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Commentationes Mathematicae Universitatis Carolinae 

7, 1 (1966) 

ON THE MINIMAX PRINCIPLE FOR K-POSITIVE OPERATORS 

(Preliminary communication ) 

Ivo MAREK, Praha 

The purpose of this note is a generalization of the 

well known Frobenius theorem on matrices with non negative 

elements, and in particular of the corresponding minimax 

principle* 

The definitions 8nd propositions will only be formu

lated here) full proofs will appear in [2]. 

We shall investigate a linear bounded operator T on 

a real Banach space T with a closed cone K . As usual this 

cone induces an ordering of T f defined by letting x H y 

iff y - x € K . It will be assumed that K has the follo

wing two properties: 

( o&) Every x € T can be expressed in the form x * 

* x^ - -<2 i where x-̂ , Xg e K \ 

(/3) l x + y l i l x | for x f y e K . 

The space dual to T wi l l be denoted by T% and the 

space of continuous linear mappings of T into i t s e l f ty [Tj« 

An operator t e [ T ] i s called K-poaitlve^if x c K 

implies Tx * y e K \ u^-positive, i f i t i s K-positive and 

there i s a vector uQ e K t II u 0 H s 1 , such that for every 

x e K f x + o , there exist positive numbers ot * <>c(x) , 

(i * (h (x) and a positive integer p - p(x) with 
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acts0 -< T* x .< /3u0 J 

uniformly u 0 -posit ive . i f i t i s uQ-positive and the pos i t i 

ve integer p does not depend on x • 

The value of s form x ' e I ' a t x e T wil l be denoted 

by ( x f x ' > • 

A set H#c K'f where K* is the cone sdjoint to K f i s 

called K-total. i f < x f x ' > > 0 for al l x ' e H' implies 

X £ K . 

Theorem 1« Under the assumptions 

( i ) K C X has properties {oc) and {(I ) \ 

( i i ) H'c K' i s a K-total set ; 

( i i i ) T i s a uQ-positive operator, 

( iv) There i s only a f in i te number of singularities 

(U,^ 7 .. . , (U,^ of the resolvent (Q, ( X % T) = 

* ( X I - T)*1
 f for which \(U>j I * r(T) f where 

r(T) i s the spectral radius of T . 

Moreover le t a l l (uu^1...1 (tt^ be poles of (R, ( A , T) f 

then 
- - % . < T x , x ' > 

! • / u ^ * ltfTJs Mum, »u/t> — -
K 1 XfcK x ' e H ' ( x , x ' > * Ф Ű 

SS MOJ& i t t f < T x , x ' > 
xeK ^ r < x , x ' > 

<-o t, fx'>-<X ;x'>->0 

2, The point ^ i s a proper value of T and to i t there 

corresponds a u0~positive proper vector xQ • Every proper 

vector x € K of the operator T has the fora x * ex , 

where c > 0 • 

The vector x € K i s called extremal with respect to 
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T , i f 

Mi 
xeK 

where 

and 

MCÜO rtv « д,~ or MІЛЬ ң* -. ң* 

xєK * * x e K ; 

7 
• * * ' « « ' < X , x ' > 

<лц,,x'>.<X,í«'>s.O 

* <Tx, * ' ) 

Theorem 2 . Let the assumptions of Theorem 1 be fu l f i l l ed . 

Moreover l e t T be a uniformly u -positive operator. Then eve

ry vector extremal with respect to T has the form ex , whe

re xQ ( II x0ll = 1 ) i s the unique proper vector of T lying 

in K , 

The applications of these theorems are similar to those 

of the Frobenius theorem. For example, one can obtain the in f i 

nite-dimensional analogue of the Stein-Rosenberg theorem [ 1 , 

p# 105] , also some theorems on localization of spectra, and 

other related results . Even in the finite-dimensional case, 

Theorems 1 and 2 are slightly more general than the known 

theorems, since a u -positive matrix need not be necessarily 

irreducible. 
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