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Commentationes Mathematicae Un ivers i ta t i s Carolinae 

8 ,3 (1967) 

LINEAR DIFFERENTIAL EQUATICNS tflTH NEtfTQN-INTESRABLE 

CQEFFICIENTS 

Otomar HÁJEK, Cleveland, Ohio, Karel KARTÁK, Praha 

SM|̂ wy>t»v2 Existence theorems (items 8,9 and 11) arů a uni -

c i t y theorem (item 12) are given for the l i n e a r d i f f e r e n t i a l 

equation x'm A C i ) x -#- Jlr (t) i n m -space under the a s -

sumption that A(t) and JtrCt) are Newton-integráble, ±»e.t 
are exact der ivat ives on an interval* 

! • Introduction. The c l a s s i c a l notion of a so lu t ion of a 

d i f f e r e n t i a l equation 

(1.1) x ' * t(t,x) 

with continuous right-hand side was generalized by Carathéodo-
ry [ 1] as follows. We say that an absolutely continuous func-
tion cp defined on an interval 1 * Cf, T -t- ac J , ot > 0, 
ls a solution of (1*1) iff 
(1.2) cp' (t) - -f Ct,cp (t)) 

a.e. on I .On setting cp Cx ) * f f we háve cp (<t) *> 
m f +f i (a , Cf (s )) cL s 7 with the integration ta-
ken in the sense of Lebesgue. 

In [3j it is shown that, in such situations, several in
tegration processea more generál than that of Lebesgue may be 
ušed, thus providing a more complete theory. It is then natu-
ral to inquire into the usefulness, in this context, of 
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another familiar integration process, námely that of Newton 
integration [4]. 

2. In what follows, on l s a fixed positive integer, (R!* 
denotes euclidean m -space, í l « í l • By the f i , x ) -
space we mean íť1*"**4 , the generie point of which may be 
denoted as ( t} x) or ( t , X, , . . . , X^ ) . For x * 
«Í0C,v"i**i,>e W set Ix I - /wu^ HX, I, . . . , /«\J > . For 
any subset íD of the (t, x ) -space, and any x e #"% we 
denote 3)c'>*} • í * e í l -, Cí, x )e 2) } f and aimilarly for 

2>^'> 5 f inal ly , -f i*^ 2> * U í í í ^ ^ 5 x c , # » j , and 
aimilarly jfucoi^ 2) = Ui3>ctft) ; * e # } • 

A real-valued function -f with domain -f » fr open 
in j£ ia said to be Newton-integrable, and we will write 
$ e Jf , i f f there exists a function F such that F'(-t) » 
* -f Ci ) for a l l t £ G- * a aimilar definition wi l l also 
be asaumed for 7C* -valued functions, and for closed inter
val domains C r , f ' J 0 In the latter čase, the number FCtr')-
- F (r ) i s called the Newton integrál of f over í X } X' J , 
and denoted by (JC)j f . For convenience, the Lebesgue in
tegrál may be denoted by ( iC) J , and the set of Lebesgue 
Integrable functions by oč • 

Further, l e t c be a real-valued function on an inter
val I - C ~z , r + cc J . We write c € JQ i£± C & e Jť 

on I for each continuous Cf ; I —• 31 . Evidently JT c 
cJf. 

3* Definitloiu Let * : 2) —> ft" with 3> an 
open aubaet of the ( t , X ) -space. It will then be sald 
that a g ; C T , -r + oc ] - * JI'**' ia an ^ť-aolut^on 
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of the differential equation ( l . l ) i f f (1.2) holda everywhe 
re on [ r , r + c c ] Cwith one-aided derivátivea at the end-
points). 

Remark. Evidently thia requirement i s equivalent to 
9 Ct )« y> (<v ) + (JT)f -f es, cp Cs )) f or a l l t e L r, -v+ oc 3 • 

4. It would be most interesting to describe large claa-
ses of i 's for whieh JC -solutions alwaya exiat. In ana
logy with the theory developed in [3J for, aay, Perron inte-
gration, it seeme natural to consider differential equationa* 
(1.1) euch that 

(4.1) for each x e Wty* 2), * <> 7 * ) e Jí o a S ^ ^ ; 

(4*2) for each t e f^c^S), «PCt?*) i* continuous on 3)ct>'\ 

under aome further boundednesa conditions, e»g«y that 

(4*3) there exiat mn ; M e Jť on <p>">i>t S) auch that 
ftnC-b) £ -fCt, x ) £ M ( i ) for each (t, x ) e 3) • 

However, we do not háve any exiatence reault in thia direc-
t ion: the uaual reaaoníng via the Schauder fixetf-point theo-
rem fai la here since i t ia not known whether, ur-der the con
ditions exhibited, -f Ct, cy Ct ) ) € JT for each conti
nuous cp • The present páper i s then devoted to the speciál 
čase of linear equationa. 

5. In what followa, we shall be concemed with linear 
differential equationa of the form 

(5.1) cx' - A C i > * + Jr Ct ) 
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under the assumption that the <n x m, matrix A * (0*4 $> 

and the nn x 4 matrix Jlr * ('&4 ) have 

(5.2) a i i , A*4 e JT tor 1 6 <L, 2 * ™> 

on a fixed closed interval I -=- L t , t f <t] , (This coa-

f orms to the general situation from Item 3 after extending A f 

Ay appropriately to some open interval containing I .) 

The first question is the existence problem: Given an 

initial value f e Si 9 does there exist an JT -solution 

of (5.1) on I such that cp(t) = § • For this we have 

the two results described in Items 8 and 11. The present nota

tion and assumptions will be preserved. 

6. Definition. A function a. % I -+ ft, is called Jt -

semibounded on I iff there exists a function e ; I —> J2-

such that C € JCm, and 

(6.1) either a Ct) & C(t) for t e I , ova(i) & a (t) 

for t € I • 

In this case Q* may be termed JP -semibounded by c • 

Similarly, an fit x m matrix A » (a,±u. ) of func

tions 0,4 j on I is called JT -semibounded on I iff 

there exist* a matrix C « (c+j, ) 1 at x m, 9 of func

tions e < ^ auch that each a^yi* ̂ semibounded by e ^ . 

7. Je§iu. Let a, e JT be Jf -semibounded on I . 

Then Q, € Jfm • 

£E£S£. let a be Jf -semibounded by C , e>g.f 
0, > c •, then a, - c > 0 and a, - c e ̂  - Let 

c? ; I ~* & be continuous. Now put E(t)m (Jf)ff(a-C); 
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then £ non-decreases on I , so that the Riemann-Stiel-

t jes integrál F(í) ~ J Cf d, E exists for each 

t e £ • Now i t suffices to show that F'Ct) * $p (t)(a,(í)-

~C,(t)) for a l l t e l , since then the assertion follows 

from c cp e Indeed, we háve e*g« for each tr ^ T < 

< t +- oo and each (small) Jv > O 

*nim,q>' í (E Ct +jh ,>- E Ct)) 4 í C F(t + A ) - FC* )) -

thus completing the proof• 

8» Theorem* Consider (5»l) and an initial value f e #*', 

and assume C5.2) and alao 

(8»l) each Cť^ • is Lebesgue integrable over I j 
(8.2) A is JT -semibounded on I • 
Then there exists an jT -solution cp of (5.1) on I with 
cf Cr> » f • 

Proof. Put cp0 m f } and then, for each i » 0, i, *. • 

C8.3) sk Í*J « f + (X)/fA cp. + (•#*)£& . 

Now set /3 Cf ) - (&)/* /)n^ /£ ' <*-** < ^ } ' ; ^ e n by induc-

tion one easily obtains the estimate 

In particular, the series y » 9^ •+• Cc^ - 9^ ) 4- .. , con-

verges uniformly on I • Hence and from (8#3), 

for all t e 1 *7 and here, according to Lemma 7, C id ) may 

- 381 -



be replaced by ( Jf ) ? concluding the proof• 

9* In the authors op i ni on, It i s an interesting open 
question whether condition (8.2) , oř even both (8 .1 ) , (8 .2 ) , 
might be omitted entirely. 

We prove that the f i r s t oase occurs provided 
(9*1) & e *£ r\ JT . 

It i s then possible to write (8*4) in the form 

(9*2) ^ C í > • $ + (&)£ A<?+ (*>/** 

so that Cf i s absolutely continuous on I • Now i t suf-

ficea to prove that a, e oĎ <~i Jf , Qf absolutely 
continuous on I imply a>y> € JT on I • 

Put F Ct) » / * co , t e l , and le t 6 : 1 -+ % 
v t 

be defined as G Ct) « / cp d F , with the integration 

taken in the sense of Riemann-Stielt jes . We prove that 

(9.3) G'Ct ) * a Ct) cf Ct), t e l . 
Fiat t 6 I and put H (x)« FCx ) - FC±)-lx-t)aC'h ) , 

X 6 I • 

Then J' * cf cLF'«f * cpdH+a(i)f 9>.Now, i t i s eas i ly 
seen that, to prove (9.3) , i t i s sufficient to show that 

(9.4) J^k A-7 ť + l"ycíH * o . 

Using 

(9.5) JgdHm C y H J ^ - j ^ H d y 

the required reeult follows from H ( £ ) • O and H ' č t ) -
« jtfm, ^K*4 H Ct + Jv) ~ O . 

4%,-+ O 
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10* On the other hand, for equatlons of a s l igh t ly more 
apecial form , one oan omit both (8.1) and (8 .2) . Thia con-
cerns equationa (5.1) in 2m -8paces with coefficient mat-
r i x 

(10.1) I 
\ A , 0 / 

where the diaplayed 8ubmatricea a l l háve type m, x rrv j or, 
in another formulation, second-order equationa in m -space 
of the form 

(10.2) * " « Ad)* for ť € I . 

The proof of the following theorem ia baaed on a přiváte com-
munication by J. Mařík to one of the authors concerning the 
ca8e / n » / I « ř f ? ' » 2 » ^ * 

11# Theorem* Con8ider (10.2) and initial valuea § , U 
in á V 7 and aasume A e Jí . Then there exista an JC -
8olution cf of (10.2) on I with g> (t) * f ; S^Vr) « ̂  * 

Proof. Firat aet B(i) - (JT) f* A for - b e l - ain-
ce B ia continuous on 1 and B (t ) m 0 one may 
chooae a ď > 0 such that 

(11.1) trruvc I B či >l < 4^ 

Now define ip0 m Q and, for i m 0} i7 ... 

(11.2) Vi„ U) m &«;)(§ + £y. ) + ^ _ f* g n . 

Thua 

Yi*f Ct)-V4 (i) - B « > / * (tfc. - V«.« > • / * B CVi - ^ . , > 
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and therefore, uslng (11.l) (with f • • • I denoting maxi-

It f ollows that the sequence { ifr^ f converges uniformly in 
t T i t + ď J ; let y denote its limit. Then froa (11.2) 

(11 .3) tK<*>- BftJff. ^ / * ? ) + n - f B>V • 

Flnally, set y d l - ^ + f v ; then Cf'm-y and 

y-řft)«rBYt)ff-*-/V)^BítJyft)-B«')yW« A « í y « ) 
and also y f tr) * f, 9>Yr ) « v ' ^ ) * B (*) f + ^ • ^ * 

Thla establishes the existence of the required *y -solution 
at leaat on m subinterval C T , ~C + ď J . Nowf ±fc i s easy 
to see that the solution may be extended over the whole inter
val C tř , t f ÍC J in the customary mannar. 

1 2 • The arem. Under the assumptions of The ořem 8, equa-
t ion (5.1) haa unicity of Jf -aolutiona to arbitrary i n i t i a l 
conditiona. 

EEfiPjf. As in a l l linear problems, i t suffioes to show 
that i f an Jí -solution g> of 

(12.1) x ' - AU)x 

has y> (tr> * 0 } then cp as 0 in some neighborhood of 
T . Consider the "fundament al" solution V of the matrix 
equation 

y . . AT(t) y, yct) * £ 
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(where AT i s the transpose of A and £ the unit oat-

r ix ) , 
Since — A T aatisfies with A the assumptions of Theo-
rem 8, such a solution y indeed exists. 
Now, 

( yr
9 ) ' , - f y T A ) y + y T f A y ) 

so that 

(12.2) yrC*)cp Ct) « con*t - VT(v)yCT) ~ 0 . 

Also, V(t) i s continuous, and non-singular at i « T ,> 
so that i t remains non-8ingular on í T , X + cT J for small 
cT > O i whereupon (12.2) yields Cf m O near tr • 

13. Actually, Theorem 12 is a rather speciál čase of a 
result , asserting that existence of solutions (for "negative 

time") of the adjoint problém implies unicity (for "positive 
time") of the originál linear problém Í2l. The samé result 
then applies to the situation treated in Theorem 11; i t suf-
f ices to observe that the adjoint equation to that detemined 
by (10.1) haa coefficient matrix 

v - E , O / 

and this i s again reducible to the form (10.2)• 
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