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Commentationes Mathematicae Universitatis Carolinae 
8, 3 (1967) 

A THEOREM ON MAPPINGS 
M. KATĚTOV, Praha 

The theorem in question ia of purely combinatorial 
character and a quite easy one. Pfobably, it has already ap-
peared in the literatuře, at least implicitly. However, not 
having found an explicit reference, the present author pre-
ferred publishing a possibly well-known result to underta-
klng a long search; the more ao, as the proof is short and 
there are applications to topology# 

The arénu Let X be a class and let f be a mapping 
of X (into some claas) such that fx * x for no x c X • 

Then there exist disjoint classes X#, X, , X4 such 
that X0 v X^ u Xt * X and f [X.]n X- = í , i = 0,1,2. 

Proof. We may auppose that X4« 6 • For any x e X 
let A(x) denote the class of all y e X such that, for so
me m e N, n c N we háve f"x » f^y (we put, of course, 
f°x « x ). Clearly, (i) any two classes AÍx,), A(x£) either 

coincide or are disjoint, (ii) for any x € X , f £A(x)J c 

C A(x) • Therefore, it is sufficient to prove the theorem 

for each of the classes A(x) . 

Thus we may suppose that, for any x e X , y € X , 

there are m, n such that f x » f*y • Choose an element 

a € X . For any x € X denote by m(x) the least m e H 

such that f a * f*x for some n e N ; denote by n(x) the 

least n « K such that f x * tm a • 
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Clearly, for any x € X with n(x) > 0 f we háve 

m(fx) « mx , n(fx) * n(x) + 1 • It i s easy to see that there 

exists at most one b e X such that n(b) » O ( i . e . b = 

« t* a for some k e N ) and m(fb) # m(b) + 1. Put X0 * 

a (b) i f such an element b exists , X0 » jb i f this i s not 

the oase* Then 

m(fx) • n(fx) * m(x) * n(x) + 1 

whenever x € X - X0 • 

Now let X^ , respectively Xa consist of all x e X -

- X 0 such that m(x) * n(x) is odd, respectively even. It 

is clear that 

X0 u X^ u X% * X , f 1X^1 r\ X± * j0 for i » 0,1,2 . 

Remarks. l) Clearly, we háve ušed a strong form of the 

axiom of choice. If X is supposed to be a set, a current 

weak form is sufficient. 2) In certain cases two sets may do 

(i.e., we may put X0 */>•)• A necessary and sufficient con-

dition for this is the following: there are no distinct x̂  , 

x%9...9 x„€ X , n odd, with fx. « x. + i for i»l f... 

. • •, n - 1 , fx^ - X* • 

The following assertion is a simple example of a topolo-

gical proposition obtained immediately from the above theorem* 

Observe that if X, X are completely re gul ar spaces and 

f x X —* X is a continuous mapping, we shall denote by f 

the extension of f to a mapping of (l X into fi X • 

Proposition 1* If D is a discrete space, and f : D-> 

—* D , then the set of fixed points of f coincides with 

the closure of the set of fixed points of f • 

Using Proposition 1, a short proof can be given of the 
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fo l lowing re su l t (see Z. Frol ík, Fixed points of maps of 

fi N , to appear in Bul l .Acad.Polon.Sci») . 

Propošit ion 2« Let f be a homeomorpnism of fl N i n -

t o fi N - N . Then f has no f ixed point• 

Proof. I t i s easy t o see that there e x i s t 6 ^ , k £ N , 

such that ( i ) ÍGj^l i s d i s j o i n t , U { < y = : N , ( i i ) k € 

€ Gj^ for no k , ( i i i ) (fk) u G^ i s a neighborhood of 

fk in N u ffNJ • For every n e N put hn - f k where 

n € Gĵ  ; thus Iv i s a mapping of N onto fíNJ • Put g » 

s f • h ; then, by ( i i ) , gn * n for n e N and there -

f ó r e , by Proposit ion 1 , g has no f ixed point . 

Since fk 6 G^ and hh = fk for n € G^ , we háve 

h(fk) » fk ; hence h f = f whenever f € fÍNJ • 

Now suppose there i s a f e /3 N with tf - f • Then 

h(f f ) = f f = f ; hence f i s a f ixed point of g , 

which i s a contradict ion. 
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