Commentationes Mathematicae Universitatis Caroline

Miroslav Katětov
 A theorem on mappings

Commentationes Mathematicae Universitatis Carolinae, Vol. 8 (1967), No. 3, 431--433

Persistent URL: http://dml.cz/dmlcz/105124

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
8,3 \text { (1967) }
$$

a theorem on mappings
M. KATELTOV, Praha

The theorem in question is of purely combinatorial character and a quite easy one. Probably, it has already appeared in the literature, at least implicitly. However, not having found an explicit reference, the present author preferred publishing a possibly well-known result to undertaking long search; the more so, as the proof is short and there are applications to topology.

Theorem. Let X be a class and let f be mapping of X (into some class) such that $f_{x}=x$ for no $x \in X$.

Then there exist disjoint classes X_{0}, X_{1}, X_{2} such that $X_{0} \cup X_{1} \cup X_{2}=X$ and $f\left[X_{i}\right] \cap X_{i}=\varnothing, i=0,1,2$. Proof. We may suppose that $X \neq D$. For any $x \in X$ Let $A(x)$ denote the class of all $y \in X$ such that, for so. me $m \in N, n \in N$ we have $f^{m / x} x=f^{n} y$ (we put, of course, $f^{0} x=x$). Clearly, (i) any two classes $A\left(x_{1}\right), A\left(x_{2}\right)$ either coincide or are disjoint, (ii) for any $x \in X, f[A(x)] C$ C A(x). Therefore, it is sufficient to prove the theorem for each of the classes $A(x)$.

Thus we may suppose that, for any $x \in X, y \in X$, there are m, n such that $f^{m} x=f^{n} y$. Choose an element $a \in X$. For any $x \in X$ denote by $m(x)$ the least $m \in N$ such that $f^{m a}=f^{n} x$ for some $n \in N$; denote by $n(x)$ the least $n \in N$ such that $f^{n} x=f^{m(x)} a$.

Clearly, for any $x \in X$ with $n(x)>0$, we have $m(f x)=m x, n(f x)=n(x)+1$. It is easy to see that there exists at most one $b \in X$ such that $n(b)=0$ (i.e. $b=$ $=f^{k} a$ for some $\left.k \in N\right)$ and $m(f b) \neq m(b)+1$. Put $X_{0}=$ $=(b)$ if such an element b exists, $X_{0}=\varnothing$ if this is not the case. Then

$$
m(f x)+n(f x)=m(x)+n(x)+1
$$

whenever $x \in X-X_{0}$.
Now let X_{1}, respectively X_{2} consist of all $x \in X-$ - X_{0} such that $m(x)+n(x)$ is odd, respectively even. It is clear that
$x_{0} \cup X_{1} \cup X_{2}=x, f\left[x_{i}\right] \cap x_{i}=D$ for $i=0,1,2$.
Remarks. 1) Clearly, we have used a strong form of the axiom of choice. If X is supposed to be a set, a current weak form is sufficient. 2) In certain cases two sets may do (i.e., we may put $X_{0}=D$). A necessary and sufficient condition for this is the following: there are no distinct x_{1}, $x_{2}, \ldots, x_{n} \in X, n$ odd, with $f x_{i}=x_{i+1}$ for $i=1, \ldots$ $\ldots, n-1, f x_{n}=x_{1}$.

The following assertion is a simple example of a topological proposition obtained immediately from the above theorem. Observe that if X, Y are completely regular spaces and $\mathbf{P}: X \rightarrow Y$ is a continuous mapping, we shall denote by $\overline{\mathbf{f}}$ the extension of f to a mapping of βX into βY.

Proposition. If D is a discrete space, and $f: D \rightarrow$ $\rightarrow D$, then the set of fixed points of $\overline{\mathrm{f}}$ coincides with the closure of the set of fixed points of \mathbf{f}.

Using Proposition 1, a short proof can be given of the
following result (see Z. Frolik, Fixed points of maps of $\beta \mathrm{N}$, to appear in Bull.Acad. Polon.Sci.).

Proposition 2. Let f be a homeonorphism of βN into $\beta N-N$. Then f has no fixed point.

Proof. It is easy to see that there exist $G_{k}, k \in N$, such that (i) $\left\{G_{k}\right\}$ is disjoint, $U\left\{G_{k}\right\}=N$, (ii) $k \in$ ϵG_{h} for no k, (iii) ($f k$) $\cup G_{k}$ is a neighborhood of $f k$ in $N \cup f[N]$. For every $n \in N$ put $h n=f k$ where $n \in G_{h}$; thus h is a mapping of N onto $f[N]$. Put $g=$ $=f^{-1} \circ h$; then, by (ii), $g n \neq n$ for $n \in N$ and there fore, by Proposition 1, $\overline{8}$ has no fixed point.

Since $f k \in G_{f}$ and $h n=f k$ for $n \in G_{f}$, we have $\bar{h}(f k)=f k$; hence $\bar{h} \xi=\xi$ whenever $\xi \in \overline{f[N]}$.

Now suppose there is a $\xi \in \beta N$ with $f \xi=\xi$. Then $\bar{h}(f \xi)=f \xi=\xi$; hence ξ is a fixed point of \bar{B}, which is a contradiction.

```
(Received May 16, 1967)
```

