Commentationes Mathematicae Universitatis Carolinae

Ivo Marek
An infinite dimensional analogue of R. S. Varga's lemma

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 1, 27--38

Persistent URL: http://dml.cz/dmlcz/105090

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105090
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

8, 1 (1967)

AN INFINITE DIMENSIONAL ANALOGUE OF R.S. VARGA’S LEMMA
Ivo MAREK, Prena -

1, Introduction.

The purpose of this note is s generalization cf the
follcowing lemma of R.S. Varga and some of its consequences.

Let S be the class of squars matrices B , for which -
the following conditions hold:

(a) B is nonnegative (L, ) = B & @, where 6
denotes the null-matrix anmd 45; = 0.

(b) B 1s irreducible and convergent, i.e.0(B) < 1,
where ©(B) is the spectral radius of B.

(¢) B is symmetric.

For Be S, put B-LB+L: , where L, 1is a
strictly lower triangular matrix and Ls and L’; are con=-
Jugated.

Lemma ([7], p. 118). If B &€ S, put

Ag(@) = e“Ly+ €Ly + 71,
where 1 1s the identity matrix and o , 9 are nonnegative

1]
numbers; then

p (Ag (%)) & @ (A, (%))
for 0 ¢ x, € %, . Morecver, if

© (Ag (&,)) < P (Ag (&, )
for some particular values 0 £ 0?11 = 5‘02 , then it is true
for all 0 € % < «, - '
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2, N e .

Let Y be a real Hilbert space and £ 1its complex
extension. The inner product in X 48 an obvious exten-
sion of the inncr product in Y . It'f'(.x;,ry;) denotes
the inner product of X, 4, € Y, F=1, 2, then
(%, 2, )= DO, )+ (X, Y DI+ 4 [(Xy,9, )~ (Xyq, %y )]
is the value of the inner product of Z,, 2, € X , % =
= X; ¥ Ay -

We assume that there is a cone K in Y and that this
cone is generating, normal ([2]) and self-adjoint, i.e.

K’= K, where K’ is the adjoint cone ([2]). If 4y -X€
eK,X,ye¥, 6 wewrite X 44 or g ¢ X.

The éymbol LY] (L3¥] respectively), denct es the
space of linear bounded iransformations of Y (X respec-
tively) into itself. Topologies in these spaces are given
by the usual norms; thus, [ Y] and [#] are Banach spaces.
Let ] denote the identity operator and & the null-ope-

‘rator. If T € [Y] , then T denotes the complex ex-
tension of T , i.c. we have Tz = TX + 4 Tay  for
X=X+iy .

The spectrum of Tel(X] is dencted by 6(T).In
the particular case, if T € [ Y], we define 6 (T) =
=6(T). Similarly, put @ (T) = @ (T) , Where ©(A)
'is the spectral radius of an operator A € [ ¥ 1.

An operator T € LY]l 1s called positive {2], if
Txe K for X € K. A positive operator T e LY] is
called gemi-pon-support (5], if for every pair x € K,

X % ,x'e K, X4 0, where o’ denotes the null-vector in
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Y » there exists a positive integer fi = f2(x,x’) such
that ( TPx, x) > 0 . \e say that a vector X € K
is nop-support element of the cone K [ 5], if (Xx,Xx") # 0
for every x’€ K/, X’# o, A positive operator T &€ LY]
is called gtrict non-support [5], if for every x & K,
X % 07, there is a positive integer i = f2 (X) such
that the vectors T'”x »M = 11, are non-support elements
of the cone K .

Finally we define the class V or operators from [ Y].

Definition 1, The operater T 6 Y irr T e [ Y]
satisfies the following properties:

1. B is semi-~non-support;

2. B has the form

B =L, + L%,

where L; is conjugated with L, and L’ and L:
are positive operators.

Defipition 2. An operator T € [E] has property
(S),ifeverypoint A € 6(T), IA) = @ (T) , is an
isolated pole of R (A, T) = (A1~ ™.

Geperalized Varga s
Lemma 3,1. Suppbee
(1) BeV.
(11) Ay () , where
Ag(x)= e L+ € L} + 71,
and 9 is a nonnegative constant, have property (S) for
all oo 2 0.
Then for 0 € %, & X,
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(3.1) @ (Ay (x,)) & P (A, (x,)) -
Moreover, if ‘
(3.2) P (Ap(&)) < P(A, (&, )
for some particular valuca 0 & &1 < 6‘(2 , then it is
true for all (0 & %, < %, .
\ Before proving this lemma we shall prove the following
proposition.
‘ Propogition 3.1, Assume T &€ LY ] 1is a positive ope-
rato> having property (S) and @ = @(T) 1s a domi~-
nant proper value of T , i.e. the inequelity [A] < 4
holds foreery A € 6 CT), A # « . Then we have

1
T) = Lim r r~
(3.3) p( )‘1:4~(1:t"") ’
where X 1is eny non-support element of the cone K .

Proof. According %o [3], theorem 1, it holds in the norm
of [®] thati

‘ . 2+ P

"-“'4
59, ’
where ¢ 1is the miltiplicity of o and
‘ S A (A-w)*e T )
R(A,T) =2 A (A-)™+ 2 B, (A- ,
A e l®l, B, ,elX1,

is the Laurent expansion of R (A,T ) in a neighbourhood
of & =@C(T) ([6), p.305).
From the formula (3.4) it follows that

rei .

where g (f1) = 0 (f (1)) means
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emn) _ 0.
A5% Fip)

Since ( Bg X, X ) >0 the following fermula is mea=-

ningful y
(T*x, x)k=(w ﬂ,‘ﬂ'{% Log o +

(o2 4
*%I‘V’W + 5 bog (B X, x Y340 (1)

and hence . 4‘
Lm (TP, )P =
Pr=
which was to be proved.

Proof of generalized Varga’'s lemma. Let o & 0 and
let the poinmt (@ (o) = @ (Ab (ot)) be & dominant DPro- '
per value of A, (L) . According to the previous propo-

sition

(3.5) @)= fim (LA, @)%, x)F -

On the other hand,
) hE, ) o)
[A, @ir=F (e LD+ e+ 2,
where the adjoint ( Z,"")" = Z,"" and (Lg L"‘,,’ * o
=L (LE)* for k= 1,2,....1v, trom which it follows
that

(3.6) (L A,(oc)J".x,x)e-éfa Erenhhx, f=12,..,

with nonnegative coefficients 2’_") . We see that
(LA, @)I™x, %) depends monotonically on o« €
€ <0,+c0).Thus (3.1) is true for 0 & x, & «, .
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It remains to prove the strict monotonicity of
@ (Ay (L)) assuming the velidity of (3.2). Cleardy
the assertions of Varga's lemra hold for the operator-
function Ay, = Ay () iff this lemma is valid
for the operator-function Dp = Dg () = » Ap () ,
where » > 0 is such thet @ (D, (0)) > 1 . Thus,
we nay assume @.(A4, (0)) > 1.

It follous from (3.6) that for 0 < & < o < /3

(€A, (BII7x, x) =5 8 cos by b 3 =

~ P en hba s ke (Bea) mim e T

where Y, < 054-'13:([3-“')7 O<af < 1.
The assumptions @ (Ag (0)) > 1 and (3.2) guaran-
tee the valldity of T, (aL)—>+ 0 , where

1~
S n f

Further we have

Mnhi o ain b L 2
WA % Tashx W TrAEs >0,

thus )
nin hikhoao & wcoshhkha, «a&x >0,

with some poaitive constant 3¢ independent of & , Then

(LA (B)T"X,x ) 2 T, @) + 9 (B-a) 7, (),
where

"lr»c“‘)=“£, gé"’/kcobh,&,oc .

From (3.2) and according to @ (A, 0)> 1, it fol-

lows that ) P Y

ﬁ-’~ “",t”—"(— d" ) = -4~ 00 .
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Hence
. 1
@ (A, ({3))=ﬂ% (LA, (B))I*x,x)” =
z Km map {1+ Z}tﬁ%;% (L Ay )™, x)% >
>P(Ay (x)) .

We shall piove that P(Aa 0)) < g:'(AI> (ax)) for
& >0. The equslity @ (A, (0)) = p (A, (&)  for
some & implies the validity of equalities © (Ag ()=
;-g:?(l‘\a (0)) for all a e <0, & > . But these equali-
ties are impossible according to the preceding investiga-
tion. Hence the Vargl'a lemma is proved in the csse of the
operators A, (o£), o 2 0 , which have dominant proper
values.

The validity of Varga’s lemma in general case follows
from the proved version of this lemna, since for arbitra-
1y pair o, (3, 0 € € /3 ,the operators Ay () + o1
and Ab () + I have dominant proper values for suf-
ficiently great o > 0 and

P(Ay () +F1) =p (4 (x)) + O,
The proof is completed.

In agreement with Verga [7], P.117,we define the ope~
rator-functions

*
(3.7) M(6)=6L,+Ly,, 620,
and the scalar-functions m, , ’h’b :

(3.8) My (6) = @ (Mg (0)),

m, (6)

(3.9) hy (tog 6) = Q’Qﬁpca} , 6 >0.
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Similarly as in the finite dimensional case the fol-
lowing lemma and theorem hold.

Lemma 3,2. et Be V and a=-4og 6, 6 > 0.
Then h’ () = hy (-a) for all real o and speci~
fically, 4, (0)= 1.

Theorem 3.1. If B e V , then either Hh, (x) = 1
for all real o , or A, 1is strictly increasing for
"ou & 0. Noreover, for any o %= 0

1< lvbfdz)< coah-az—r’ .

Now we may introduce & class of operators which play
the same role as thdclass of consistently ordered cyclic
matrices of index 2 in finite dimensional spaces.

Defipition 3. The operator B € VCO, if Be [Y]
has the following properties:

1. Be V;

2. The function 'h’B = »h,s () is constant in
<0, + c0) .

im on met

Let B € [Y] be expressed as B = By + B, , whe-
re B, Be [¥Y] anda ©(B)< 1. We define the
operator
(4.1) H=CI-8)"8,,
sesuming (I1-B,)"e LVYI.

If the components B, and B, in (4.1) are positi-
ve transformations such that th: operator B is semi-non-

eapport, then there holds the gcneralized Stein-Rosenberg
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theorem (for finite dimensional spaces see [ 7],p.70).

Propogjitiop 4.1. Assume that
(a) B =B, +8B, , B, and B, are positive
transformations, B has property (S) .

(b) (By) < 1.
(¢) The operator (I - B! B, has property (S) .
(d) The operator B is semi-non-support.

Then ¢ ( H) = 0 ire B, = 6 .

Proof. It is easily scen that ©(H) = 1, if
;o(s)=4.Henceletp(B)<4 and O <P < B,,
P46, where P <4 B, means that B, - P is a po-
gsitive transformation.

Evidently
(I1-B)"=(1-B-P)'=(1-BY"P(I-B-P)'

and hence p
Ha[1-(I-B)YPR(I-F-P)"B, .

In particular, if P= B, , we have

(4.2) H=(1-H)(I-B)"B, -

We shall prove that the operator (I - B)~’ B, has
a positive spectral radius. Let 4, = Lo (B)) "By, ,
4, € K, 4, % 0 . The existence of such vectar
follows from assumption (d) [ 5). Then 44, 1s a non-support
element of the cone K and thus B, 7, % O . The vec-
tor zx=(1- B B, y, :Ai gk B, %o also is a

non-support element of the cone K . Hence B, X, # 0,
By induction, it follows that [ (I - B)~' B, 1% Y, * o
for /k« = 4, 2 gese o
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This means that T cannot be a nilpotent operator.
This fact and property (S) 4imply the existence of a vec-
tor % # 0« forwhich (I -B)'B, % =p 7  and

e=p((I -B)'8,) > 0. According to (4.2), we have
Hy = @ (I-H)2;

. L
H 1+@

or

%

and consequently
pHY 2 1-% >0.

The proposition just proved and the generalized mini-
max-principle for semi-non-support operators [ 4] form a
base for the following theorem.

Theorem 4,1 (Stein-Rosenberg). In addition to assump-
tions (a) to (c) of proposition 4.1 let also
(e) B is strict non-support operator.

(£) p(H) is a proper value of H and to it there
corresponds a proper vector of H within K .

(g) The operator B has property (S) .

(h) B, # 8 .

Then one of the tbree following conditions holds:
(4.3) (a) 0 < p(H) < p(B) < 1,
(b) (H) = 1=p (B),
(e) 1 <P (B) < p (H) .
The proof of theoarem 4.1 1s analogous as for the fini-
te dimensional case (see [ 1], p.105). _
The sharpened form of statement (4.3) (a) of Stein-

Rosenberg theorem 4.1 for the set of operators V is
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contained in the following theorem.

Theorem 4.2. If B € V , then

P (B) & pCH) < FL
The equality is possible only if Be VCO .

Theorem 4.2 is a consequence of a mare general theorem
concerning succeseive over relaxation me thods. Successive
over relaxaticn me¢thods in Banach spaces will be studied in
our ancther paper, where the theorem mentioned above will
be proved amongst other assertions.

References

[1) A.S.HOUSEHCLDER: The theory of matrices in numerical
anazlysis.Blaisdell Publ.New York 1964.

[2] M.G. KREJN; M.A. RUTMAN: Linejnyje operatory ostavlja-
jus&ije invariantnym konus v prostranstve Ba-
nacha.Usp.mat.nauk III(1948),No 1,3-95.

(3] I. MAREX: Iterations of linear bounded operators and
Kellogg’s iterastions in non self-adjoint eli=-
genvalue problems.Czech.Math.Journ.12(1962),
536-554.

[4) 1. MAREK: Spektrale Eigenschaften der K-positiven Ope-
ratoren urd Einschliessungssatze fir den Spek-
tralradius.Czech.Math.Journ.16 (1966),493=517,

[5] 1I. SAWASHIMA: On spectral properties of some positive
operators. Nat.Seci.Report Ochanomizu Univ.15
(1964) ,53-64,

(6] A.E. TAYLOR: Introduction to functional analysis.J.Wi-
ley Publ.New York 1958. ‘

[7] R.S. VARGA: Matrix iterative analysis. Prentice-Hall

C 37



Inc.New Jersey 1962,

(Received November 8, 1966)

- 38 =



		webmaster@dml.cz
	2012-04-27T16:50:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




