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Commentationes Mathematicae Universitatis Carolinae 

8, 3 (1967) 

ON THE DIFFERENTIABILITI OF MAPPINGS IN BANACH SPACES 

V6clav ZIZLER, Praha 

1« Introduction* Throughout this paper E, E^ denote 

the real Banach spaces, R (or N ) the set of all real (or 

natural) numbers, F : £ —* E-j a mapping of E into .^ • 

Let E be the dual space of E, (x,e) the value of e e £' 

at the point * 6 £ . Let K^ » { .x 6 E •, II x II -£ * } 

denote the closed ball in E of radius n, > 0 about the 

origin; let S^ denote the boundary of K% • By ( £ -* Ei ) 

there is meant the space of all linear bounded mappings of E 

into E1 (with the topology of uniform convergence on K^ )• 

We shall use the symbols " * n and ** V » * to de

note the strong and weak convergence in E (or in E* )• A 

mapping F : E —+ E.j is said to be weakly (strongly) 

continuous if *x^ -£~* x implies F (X„ ) -*£* F («x ) 

( F (X^ ) —¥ F («x )) - The symbol L x0 , ̂  J } where 

Xof4fa £ £ ; denotes the element of E x E and a neighbour

hood of I X0 , ifo 3 is taken in E x E • By VF(x0, **>) 

( J F ( x 0 ) i v ) ) we denote the Gateaux (linea* GSteaux) dif

ferential of a mapping F : E —• E,, at x, e E . If 

P F (xc f Jv ) is continuous in Jh, e E ; F: E -* E* is 

said to have the Ggteaux derivative F'(x 0) at x 0 • We 

shall say that a mapping F ; E —• E 1 has the Fr^chet 

differential fit F ( ^ , A ) at ^ 6 E if 
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F(x„+ Jh)~ F(x0)~ aF(x0,J*,)+co(x0,J%), <He £ , where 

ciFXx0,Jh,) is linear in h and JbJm, i^L^JJpdL^ 0 . 

A mapping F : E —» E., is said to have the Fr^chet deriva

tive F'(x0) at xc e E if dF(xc1-H) is boun

ded on $<i • By the symbol " neighbourhood of x0 " there is 

always meant the convex symmetric neighbourhood of xa € E . 

In order to omit the assumption of linearity of d F(x0 , -A, ) 

in h Suchomlinov ( 181) introduced the concept of a bounded 

differential as follows: 

Definition 1. The mapping F : E -* Ei is said to ha

ve a bounded differential dVF (x0 , M,) at X0 € E if 

the following conditions are satisfied: 

, *• F(X0+th,)-F(x0) , . _ . % 
1) >^nj - •» dVF(xC7<h) uniformly 

with respect to II M, II » 1 , H e E , 

2) dVF (X0 , <h> ) i s bounded on S,, c E * 

The connections between the existence of the Gateaux and Fr£-

chet differentials for mappings in Banach spaces were studied 

in tli, £2J fr3J>[4J fr5J,t6J>r7J,t8j fr9J. L.A. Ljustemik, V.I. 

Sobolev <[7J,chapt.8f§ 1) derived that i f V F (x 9 4% ) i s 

continuous in Jh, e E and uniformly continuous in a neigh

bourhood of x0 € E in the sense of ( £ —* E^ ) ; then F 

has the Fre'chet derivative at x0 • The following result i s 

due to M.M. Vajnberg (ttJ th .3 .3 ) : If the Gateaux derivative 

exists in some neighbourhood of x0 and i s continuous at x 

in the topology of C E —* E1 ) ; then F possesses the Fr6-

chet' derivative at x6 • Another result has been established 
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by G. Marinescu ( Í83) : Suppcs e that the Gateaux d l f f e r e n t l a l 

V F ( «X > ^ ^ i s continuous in x i n a neighbourhood TA CXC ) 

of x 0 (for an arbitrary but f ixed A% € £ ) and V F i x , A ) 

i s continuous at h * O f o r every f ixed X € ' it CXp ) . I f 

V FCX, >ft ) i s d i r e c t i o n a l l y continuous at x 0 uniformly 

with respect to A e £ , JI /#v II ** 4 f then F has the Fré-

chet der ivat ive at x0 e £ . The r e s u l t of N.N.Ivanov (Í5J) 

i s as fo l lows: Let X be a f in i te -dimensional Banach space , 

•f ; X —• R a reá l funct ional on X • I f there e x i s t s the 

Gateaux d i f f e r e n t i a l Ví C x0 , A ) and f s a t i s f i e s the 

Lipschitz condit ion in a neighbourhood of X9 € £ , then l 

f has a bounded d i f f e r e n t i a l at x 0 € £ , J» Kolomý (£6J) 

has proved that i f V F C x , i i ) e x i s t s i n a neighbourhood 

of X0 6 E ( E i s r e f l e x i v e ) and i s strongly continuous 

j o i n t l y i n [ X n A ] ( h i s an arbitrary element of E ) f 

then F : E —• £ 1 possesses the Fréchet der ivat ive F'(x0) 

at x 0 e E • 

The purpose of t h i s páper i s to show some other conditions 

for the existence of bounded and Fréchet d i f f e r e n t i a l s . I wish 

to thank J . Kolorný for the suggestion of t h i s problém* 

2 . Theorem 1. Suppose that a raapping F : E —• E 1 has 

the Gateaux d i f f e r e n t i a l V F ( x , M, ) in some neighbour

hood l i ( x 0 ) of X„ € E . Let the fol lowing conditions 

be f u l f i l l e d : 

1) JU#n iVFU0+tJh,,M,)-VF(xc,Jh,)L - 0 

uniformly with respect t o ! > f v 8 « / t , A € £ , where řt > 0 
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ls some fixed reál number. 
Z) V F (x0 , M, ) is bounded on S^ . 

Then P poasesses a bounded diff erential d V F(X0 7M,) 
at .xe € E . 

Proof« Let h be an arbitrary element of E • Since 
?(x0 + th,)- F(x0)* VF(x01tM)+co(xc,t*i) , 

(1) Xuinl r 1 - 0 ( h is a fixed element), 

Assume that this limit is not uniform on S^ f where /c > 0 
ia such reál number that xp + K^ c ti Cx0 ) . Then thexe 
exists e > 0 with the following property: 
For every trt 6 N there exist A ^ & SK 

7ři such that 0 < I t^ í < • X and 

(2) | ^ > ^ ^ ^ > | š £ 

TV 

Let >h/ e S^ be an arbitrary element of S^ , then for 

any £ > 0 there exists, /rva e N such that for eve-

ry /ru & /n,0 , ̂v 6 N there is 

r*v 

Since 
Ffoc #^t,A)-Fftc #)- V FC*,, <„,-&) + *>(**,%*,*,) , , 

we háve 
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This faot impliea 

+ 11 VF<X,^>- VF^. + < ^ A , A)|. 1-^1 . 

In view of Hahn-Banach theorem there exiat -e^ e £' such 

that I -ê  lE, - 4 and 

Therefore 

(4) H *> (**> *«* A»)_ i é || g^^^^t^itj | + 

+ IVF6x.^t^,>^)-V'FOc,;.*w>ll + 

+ lVF(x„Jh,)-VF(x..+ t£t„Jv,Ji,)ll . 

POP e > 0 there exista /», e N auoh that for 

Í5) ! VF(x. + rMt„A>„, -A^-VFOť.,^)!! +• 
+ 11 VFío<.+<t^^, A)-VFCÍ<,, A )ll é -| . 

Bot (4) together with (5) and (3) contradicts the relation (2). 
Hence the limit 
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is uniform on S^ • The boundedness of d VF (X09 h ) fol

lows immediately from the second condition of theorem 1* This 

completes the proof* 

Lemma 1, (f9Jf§ 26.7) Let F : E -* £^ be a conti

nuous mapping in some neighbourhood of x 0 • If there exists 

D F C x0 , M, ) f then J) F (x0 , M, ) is continuous in 

M, e £ * 

Corollary 1* Let F : E -+ E^ be a mapping of E 

into £,.1 continuous in some neighbourhood of x0 • Suppose 

that there exists V F ( . x , iv ) in a neighbourhood of 

x- and is such that Mm. l\ VF(x0+th, h)-VF(x0,M)t^ 0 
t~*0> 

holds uniformly with respect to h e £ f ii Av t m 1 • 

Let there exist T> F (xe , M, ) , Then the mapping F has 

the Fr^chet derivative Ff (x0 ) at X0 e E , 

Definition 2. We shall say that a mapping F / E -+ E^ 

is directionally continuous in a convex symmetric neighbour

hood % (x0 ) of x 0 e E if F is continuous along any 

line-segment in tl ( X0 ) • 

Theorem 2« Let £ be a reflexive Banach space* Suppose 

that F; £ —-> E 1 is strongly continuous in f K^ +• ̂  ) 

where H, > 0 is some real number. Assume that there ex

ists V F ( x , A ) in ( K^ t ^ ) and is directionally 

continuous in ( KK -*• x0 ) along the line-segment connecting 

x9 , x C x € * 0 • K * ) , Let V F (x0 , M ) be 

strongly continuous in Ax s £ , Let us define a nonlinear 

functional by 

9t(h)m \f\vF(x0^rth,h)-VF(x9,h))dx\\, *i * K* 
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and suppose that 9^ (J% ) has the following property: 

There exists fc , 1 > £ > 0 ; such that If -1 t l 6 6 , 

it^á ef\%\ á \ t i ,then 

(6) 9J (A > é % (4% ) for every A e K^ • 

Then F possesses the bounded differential 

d V F Cx9 , A ) at *, e £ . 

Proof* Let h be an arbitrary (buf fixed) element 

of K^ . Since e e ( Q, 4 ) > *++ t h, e *,+ K*, and for 

t + 0? i ti & £ , according to theorem 2.7 £ 1] we háve 

FCx0+t*t)~ FCxé) m f\fU^TtKfJh)cLir . 
t Ů 

Suppose Jv^ £ K^ , J%^3£+Jt,, A e K^ . Since P i s 

strongly continuous on ( K^ + x0 ) f 

F(x.+ tH„)- FCx0) FCXo + tJh,)- F(xe) 

t * 
for any fixed t , t + 0 , I t I A 6 whenev er<n, -*co . 

Therefore i l ^ ^ i i , K > ̂  € **> 11 I é e impltf 

f\F(x. + rtM,^,H„)d?^fif\FCx0+TtJh,^)dv 
whenever /n, —• ot? . Since VF (x0 7 Jh, ) i s strongly 

/
i i 

VF(x., Jv^^ďe-Ý f VF(xp,A)dr . 
Hence 

Imu llfcVFCx.+rtJh^Jh^-VFCx^^Vd-rft* 

Thus Cf+ C fv ) is strongly continuous in h on K^ 
for an arbitrary (but fixed) t , lil é e . Suppose that 
4 t^ } is a sequence of reál numbers such that I f^ | é € , 
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Mřm t^- O , I t^+j l á I t*, I . According to (6) Cf. C<*l) 
d% *V *ú *ň% 

i s a monotonie sequence of strongly continuous functionals in 

Employing our assumptions we see that c/>± (Ji>) weakly 
converges to the zero-functional on K^ • By the sl ight gene-
ralization of the Dinitheorem in Banach spaces (Í1J § 22.4) 

«$raZ <?ttn,('*1') m O uniformly on K^ • Now l e t us as sumě 

that JU/m' 9^ (^) m 0 i s not unif orm on Ŝ  • Then there 

exists e,c > 0 such that for every /rt e N there 
exist Jhtn, e S^ and t ^ with the property that 0 < ' 

< ' t»v I < ví a n d % ^ « . ^ é e° • P a s s i n £ t 0 SUD~ 
sequences {t^ J , { ^h^j^ i sucn ***at J^

7W' *"Mt ** 0 , 

I t*w I ál /t | we obtain g>é íH^ ) £ £ * But this 

contradicts the fact that -&m, O L C ^ ) ~ 0 is uni-

form on K^ . But the strong continuity of V F (*x0 , 4v ) in 

h implies the boundedness of V F C x ^ , M. ) on S^ . This 

completes the proof• 

Corollar.Y 2. Let £ be a reflexiva Banach space, 

F ; E —* £<y » strongly continuous map ping in6xtf-i- KA ), 

/* > 0 such that V F ř . x , 4 ) is directionally conti
nuous in x on iX̂  4- K^ along the line-segmenta connec-
ting xo f x , x 6 Xe + Ki ( h is any f ixed element of 
E )• Suppose that there exists € , 0 < £ < 4 such 

that for I t I é £ , -I t, L é £ , i t, I £ í i | 

i (/(VFCXc + ^TJh,,*,)- VF(xor*u))cL<t: \\ £ 
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ú l\ ťcVFCXo + tT^Jh)- VF(x07Jh))cL<z II • 
• - . * * ' 

I f P F (xc , A ) i s rtrongly continuous in A € £ ý then 

F has the Fréchet derivative F' (x, ) at x9 • 

^ÍPlíMm h A mapping F ; E -> E f i s sald to be 

eompletely compact on a bounded set co c £ i f £ Is com

pact and uniformly continuous on co . 

Lemma 2« (CUf5 1*4) A mapping F : £ —>• £ f i s eom

pletely compact i f and only i f the following condition Is fu l -

f i l l e d : li {*X^ ? , { X^ J are the arbitrary sequences @f co 

auch that ivm IIX^- x' ff » 0 , then there exist the 

subsequences { ***** 1 > i ^ A , ? w i t n t h e P r oP e r ty 

Theorem 2* Let F be a mapping of £ into ^ . Sup-

pose that there exists the Gáteaux differential VF (x f A ) 

for every x € (xc + K* ) C * > 0 ) . If VF (x , A ) i s 

eompletely compact in Cx0 + K* ) * K̂  c £ x E ; then F 

has the Fréchet derivative F / ( x0 ) at x„ . e £ . 

Proof# Let h^ , h be the arbitrary elements of £ such 

that A ^ c S^ , A « '((^ , l e háve 

Ff*,+ t*A;~ Fřx,)« V F f x ^ ^ A ^ c o C x ^ t ^ A ? . 

Suppose that the limit 

JUnn 11 -r1——H * 0 

is not unlform on S^ c E . Then there exists e > 0 
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with the following propertys There exist J%^ € S^ and %m 

such that 0 <: l t„ i < .jjr and 

Let -e^ é E1 be any arbžtrary elements of Ê  • By the 
mean-value theořem 

+ (VF(* + %>t„ *,„,*,„ ),€„ ) -

^ 7 ý -V^ ) m V + i " ^ / 

According to Hahn-Banach theorem there exist <„ jg E ; such 
t h a t II «e^ ÍE# * 4 a a d 

1 

Hence 

- KFto,, K^) I + II VF(*c+ r~ C * , * > -

- VFC*,, A)II . 

Since V F {".X , h, ) i s completely oompact on(n^-t-K^)x /^ , 

passing to the s u b s e q u e n c e s f f ^ + r ^ ť ^ i i ^ ^ ^ J ^ f f x ^ A ^ ] ^ 

we háve that 

k.-+ae 
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exťract a subsequence {#1^ | such tli 
the sequencea { í X* + %*^_t^ **> ^ ^ * í £ ** 9 ^ ^ ^ 

Agaln we can extract a subaequenee 7 *ij± J auch that f oř 

there is 

Since F has the Gáteaux differential at xp , 

These facts give the contradiction with (7) . 
Thus F has the bounded differential d VF( X, , Jv ) at 
X0 € £ . By the Vajnberg theorem ({1J ,th. 3»1) 

d VFC.X0, A ) must be linear in yfk € £ • Therefore 

dSIF(X(>,M,)*dF(x0fH)m F'(x0)M. , where F'(x9 ) de-

notes the Fréchet derivative of F at X„ € £ • 

Lemma 3» Let E be a reflexive Banach space, F Í £ -* 

—V E* a mapping of E into £ 1 such that there exists 

VF ( X , M, ) in some neighbourhood ^ řiXp ) of X0 € £ . 

Suppose that V F f X , 4% ) i s direetionally continuous 

in # Cx„ ) for every (but fixed) M, e £ -. Let 

VF ( x a , A , ) be strongly continuous in Jtv e £ • Let 

fc**~+ 0, A n , ^ 0> A * € K* 7 * > 0 impl# 

(8) JU»* \\ fvFCXt + t^H+tt^K^tos^di lg - 0 . 
rtlr-% CO O * 

Then F possesses the bounded differential d V F(x0,H ) 

at X„ € E . 

£rjoj2£. Let A * , 6 ^ , M, € K^ , í ^ -> 0 . We háve 

9> FC^^t^K^-FCx^^VFC^t^^^^Cx^t^^^) 9 
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FCxo+t«>*)- F t o )= VFč*#X*> + oiCx,, t^ H ) 

Assume that , . / •» , + u \ 
U^ ,| *><*•** + > i « o 

is not unifona on S^ . Then there exist c >• 0, 0 < \im,\< 

< ;yj ,H^ € S ^ such that 

(10) « ̂ f ^ ^ ^ ^ ) | * e . 
Since £ is a reflexive Banach space, passing to a subsequen-
ce í -̂ tv- } , we may assume that Jl^ ^-* M, , From (9) 
we obtain 

( 

*W, 

+ (( VF í*,,^)- VFCx, , V*, )), <*A >, 

where "*<*, 6 E^ are any elements of E' , Let ua choo-
se -É̂ . £ £' such that 

i c * *>s )U" 1^ ' 
I -trn. h> - * ' * ""'Ar *í 
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+ i VF C*# ,*>«,* ) - VF <\x, , M, ) II . 

Sinee VF í*xf y J% ) i s strongly continuous in h and in 
view of (8) , we háve the contradiction with (10), 

Theorem 4« Let £ be a reflexive Banach space, 
F i E —t E^ a mapping of E into Ê  having the fo l l o -
wing propertles: 
1) there exista the Gateaux diff erentiaL VF6<„ + .X , A > 
for >> 6 K* , i s directionally continuous in * e K^ 
(for any fixed A% € B ) and ÍVFČX* «• * , A ) íl á K 
for every X € K^ , A 6 K*tf f where K^ is some 
closed balí in E V^F(^/(J ťo vL^é+tiu+^S* f+F 
2) II VF(K, +X„ , A ^ H —• 0 whenever x,*, ~* * • > 

A * ^ 0 . 
Then F has the bounded differential d V F' (X* , <h> ) 

at x0 e £ • 

Proof• Suppose that the conditions of our theorem are 

satisf ied. Let t € < O; 4 > . Then we háve 

whenever I t^ I < 4, **. ~* 0 > *v* € ^ > A ^ — * A . 

Thus $£/*)* VF<X*t»A+i£*<A*,- *,) 9 \ - A ) are 

continuous abstract functions on < Of1 ) , llg^ Ct) H £ K , 

* H^S %* ř * * * ° in < 0, 4 > . By the Lebesgue theorem 
(UCJfchapt.IIIf§ 6*16) 
A^ ll/VF^^tA**^ fA -A), An-A)// « O . 

Thus the conditions of the lemma 3 are fulfilled and our 
theorem is proved* 
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Corollary 3 . Under the conditions of the theorem 4 f l e t 

there e x i s t í F řiX ĵ , i t ) . Ihen P possesses the 

Fréchet der ivát ive F ' (Xa ) at Xó € £ * 
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