . Since ¥, = , we

Uk~ 2,
nave &£,, @ £, . The text Y¥E < ident.> is the cha-
racteristic one for the set

Q,, = {<COND.EXPR.> , < B.COND.STAT >} .
Thus, if we define ¢, by symbol . €¢°, then from D10 and
from Lemma 3.15 it follows (conditions (3.15.3) and (3.15.5)
are satisfied) that the set (,, and transformation &,
satisfy conditions R3.1 and R3.2. Moreover, &, = a‘é,jz
and hence £, ® X, -

In the language o‘f,,, , the set

10

- 324~

Q, = {<STAT> , CPR.HEAD>} u {<DECL> , <UN.B.1),
< specif.part >}

has the characteristic pair of texts [<¢ident.> <;), procedute
<ident,> <3 >] -

If we define ¢, by (LT, 2€), then, by Lemma 3.16 (condi~

tions (3.16.3) and (3.16.5) are satisfied), the set &, and
transformations ¢, satisfy conditions R3.1 and k3.2, More-
over, &£, = LI and hence &£, @ £,, -

a,,
The language :Cu is very simple (it is non-self-embed-

ding context-free grammar (see [3]) and also sequential gram-
mar (see [10]) and it is easy to prove, for each Ae d &, , >
' that all grammatical elements [A, tJ] are s.u..
Since the language qu is s.u. and a language #,- P)
t=20y,1,...,11, is s.u. if and only if so is &£ _ ,we get

t+1
that the language ${, = ALGOL MOD is 8.u..

6.5, At the investigation of the structural unambiguity
of language 3'5,,2 we can henceforth proceed as in Section
6.4. Now we show one of the possible methods. Put

dﬂ_= { ¢ident.> ,< uns.integer > }
a.“= { <empty > , <integer) , <array segm.) ,<form.par.part >,
< block > , < compound stat.> , < stat.list?,
<declar.list > , < COND.LXPR. > , < B.COND.STAT. 2 »
< cond.stat. > , < unlab.block » 4 € proc.head ? ,
¢ specif.part >} v N,
where N 1is the set of all metasymbols which are on the left
side 0f formulas number 85 to 113.
A= §<£.design> , < PRIMAR > , < subscr.variable ? §
@5 { < variable > , < decimal number > ?
Q= {<unsign. integer > I

- 315~

Put &;,, = x‘dz,.-a,- for 7 = 12, 13,14, 15, 16 .
It is easy to see that :C” @ £, - By using Lemma
3.15 and 3.16, we can prove that X, @ X; for
iw=12, 1%, 15, 16 .
The structural unambiguity of langusge &,y follows from
Example 10.9,[7]. Hence, the language &,, is s.u.
Bibliography:
[1) J.V. BACKUS, F.L. BAUER, J. GREEN, C. KATZ, J.Mc CARTHY,
P. NAUR (editor), A.J.PERLIS, H. RUTISHAUSER; K. SAMELSON,
E., VAUQUOIS, J.H, WEGSTEIN, A.van WIJNGAARDEN, M., WOODGER:
Report lon the Algorithmic Language ALGOL 60,
Numerische Mathematik 2(1960),106-136.
[2] D.G. CANTOR: On the ambiguity problem of Backus systems,
J.Assoc.Comp.Mach. 9(1962),477-479.
[3] Noam CHOMSKY: On éertain formal properties of grammars.
Information and Control 2(1959),137-167.
[4] N. CHOMSKY and M.P. SCHUTZENBERGER: The algebraic theory
of contex-free languages, Computer Programming
and formal systems.(Ed.P. BRADFFORT and D.
_HIRSCHBERG), Amsterdam 1963,
[5] N. CHOMSKY: Formal properties of grammars, Hadnbook of
Mathematical Psychology, V 2, New York,Willey.
[6] Karel SULfK: Formal structure of ALGOL and simplification
of its description, Symbolic languages in data
processing, Rome 1962, 75-82.
[{7] Véclav FABIAN: Structural unambiguity of formal langua-
ges, Czech.Math.J.14(89)(1964),394~430.

[8] R.W. FLOYD: On ambiguity in phrase structure of languages,
Comm.ACM 5,10(001;.1962),526’534.

-8326 -

(91

(10]

(11]

[12]

[13]

(14]

[15]
(16]

R.W, FLOYD: On the nonexistence of a phrase structure
grammar for ALGQ. 60. Comm.ACM,5,9(sept.
1962).

Seymond GINSBURG and N. GORDON RICE: Two families of
langueges related to ALGOL, J,ACM 9(1962),
350-371.

Sheita A. GREIBACH: The undecidability of the ambiguity
problem for minimal linear grammars, Infor-
mation and Control 6(1963),119-125.

Jozef GRUSKA: Igolable and weakly isolable sets.(To

appear in Czech.Math.Journal.)
J. GRUSKA: Two operations with formal languages.(To
appear)
Je GRUSKA: On structural unambiguity of formal langua=-
ges,Czech.Math.J. 15(90)(1965) ,283-294.
REVISED REPORT ON ALGOL 60, Comm.ACM,5(1962),299-314.
Niclaus WIRTH: A generaliz tion of ALGOL, Comm.ACM
vV 6,N.9(1963),547=-554.

(Received January 12, 1965)

- 31% -

		webmaster@dml.cz
	2012-04-27T16:00:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

