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Commentationes Mathematicae Univers i ta t is Carolinae 

7,2 (1966) 

A CONTRIBUTION TO THE SUCCESSIVE OVER-HELAXATION METHOD 

BwU HUMHAL, Praha 

1. Introduction* Given a system of l inear algebraic equa

tions 

(1) Ax -* A 

arising from a finite difference treatment of elliptic par*-

tial differential equations it is often recommended to use 

the relaxation method for finding its solution. Successive 

approximations are calculated according to the following 

linear recurrence formula: 

(2) X^„ = ^ X ^ ^ > fm,~ 0,1, 1,...) 

(notation in accordance with [1J) where Jr, X** &Te vec

tors and the matrix £& i s obtained from A according to 

formula (7) of section 2y and depends on a rea l parameter 

cu &(0, 2),The convergence of the i t e ra t ion process ob

viously depends on the value of the spectral radius£>(£&) 

of of^- If A fu l f i l s conditions (4) of section 2, then the

re exis ts a unique cjj^ in the interval (0,2) for which 

f (<£ou ) a t ta ins i t s minimum. 

Fig. 1 shows the dependence of /f 

f (&cu ) on £J , The lef t de r i 

vative with respect to &) a t 

cjfr i s - co.For <k) ><*>& the 

spectral radius f (X^ ) « <*> - 4 • 

мûfø) 
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Therefore i t i s often recommended to choose «s) > <&« . Be

cause the actual error 11 x - x ^ l » M% f x - X^ ) K i s 

' not known in carrying out a numerical calculation (the exact 

solution has been denoted by X ) , we shal l proceed in the 

following manner: choose a smal real 6 >• 0 and an i n i 

t i a l approximation X- and construct a sequence of vectors 

X^ un t i l It X ^ ^ - X^ II < 6 . The vector x ^ i s then 

taken as the approximate solut ion. In t h i s case 8 -*„,+... -

Let us choose an i n i t i a l vector ^ and observe the be

havior of the number <f i t e ra t ions necessary to achieve 

liC£ ^l|<e,when varying CJ . 

2 . Some basic properties of the successive overrelaxation 

operator. 

Let there be given a matrix of the form 

(3) A - - K I - U - D ) 

here A is an /nxit matrix, I i s the unit matrix, D Is a 

diagonal matrix and L and U are s t r i c t l y lower and upper 

t r iangular matrixes respect ively. Let A have the following 

proper t ies : 

a) A i s i rreducible; 

(4) b) A i s d i ^ o n a l l y dominant with posit ive diagonal 

terms •, 

c) A i s consistently ordered and has the property 

(A) as defined in [ 2 ] . 

The matrix 

(5) B » L + U 



i s then weakly cyclic of index t * Let B have the f o l i o , 

wing propert ies : 

a) a l l eigenvalues of 8 are rea l ( th i s is true e.g. 

for A symmetric) 

(6) b) I t s positive eigenvalues (UL^, (^a,,-** n (U** (coun

ted with regard to the i r mult ipl ici ty) sa t is fy 1 > 
>(u1 >(tcz fe (tc3 &...>. (U^ > 0 . 

The matrix <S^ i s constructed as follows: 

(7) £„- CI-coL)-* CvU + C4-o)l) , 

and has the following eigenvalues: 

f ťu<«.i + Vař-)u,%.-ifCůj-IUí 
C X2i-1 (c°)m { 1 * ' 

( 8 ) 
{ Xн c*» i o * * 

^ Xz*+< Cco)" x2*+zcv)~--. - Я„ (co)- 1-a> . 

Let 

(9) 

Then 

*ъ Mm 

1 +\/l~ «* 

(10) X1«v)>\X4(co)\9 i . l 9 . . . 9 n tor cveCO,*^), 

\X.(OJ))~ u - 1 , i * 1 , . . . , n tor a>e<c^f<L). 

From (4) and (6) i t follows that A, Ceo) i s a simple e i 

genvalue for co e CO, CO4,) v Ccfy ., 2 ) . 

Now choose a norm in an unitary m -dimensional space V f and 

denote the unit eig>«3?ector corresponding t o the common e i -
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genvalue X^ (do) of of& , and it^ by x„ and ^ 

respectively. Let y . e. V be an arbitrary vector and de

note by 1)^ a number with the following property: 

(11) •-*&*,**, e £v ((**>, *L > - ^? * KM ' 
Let 

(12) v * ° - l f STW^****' 1 • 

For every co e C 0 7 co^) this sequence has the limit 

(13) it** Q^Cco) m 1*^1 . 

We shall prove that this convergence is uniform with res

pect to co in every segment < oc, (I > c f 0 ? o>^ > . 

Let 

(U) **, - ^. ~ ^a> *co ' 

Denote by M ^ the operator induced by the operator 

1 (co) co on the invariant subspace V^ • The matrix 

^L^ depends continuously on co and, as stated above, 

•̂f (co) is its simple eigenvalue. Therefore Xi (<*>) is a 

continuous function of co , and the same is true for the 

vectors X^ and, X^, and the scalar ^ . Moreover II M*' II, 

Il4i.ll - 1 

depends continuously on co • Choose a fixed coQ € C0? co^ ) • 

The operator M̂ x- has a l l eigenvalues l ess then 4 . There

fore there exists an integer ^ sueh that II M% IJ < C < 1 7 

where C i s a positive constant. The continuous dependen

ce of I M* | oft 4) impliee the existence of a & > 0 
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sueh that 1M* tf< C holds even for a l l CO € <cjff - 1#, 

cOQ + nfr > . 

Now construct the following sequences: 

11*0 II, IIM^II, KMJ^ I I . . . . 

(15) II M^^ A, t M*+\, II , i M ^ + V CJ 

IM^^IMH-^I , in**'****'" -
These sequences of continuous functions of CO converge 

notonically to 0 on <cy,-i*, coff + 3 > , since I M ^ ' ^ ^ l * 

» II M * l . I M j * - ^ * ^ l < C | M ^ - ^ ^ % | , f o r a l l po

s i t ive integers A. and for ^t - 0, 4, • • • , £ - 4 . Therefore 

every sequence defined by (15) converges uniformly to 0 

on < coQ - 1^, GJ> + i# > j indeed for every 8 > 0 the

re exist A,0 , -**,.—/ " k ^ ouch that II M£ ^ ^ • < & 

for A > - V ^ - ^ ^ • • ^ 2 - * > - L ^ ^ % 2 ^ t . f V 
Therefore I M* **, I < B for -#& fe f ^ * 4 )* £ • The inter

vals CCJ - t£, o > + i £ ) constitute an open covering of 

the segment < oC, /$ > (in general 1* dependa on £; ) . T7-

sing the Borel theorem we obtain IM z t converged uni-

formly to 0 in <ot, /S > # Since I J?*,! - 0>JkC<o>\ £ IMW %^ I ; 

al8o Qjfc,^ ) converge uniformly to \^6t) I in < oc ; /$ > • 

3. The influence of the relaxation factor on the number of 

iterationa neceaaarv for concluding the iteration proeaaa* 

Let us introduce the following notation: for any £. > Q and 

co e CO, 2 ) denote by A g Cco> a positive integer for 

which II ^ * C<W>^8 4 & and auch that l ^ y fl > e for 
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a l l Jk, < J*& CW>. 

Theorem Is Let A f u l f i l l conditions (4) and 0 f u l f i l l 

conditions (6)} choose a vector ry * V * Let there exist 

a segment < <*c f /I > € (0f ca^ ) suoh that ^ ¥> 0 for 

ei%vy o> 6 <£«t, / I > , Then there exists an Sp > 0 

suoh that for every & * COf B0) the following as

sertion i s true* there i s a 9t > 0 such that 1 - ^ CaJt)~ 

- J^ Ca-^)! * 1 for a l l ^ , ^ € <*t; /3 > with I SJL, -

- 0g I < *C • 
.Proofs Let 0^ be arbitrary with 0 < cT< tnurv I*ICJI* 

CJ€<<9&> 
According to (13) there exists a positive integer J ^ s u c h 
that 

(16) \%*\ - <f < ajk,Cco)< l\c*\ + cT 

whence, using (12), 

(17) (t*i«>i-<r) $(v) < M* <+i<(inj+<r)*?(*>> 
for M > Mttf and CJ e < o c ; / 3 > . The functions 

•§Cf)« C / ^ J - cT). X*CGJ) msiA\Cq)m (lf^i^(r>X\Ca>) 

decrease. Now ohoose ma £ > 0 and determine the points 

ff Co;) and f̂  Co) ia which ft ff, 6*>>)-« f^C£ Co>)) * £ : 

*«*C-{ 

(18) 

l"ľ«v • - <Г 

A ÿ - Л.. ť<L> P 

źđf. 
l%*> \ + <Г 

•tfЏr A , Cйì) 

Choose a real A , 0 < A < 4. We shall prove that there 

exist* a ct> 0 trlti* £zC<i>) ~ ^ CCJ ) < A for a l l 

admissible oi *ad £ . The difference may be estimated as 
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ÍG»>-1(*>,-
 HaWď ž **»x+<r 

( 1 9 > i f e ' 1 ^ 1 - ^ 

We used the fact that Jfoty g . <c ia an increaaing 

function of § in the interval ( cTf 4- «0 ) . The right 

hand term of the laat inequality la a continuous function 

of cT with value 0 at cTs 0 0 It ia therefore poaaible 

to find a. cT> 0 auch that 1 f̂  (a> ) - jf Co> ) I < <£ inde

pendently of o> anal £, • 

Let </" have thia property, and take the corresponding Jky*-• 

Let % * m mum, ^ mm, H^f' /u. H , and choose & < £ . • 0 I t .^^- . -v-^. a>e<ac,fi> a> w > & 

Since the functions f̂  Coi ) and f Co-> > are continu

ous on ( eC f /I > f they are uniformly continuous* Hence the

re exiate a ae > 0 auch that for I cut, - o^ I < ae , *Jf f 

a*-, « < oc , /£ >" there i s I ff to, ) - ff C<k>z ) I < 

< -1f^- and lf£Ca>t)- fA C<-V I < d^A . 

Chooae a>T , <^ € <oc 7 /S > with I <H - O^ I < d€ • 

For a l l <i> c < «c ? /& > and J t « 0., 4 , , , , , J E ^ there ia 

* *$ fj- I > £ • This lapliea, that both Jkg Ca>f ) > <*&> 

and M^ C&g) > <ktf , and these constitute a sufficient 

condition for the validity of (17). Therefore both Jh>m Co>H) 

and Jk^ (<*>z ) aatlafy the following Inequalities ', 

(20) f | f ^ > * - ^ C ^ ) ' * §*(<»4) + 1 , 
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(21) snum, C£, C*>t ) , ^ C a p ) £ Jk^Co^A max, CfA CcO^ ) , 

faCo>z))+ 1 . 
We shall now estimate the difference of the upper and lower 

bounds for to,s C&t ) : 

I *ma» C %z Ceo, >, f2 Co>2 » • 4 - «mjn. Cf, C<<4, >,feC«i»l-i 

(22) * lft COJ,)- f, Ca>2 >| + mim.C\%2 C<o^)~ f, C^ ) l , \%C<u£)-

-^Cu>x)\) + lf20iJ1)-§MC^l)\<l^ + A + ± 4 + 1 ^ l , 

Thus most two integers l i e between these bounds and there

fore \ \ Ca>^)~ \Cco%)\ *6 f . 

Theorem 2; Let A f u l f i l l conditions (4) and B f u l f i l l 

conditions (6) . Then 

a) Take any f in i te sequence of real numbers ^<<*>z <y»^<CJ 

from the interval C 0^ CJ^). Let ^ be a vector such that 

**la)j^ ® f a r * m I?0"? j 1 * Then there exists an B0 ->> 0 such 

that 

(23) \ C<V<) £ Me C«^„> 

for e -< B0 } -t * 1, Z, •"> ^ - ^ * 

b) Take any finite sequence of real numbers a)1< ^*'* < <*i^ 

from the interval < 4 ^ 7 Z ). Let y^ be an arbitrary vector, 

*L + 0 * 

Then there exists an Bp such that, for £ < &# , 

(24) \ (u4 > * *>t (*>i + i ) 1 i*f, 2,.*.,**-*' 

Proof: It is obviously sufficient to prove the theorem 

* for <fv m Z . 

a) If two numbers 0 < ̂  < <*>j -< &>£$ are chosen, 

/ then, according to (8) , &,, £<*>.-.) > \ C<k)z ) * Choose 

cT< «>Um, Cll^ 1 , 1 1 ^ » ) * 
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Then a positive integer M^ exist® such that for .A > Jk,^ 

(25) H ^ ; ^ « ^ ^ 7 ^ I-cr>^%fra^>/ *je^ ^fl<^r/-?^I-Hcr^A^ ro^^ . 

T^ere exists a positive integer Jk,z such that for Jk, > Jtz 

(2S)(\^\ + <f)^(Oz)<(\^\- <r)x* Ca>,) . 

Let yfej, mmaJC(M,<,,M,9) and £n c /rrunrv Wtt%i±H • 

Now choose £ < BQ . For every ^ < * ^ there i s I ^ T ^ ' > g j 

therefore M^ (<*>i ) > A*0 . If for some M the inequality 

II %£ /y, /I < E .Is satisf ied, then >fe, >- At whenct 

Therefore \ C^) £ Ji^ Cej^) * 

b) Let two real numbers CJ^ and ^ be chosen, 6},--* 

*^<^< .2 .Trsre i s I ̂  V " * ^ ' - ^ ^ZTT? ^ >** ' 

Ci - 1, I ) • 

It i s easy to prove that both sequences II (gP^J &&• ) jf-1 

(i * 19 Z ) have f inite nonzero upper and lower limits as Jk* 

tends to infinity. Assertion b) can be then proved analogous

ly as case a) i f we note that 0 -*- cT < /ttunv 

i (W ^ II C , - . . . , ^ <-C ) > // implies the exis-

tence of a positive integer JkQ such that, for M. -> At0 , 

(28) II <<£ y H < ^ J n . ^ *"/* <• 5^1 **>i >*v + <r > c^ - 4)*-* 

Remark* If the matrix A i s symmetric, then the asser

tions of theorems 1 and 2 hold even i f (6) b) I s replaced 

by 4 > (CC^f & (U,x & * << £. (Ct^ .a* 0 -

f« Conclusion* In theorems 1 and 2 t two basic properties of 
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the characteristic -&£ Ceo) were proved for sraall € . 

Theorem 2 expresses thewmonotonicalM dependence of 

Jk*» Ceo ) on the relaxation factor in the intervals 

(Oy <% ) a i l d ^ *%- » ^ ) * In theorem 1 the "quasi-conti-

nuity* of *4t£ CO>) (defined in the statement of theo

rem l ) as a function of CO in the interval (07 co&,) i s 

treated* It seems very unlikely that a similar result 

holds in the interval K co^ 7 1 ) . In the proof of Theo

rem 1, the fact that the sequence Qjk, Ceo) «• 

m fl (C\f Ceo ))" i£^ ) ^ \\ converges as Jb tends to 

infinity for every CO € C 0 7 cOj^ ) , i s substantially 

exploited. However, in the interval K ca^ f 1 ) a l l e i 

genvalues of the matrix CCCO - 1 )" eC^ ) have unit modu-

J.i hence in the general case the sequence U CCco- 4) cC^) ty\\ 

i s not convergent. 

The dependence of <&% Ceo) 0n CO € C07%) for a 

46 p< 16 matrix with properties (4) and (6) was investi

gated by J* Zitlco* A preliminary result i s the following: 

while in the interval (07 cO& ) the dependence of M^ C<o) 

on CO was "quasi-continuous", the changes of Jfeg Ceo) tor 

CO # KcOj^ 9 3L ) are step-like* (The report on further 

investigations wi l l be published in the Czechoslovak Mathe

matical Journal.) 

R e f e r e n c e s 

£ l ] E#S* TARGA: Matrix Iterative Analysis, .Prentice-Hall, 

New Jersey, 1962. 

lz) D.M. 100130: Iterative methods for solving partial 
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difference equations of elliptic type. 
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