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Commentationes Mathematicae Universitatis Carolinae

8, 3 (1967)

ON THE DIFFERENTIABILITY OF URYSOHN AND NEMYCKIJ OPERATORS
Ji¥{ DURDIL, Praha

In this paper we deal with the differentiability of Ury-
sohn and Nemyckij operators in spaces Lﬂ and C . Some
results in those topics have been obtained by M.M. Vajnberg,
M.A. Krasnoselskij, J.B. Rutickij, Wang Shen-Wang, S. A8i-
rov, L.V. Kantorovi& (ef. [1] - (7J],(12],[13)). Very recent-
ly there appeared a paper of P.P. Zabrejko [ 8) where the
differentiability of Urysohn operators is discussed under
more general conditions. Our assumption on the increase of

K (s,%,4) 1s more restrict than in [8], but our re-

sults are much stronger than the ones of the above mentioned

works.

In section 2 we discuss the existence of continuous
bounded (on every bounded set) Fréchet derivative F”: Lﬂ—v
—-r[L_ﬂ_—-r L'L] of an Urysohn operator F in the space
Lﬂ(n 2 1), Thus, theorems 1,2 give sufficiert conditions
under which Urysohn operators are Lipschitzian. Theorems 3,
4 deal with the first and second derivatives and their pro-
perties (Lipschitzian condition of the first Fréchet deriva-
tive F’ , continuity and boundedness properties of the se-
cond Fréchet derivative F” (or F G ~derivative)). Si=
milar results are derived for Urysohn operators actamg in
the space of continuous functions (section 3). Section 4 con

cerns with the differentiability of Nemyckij operators in L,
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(p 2 2). First of all we generalize abme results of M.M.
Vajnberg [2] and then we present several global and local
theorems concerning the first and second continuous and
bounded Fréchet derivatives of Nemyckij operafors acting in
Lr (1 > 2). We conclude this paper with the second dif-
ferentials of these operators in L, -

I wish to thank J. Kolomy for the suggestions and -ad-

vice.

1. Notations and definitions

First of all we shall introduce some well=known nota-
tions and definitions. A function f: [x,4]— f (x,4),
where x is fixed and 4 1is variable, is denoted by (X,s);
hence, we shall use:the notation which occured in [9].

Let X, Y  be real Banach spaces, X, € X , F a
mapping ﬁ-om a neighbourhood U(X,) of the point ux,
into Y . We shall use the symbols DF(x,,*), dF(x,,-)
to denote the linear G8teaux and Fréchet differentials of the
mapping F "at the point X, , respectively. A mapping X —
~ DF(x,+) , where x € M ¢ X , 1is denoted by DF and
is called the linear GAteaux differential on the set M . We
introduce the similar notation dF for the Fréchet dif=-
ferentiél on a set in X . Often we shall use the symbol F’
instead of DF or dF ; if F': Ma[X=2Y] ([X=>VY]
denotes the spaee of all linear continuous mappings from X
into Y ), we call it the derivative of F on the set M.

Suppose F  has the Fréchet differential dF in a

neighbourhood U (X,) of the point X, € X . If there
exists

- 516 =



(1.1)  tim L.CdF(x,+vh,hI=dF(x,, )] = G Ch, )
rvT-0

uniformly with respect to h € X, M»llx €1,
ping G: X x X = VY is called FG =differential of

then the map=

F at the point X, . If G is bilinear (i.e. G is line-
ar in each variable if the other is fixed), we denote this
mapping by F7(x ). If GelX x X — Y] (i.es bi-
linear and bounded), G is called the FG -derivative of
F at the point X, .

Being G : X x X— VY such bilinear mapping that
the formula (1.1) holds uniformly with respect to A, & € X,

Il €41, Ikl €4, G iscalled the FF -differen-
tial of F at X, . If G e [X x X —¥] it is said to be
the FF -derivative of F at X, (or the second Fréchet de-
rivative of F at X, , too). It is easy to see that G ¢

€[l X x X~ Y] is the FF -derivative of F at x, if
and only if the Fréchet derivative F’ of F exists on a
neighbourhood of X, and

. 1
— o | F’ )~ F/ - . = .
llhﬁfg e VF/Cxor )= Filx,) - G ( ’*')’[x-n ¢

Throughout this paper, the terms number, function, mea-
sure are always meant a real number, a real almost everywhere
finite function and a real Lebesgue measure, respectively.
The symbol G Qenotés a bounded closed subset of E, ( E_
is the Euclidean A -space).

In next we shall use the following lemma which is a
alight generalization of the theorem 106 (10].

Legmg 1. Let X be a metric space, G c E, , o, € X,

§ & function defined on X x X x G . Suppose the follo-
wing conditions are satisfied:
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(a) ‘&bn‘. £ (e, B,t) =g (B, t) exists for almost every
te G andevery B3 € X .

(b) # (x, B,¢) is measurable in G for every fixed
«, BeX, oo, .

(c) There is a function g on X x G  such that £ (x, B3,t)le
€9(p3,t) forevery «, € X, & + «, and almost
every t e G ; suppose that 9@, e L (G) for each

BeX.
Then for every 3 € X

(1.2) im [#(x, B,4)ct = [G(p,t)dt.
S 6 &

«y

Moreover, if (a) holds uniformly with respect to B & B (B
is a subset of X ) and if the condition "There is a function
9 € L(G) suchthat (£ (x,B8,t)] ¢ g (t) for every

x € X,n+0, B and alnst every t ¢ G " is valid
instead of (c), then (1.2) holds uniformly with respect to

f € B. If the function ¢ in the condition (c) is such
that g (,°) ¢ L,,(G) (p 2 1) for every fixed B e X ,
then also f (o, B, )€ Lo (G) forevery «, .6 X,
®x += «, , @ (B,e Lﬂ_(G) for every B e X and
ﬁﬁh:t.lf(oc, ﬁ")'L,., = lq(ﬁ,')l,_p for every B e X .

Definition 1. Let K be a function of three variables

defined on G =< G =< E, . Let K(-,t,«) (te G and
u e E.1 are fixed) be a measurable function on G for al-
most evefy teG andevery 4« € E,, K(4,. 4) amea-
surable function on G for almost every A € G and every
4 € E; and K (5,t,) a continuous one on E, for al-
most every s, t € G . If these conditions are satisfied, we
shall say that K 1s a U, -function on Gx G xE .
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Lemma 2. Let K be a U, =function on 6x 6 x E,,
let X be a measurable function on G . Suppose that
A (5 € G) is such function defined on G that e, (¢)=
= K (s»,t, Xx(t))  for almost every t € G. Then e, is
a measurable function on G for almost every » € G .
Definition 2. Let K be a function on G x G x J
where J ¢ E,. Suppose that K (-,t, « ) is continuous
on @ for almost every t € G and every u € J, K (s, &)
is measurable on G for every 5 € G and « € J and
K(s,t,») is continuous on J for every » € G and
almost every t € G.

Then K is said to be a Uc -functionon G x G x J .

2, The differentigbility of the Urygsohn operator in
the spaces L&), Az 7.

Iheorem 1. Let K*®be a _-function on G x G x E,,
F an operator of Urysohn generated by the function K .
Let there exist K;’ (s, t,«) for every 4 € E, and al-
most every A, t € 6 and be such that K| isa U -
function on ¢ x G = E; . Lt p >1, 921 and

(2.1) ’jIK(-,t,oHdteLgce)-.

Suppose that there exists an integer < , numbers A; (i=4,.,m)
and functions M, and M; ({ = 1,..,m) defined on G

and G x G respectively, such that

b
-t
%‘dt')

2.2) M, €L, (6), (G/IMa C,t) § L,(6), AbA<n.

@

Ir
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2.3) 1K Ot ) 2,2 M (8,2 154 M, 00wl

for almost every »,t € G and every « € E, , then
F_ 1is the mapping of L, (G) , into L$ (G ) , Lipschi~
tzlan on every bounded set in Lf, ce) and having a
continuous and bounded (i.e. bounded on every bounded. set in
Lp (G) ) Fréchet derivative F’ on all the space L, (6).

Moreover,
(2.4) FUUX) b (0)= [K, (5 t, X)) h(t)dt (x4 €L, (6)
&

for almost every 4 € G.
Broof. (a) Set G(x, h)a [K, (-, t, x(t) () dT,
[

WX, )= F(x+h)-Fx—Glx, h) for X, b € L,v((T)- There
exists a function 2 defined on G x G such that

K(a,t, )= K(b,t, 00+ K., (5t B (6,t,8(ht}u, 0cBk,t)<1
for almost every 4,t ¢ G and every s € E1 . Using the
Holder and Minkowski inequalities, lemma 2 and formula (2,.3)

a 2 A
(2.5) |Fx(»)1 £ [IK(s,t,0)1d¢ +2 ([Im; (.,t)l"'“'dt)”" .
[ *1 6
. -1
3 BV EY RS LN ZSTRN P Wi Y

L -Ag ag-1
(2.6) 1G(x,h)(h114 2 (fIM; Cb,t)lﬁdt)tﬁllxﬂl_’-llblll_:
16

-1
FIM G oI A

(the exponents ‘of the Holder inequalities areﬂ'_ﬁa';, -1 2T

and ﬁ:,’ , 1v , respectively). According to (2.1),(2.2),
(2,5),(2,6), lemma 2 and the inequality of Minkowski, it fol-
lows that F maps Lo (G) into L,’ (G), G 1s a mapping
of L, (6)x L, (6) dnto Ly (G) ama G(X,-)
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(x € Lp (G) iz fixed) is linear and bounded.

(b) Set Ki (4,7, x(-))=hoyx (x € L, ,(6)) for ar-
bitrary &~ € G. By the theorem of M.A. Krasnoselskij (£31,
chapter I,§ 2), 4, is a continuous and bounded (on every

bounded set) operation from L, €6 1into L_f_._ (6)
ey

for almost every » € @ . Hence, we can write for almost e-

very A» € G

1 - -
.1 [, s Cx, B ()] i, | JIK Coyt, xCt)e hlt)

= Kb t,x(tN =K, (&t x(8)) h(t)]dt] =
) ,
= AT ,.L’_' l&f LKL t, X () 448 (m, 8 ) ()= K', (5, 3(4)) ] (¢ )t 16
4
£ 74‘1 ‘ (oflK;(b,t,o((fH Bt (t)-K, (5,1, x (t))#d't)-
”

.(/'lh(t)l'dé)*= Nk (x+28(y2) ) -y x , — 0
¢ &
whenever |l bl _— 0,

where x, h € LﬂCG) and 0 <-49(/>,1-‘) < 1 for almost
every »,t € G . According to (2.3) we obtain for almost e-
very 4 € G and h € LpoCe), Tl < 1

”»

(2.8) ’-’—}”—“L; lw(.x,&)m;}éﬁflki (5,t, x(t)+blo,t) () -
L -1
~ Kty x0T at) ™ a
-1
€ (o/l K2, cb,t,a((t)*n"(a,t))»c-ti&'dtfﬂr +
=4

+ (1K, (#,¢, x(t))lﬁdt)% P

[

";.‘f- C’flM‘.(o,t)-l.x(tH #(@,f)hcﬁla""l"‘z"dﬁ% +
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+IM,(»)]- ([ Ix(t)+ aﬁ(b,t)h(t)l”dt)*j-
[

+3 (/im, (6,820 x2S F a1 %o 1M, ()1-f Ix )1t o

<5 (1M, (o, gy [ (f1xe)I"as )%, fﬂaﬂ[a,t)h(t)/’di)* pH

+IM, (o) [( /I .x(t)li"df)**- (fla» (5,t) h T St e

*Z(fm (s, f)ft"att) -cf/.x @)l dt)‘*‘ +
+:M,c/>>l'£ft.xctu*¢£)"r s

<5 (fim, S P o Cltsy + D™

+[l.xl TI+IM, ()1 Dl +4>"

+ ll.xl”"J 3

the last expression (as a function of » ) belongs to Lz (6)
by (2.2)0
According to lemma 1, it follows from (2.7)and (2.8)

(3

Masx, mnl;(fc,” I x, 43082177265 0 it thl> 0.

DT
This proves the. existence of the Fréchet derivative F’“(.x)
at every point X € L, (G) . Furthermore, F(x) A= G(x,A)
holds for all h € L, (G).

(c) Let x

o9

x, h € L” (G) ; then for almost eve-
ry HEG

ILF (X, +X)h - F’(Jt.)hJCA)lé(flK’ (6,1, X, (8)+X(#)) -
- K., (s, t, x,ct»/’e"du*(//mw *an* -
A (X e XV DX b N AU ~0 3 Nk~ 0
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uniformly with respect to ke L, (G), ﬂla,lll_” £ 1, We can

£ind (similarly as in (b)) an integrable in L.’ (G) majo~
rant which does not depend on x and A, x| <1, ﬂhll_" 1.
»

According to lemma 1, we get
IF(x,+x)- F'(Jf,)ln_ﬁ_”_';- "‘/t‘f‘b"
—» 0 whenever fIxll — 0.

([ Fix,+x)Hh (5)=
&

- Fix)h (ﬂ)l’d/b)t
This proves the continuity of the mapping F’: Lﬁ-f L'L”—' L"J
at an arbitrary point x, € Lr (G) .

(d) In view of (2.6)

IF’ (.x)ln_”_”_ ]

< 5 E/'(fm oy t2P5e at) 5 dalt, I+

&
M/.;wf» 6 (x, h)ﬂ

+([LIM, (»)] 1ok, nxu[" .
& 4

Therefore, F’ is a mapping from L, (&) into[L, (G)—»

~ L, (6)] , bounded on every bounded set in L, (G).
L, (¢),

Hen-

ce, F 1is Lipschitzian on every bounded set in

which comple tes the proof,
Theorem 2. Let K be &
F  the Urysohn operator generated by the function K . Let
for almost every », t € G and

U, ~function on Gx G x E, ,

there exist K/ (», ¢, &)
every 4 € E1 and be such that K;" is a- UL -function
on G = G x E,. Suppose g 2 1, /'IK('tO)Idte
€ L, (G) and assume that there exists a function M ¢

€ L’. (G) such that

(2.9) I K, (m, t, )l = M(5)

and every &4 € E’ . Then F

J H

is the Lipschitzian operation from L1 (G)
- 523 =



having the bounded (on all the space L, (G) ) Gateaux
derivative F’ on L, (G). Furthermore, the formula (2.4)
is valid.

Broof. (a) Set G(x,h)= [K, (+,t,x(t)) h(D)dE,
@ (X, ) =F(x+h)-Fx-Gix,#) for x,h € L(G).It is
easy to verify that F maps L (G) into L%(G-), G
maps L (G) =~ L (G) into L, (G). Since

1
(2200 H6Cx, hIl £ (SIMer dn) e inl

?

G(x,») ( x € L (G) 1is fixed) is a linear bounded
mapping from L (G) into L,y(&) .
(b) Let %, /o € L (G) be fixed points, 2 # 0 an
arbitrary number. Then there exists a function 1* defined

on G % G such that
L2 @ (x, T A | & [IK, (8, t, X(£)+TB0n E ) (£)) -
G

=K., (s, t,x (£ 1 ()1 dt

for almost every » € G and 0 < dn,t) < 1 for al=
most every »,t € G . From the continuity of KL (n,t,°)
it follows that

LK (b, T, % (£)+ TP m,8) A (£))- K 08, L, (£ |+ | A (N3 0
for almost every »,t € G . The inequality (2.9) implies

(2.11) K, (4, t, X (&) + 2o, t)MCEN =K., (A, X (£)] *
clh(t) 1€ 2Mp) I ()]
for almost every 4,t € G. According to lemma 1,

i .

| T @ (X, 2h)(»)—0 whenever 2 — 0
for almost every A ¢ G, From (2,11) it follows for almost
every » € G that
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| ,-1,-. W(x,TvhIAH] £ 2MMHA)-Fhll_ .

By lemma 1,
| % a)(.x,’:'ah)”‘_’l—_-y 0 -whenever %+ — 0 ;
we have proved that G(.x, ¢ ) is the GAteaux derivative of
the mapping F at the point X ¢ L (&) .
(c) Set F/(x)=G(x,)e[L(6)— La(G)] for eve-
ry X € L (G), From (2.10) we have that

WFCOl, L, ) % IMI

hence, the GAteaux derivative [’ is bounded on all the spa-
ce L(G). Thus F is Lipschitzian on L (G) .

Theorem 3. Let K be a U, -function on Gx G x E_,
 F the Urysohn operator generated by the function K ., Let
there exist  K!, (»,t, « ) for almost every », %t € G

’ ”
and every « € E, . Suppose that K. and K. 2 are

U_ ~functionson G x Gx E,, n >2, ¢ 1,
=4
"]"i'K(-,t,o)ldtechcv), {./IK;(v,t,o)f&df)%-e L, ce) .

If there exist an integer m , numbers A, (£=41,...,m ), a
function M, on G and functions M; on G x 6

(¢ = 1,,..,m ) such that
n-a4

M, e Ly (62, CLIMsC, ) ‘a) T e L&), 242,<
and

L[R2y (4,t, )] e‘g M, (a8 e 7 M, () L 1™
for almost every 4,t € G and every 4 € E, ,then the

following assertions are valid:

(<) F is a mapping of L, (G) into L.g'(G), Lipschis=
Ysian on every bounded set in Lo, (6) .
. . 525 =



() F hag_the Fréchet derivative F‘ on all the space
La(G) Fis Lipschitzian on every bounded set.

(9) F possesses the continuous bounded (on every boun-

ded set) FF -derivative F* on all Lp €G) .

(7)) I x, hm, b GL”(G-) then

F'(x )b (») =°/ K., (»,t,x(t))m(t)dt |
F/(x) Ch, k) (m) = [KL, (5,8, 0¢(4)) o (2) he CE) 't
. &

for almost every 4 € G .

Proof. (a) Let K be a function satisfying the condi-
tions of our theorem. It is easy to verify (by developing of
K(»,t,+) at the point [»,%,0] ) that K satisfies
all the conditions or the theorem 1 ; hence, the assertion
(oC) and the existence of the Fréchet derivative F’ on
L” (G ) are guaranteed.

(b) Set H(x,n,n)o.);ﬂ(;, U, t,x(EN(t) o (t)dE.
Then H maps L (G) L, (6)x L, (G) into L (G) and
H(x,»,+) ( x € L, (G) 1is fixed) is a bounded bili-
near operation. Set @), (x,R)=F/(x+M)-F(x)-H(x,:, R)€
cELﬂ(G)-oLbZG)J, R, X= K (0,2, %(:)) (5 €G ). BY the theorem of
M.A. Krasnoselskij ([3],chapt.I,§ 2), Je

»
bounded (on every bounded set) operation from L A (G) in-

is a continuous

to L.‘L.. (G )' for almost every A € G . Therefore for al-
-1
most every » € G the term
uM la.:,l (x,mmml-m- | LIRS (5,8, % (634 05,8 )M (89
- Kia (A t, x(tNIh(t) (t)dt[ s
& Il (x+28 (h,+ ) o )~Myx IIL{-_; Wl (0<dist)c1)
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vanishes uniformly with respect to A & L, (G), ”lbﬂ,_:" as
ﬂhle--yo It Ihn 64 III&II %€ 4  then (eimilarly as
in (2,.8))

-i-, la)C.x,Ja)h(A)l‘f(flMﬂb,t)Fg’dt) cCllxh+

+1)’u-’+nxn e 1M, ()1 [xi +4> +ll.xlh.,,3 .

Hence according to lemms 1,

d-, R A '7%&,: e, (¢, )b~ 0

whenever Mhﬂ‘_ —~» 0 . This proves the existence of an
F F -derivative F” of F on L” (&) .,

(c) The proof that F” is a continuous and bounded
(on every bounded set) mapping from Lﬁ (G) into
[L.,, (G) — Lg' CG)] 1is similar to those of (c),(d) of the
theorem 1. Hence, F’ is Lipschitzian on every bounded set
in L” (G) which completes the proof.

Iheorem 4. Let K be a U_ ~function on Gx G » E“
F the Urysohn operator generated by the function K , Let
there exist K” (»,t,4c ) for almost every /.:.,t'sﬁ and
every &« € E,; suppose that .K:‘ and K“:. are U, ~func-
tionson G x GxE,, g & 4,°fIK(',t,0)Idt c LgCG-J,

gf”(; (',t,O)lzdt)i.G Ly (G) . Assume there is a function
Me L"CG) such that

(K" (At )] € M(s)
for almost every #, t € G and every 4. & E, . Then F
is the Lipschitzian operation from L, (G) into L*(G)
having the Lipschitzian Fréchet derivative F’ and the boun=-
ded (on all the space L’ (G) ) FG =derivative F%

on the space L, (G). Moreover, the assertion (o) of
- 527 =



the theorem 3 is valid for every X,h, ko 6 L, (G).
" progf. (a) Since K satisfies the conditions of theo-
rem 1, F 1is a mapping of La (&) into L‘CG) having
the Fréchet derivative F’ on all the space L, (G'). The
relation (2.4) is valid for every X, A € L, 6.
(b) set H(x,h,h)-;fk;’, (m, t, X (£)) I (t) be(t) dE,

W (X, 40) = F/(X+R)-FUx)-Hix:A)By the Holder inequality
IH(X,h,R)H) £ IM(AI- llh"l_‘- Ilhﬂl_‘
for almost every 4 & G. Hence H(X,:,+)e[L,(G)xL,(G)~
+ Lo(6] em w,(x,4)elL (6)— L (G)1, evidently.
Let X,4, ke L,(G) De fixed points, T % 0 an

arbitrary number. For almost every A, t € G

VK, (5,8, (£)+ T8, ) (D) - K7, (5,2, % (E) |- Lhe (£)]-+0 1f 70,

“(:‘, o, t, x(t)+TB (A, t) R(E))- K:“ s, t, ()| R(t)I€2 M(s). 1 CE)l.
Hence by lemma 1, for almost every A€ G

| & o, (x, vl ) o ()] £ S IKE, Cb by x (v b, £ e CE) =

- K" (a8, 8 WI% Lot )k ‘(f 1 ctsiiasrE 2225 9

uniformly with respect 1;6 h e Lz ), lh'l_‘. € 1 , Since
(BN IV ISP, ISV

for almost every »€ G and lhl‘L 4 41, ‘the relation
2

l“%ﬁ)g(x,fh)'

L, L]

1
e AU i t 2 z
N Y (‘f‘ T @, (X, thI)N(P) A — 0

holds whenever % —y 0 . Hence H (x,., ) is the

FG -derivative of F at the point x &€ L, (G) ; denote
it by F”(x). The inequality
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1
VH (x, by dO, < ([IM(»)1%n)™ Vbl - Il
[< g

implies that F” maps L'a. (G) onto a bounded set in
[L6)xL,6) — Lg'CG)J . Hence, both F and F’ are
Lipschitzian mappings in L a (G) . This concludes the proof.

3. The differentiability of the Urysohn operator in the
apace C (@)
Theorem 5. Let K be a U, ~-function on GxGx E,,
F the Urysohn operator generated by the function K . Let

there exist K:‘ (#,t, ) foreveryseG,u € E, and
almost every t € G and be such that K’“ is a Uc -func-
tion on G x G > E;, . Assume that there exist function H1 ,
L,e L(G) and functions H,, L, on E_ , which are
bounded on every bounded interval, such that

1 K(r,t, )l € H (£)-H, (), IK] (#,t,4)]= L (t)L, ()

for every » € G,« ¢ E, and almost every t € G . Then F
maps C(G) into C (G) is Lipschitzian on every boun=-
ded set and possesses the bounded (on every bounded set) Fré-
chet derivative F’ on all the space C(G) . If x, A €
¢ C(G) then

(3.1)  F(xYm(n)= [K, (s,t,x(t)) M(t)dE
(4

for every A € G .

Progf. (a) Let x € CC(G) . Then K(s,*,x(*)) is
a measurable function on G for every » € G (see [1],
theorem 18.3) and

(3.2)  1K(n,t,x(t))| € H,(t)-““_,mg“” Hy (ae)
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for every » € G and almost every ¢ € G . Hence
fK(k,t,u(t))dt converges for all 4 6 G.. Since
ke ,t, x(¢))  1is a continuous function on G for al-
most every £ € G, by the lemma 1 we see

SKC ,t, x(tNdt is a continuous one on G .
.Hence Fx e CCG) .

It can be proved similarly that the functions

K, (Ao, (), K (5,2, %(:))* 4 are measurable in G
for all th,‘fK;(»,t,.th))aLt and

SK, (s, b, x(¢))m (t) dt  converge for all A € G and
;oth are continuous functions of » in G .
Hence, the operator & defimed by
G(x, 8 )(m) = SK, (5,t,x(8) h(t)dt (xh6CC6)4e6)
is a mapping of €(G) into C(G) . The mapping
G(x,+«) (x e CCG)) 1is linear and bounded, evident-
1ly. '
(b) Set. W (X, ) = F(x+h)=- Fx-6G(x,n)
for X,/ € C(G) . There exists a function 2% on
G > G such that
K (n,t, xCE)+ () =Kn,t, x (£))= K. (5T, X(E) 4505, L )REDIE)
and 0<¥(»,t)< 41 for every A€ G and almost every
¢+ € G . The left side of this identity and hence also the
right one is a measurable function of € in G for every
» € G and a continuous function of 4 on G for almost
every t € G . Now, similarly as above, we can prove that
.fK; (,t,%(t) + $(-,¢) mCt))dt 1is a continuous
function on G .,

Setting «w(s,t, 4,1 )= K, (8,8, 4+ 20-)-K’, (#,t, )
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we have

M’ He (x, )l = i, L al f«.&a t,x(E), BB, IRV )AL ] &
c

£ ”r.f‘ (»,t,x(£),28 (5, t)mCEN AL, .

Since [ec (-, t, X(¢),18(-,t)h (£))dt is a continuous func-
&
tionon & , there exists 4 € G such that

"e Jatn,t, % (4),80n,t )0 Ct2)dt) = i J&(n,, t,x(8) B0y, b (ENAE]
From the contimuity K[ (», £, ) it follows that

& (A, t, x(E),D (4,,8) M(t)— 0 as B(s,,t)h(t)—+ 0
for almost every t € G , Furthermore,

I (4,,t, xCE), PR, t 1A (ED £ 2 H (L) ;“_nm“”H,_(u) +

+L, () max L, (w2
w6 <=l +lixl>

for almost every t ¢ G . If |l »hllc —» 0, then
1"(/:,,t)h(t) ~—» 0 forall t € G and according te
lemma 1

[ fcCh,,t,x(t), BCh,,t)M(E)ILEI— 0 .
Bence ¢

"Mc dlecx,n)l, élfaco.,,,t X(£), 808, t)HCE)AE|— O

whenever llhlle-y 0 . This proves that G (wx, * ) is the
Fréchet derivative of F at the point x ¢ C(G) . Deno-
ting G(x,+ ) by F’(x) we see the formula (3.1)
holds for any » € G .

(c) Suppose R > Q 3 then for every x € C(G),
Il &R

4
IF 0k, gy 1 F/OR I, =

- t (t)) h(t)dt
Mw wl’fk,,(h, , X () | €
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max [ [L,CE)

& may L.(u)dt.llhléle
(79 61 266 o wol-Nul+hxh>

¢ . L :
eG/L, trdt. mae L, («)

We have proved that F’ is bounded on every bounded set in
C(G); hence, F is Lipschitzian on every bounded set.
This completes the proof.
Ineoren 6. Let K be a U, -function on Gx G x E,,
F the Urysohn operator generated by the function K . Let
there exist wa (», t, 44 ) for every p e G, « € E’ and
almost every t € G , having the property that K/ is a
Uc -function on G x G » E, . Suppose there exist
functions H, L  which are defined on G x E., and boun-
ded on every bounded set, such that
| K(a, b, ) €H(tw), IK, (5t )€ Lt w)
for every » € G, u eE, and alﬁmst every t e G . Then
F maps € C(G) into C(CG) , is Lipschitzian on every
bounded set and possesses the bounded (on every bounded set)
Fréchet derivative F’ on all the space C(G) . If x,
h 6 CCG),then (3.1) holds for every A € G .

The proof of this theorem is similar to the one of theo=
rem 5; in the estimates of the type (3.2), one has to write
e Sty H(t,u) * instead of " H, (t) -

. max H () "
wed-lxl,+xll>

Theorem 7. Let K be @ U, -function on Gx Gx J,
Je<-R,+R> R >0, F the Uryaohn operator gpne-
‘rated by the function K . Let there exist K, (4,%,«)
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for every » € G, « 6 J and almost every ¢t € G , having
the;propefty that K; is & Uc -function on G x G.x J.
Assume there are functions H, L € L (&)  such that
IK (s, t, u)l&HCt), K, (»5,t,u)lé L (L)

for every » € G, 4 € J and almost every ¢ € G . Then F
is the Lipschitzian operation fromlzt{xe C@@): NxH, €« R}
inte CCG) having the bounded Fréchet derivative F*
on e{xeCC(G):llxh<R3.It xe D, hecCiG),
then the formula (3.1) is valid for all A € G .

' The proof of our theorem is almost similar to that of
theorem 5. .

Similar theorems can be derived for the second deriva-
tive of the Urysohn operator, too. The principle of their
proofs remain the same and so I present these theorems with-
ouht their proofs. .

Theorem 8. Let K be a U, ~function on Gx G xE,,
F the Urysohn operator generated by the function K. Sup~-
pose K", (»,t,4 ) exists for every » € G, « 6 E and
almost every ¢ € G ; let both K ~ and K:u be Uc -

functions on G x G x E_ .

Assume there are functions H,,L , M e L (G) and
functions H, , L, , M, defined on E, and bounded on eve-
ry bounded interval such that

LK (ayt, ) | & Hy (8) Hy (), IKL O, t,0ed 16 L (80 L Gee),
LK, Cayt, )| & M () My Ca)

for every A €. G, 4. € E, and almost every ¢ € G . Then F
is the operator from L (&) into itself, Lipschitzian on
‘'every bounded set and having on C (&) the Fréchet deriva~
’ tive F’ which is Lipschitzian on every bounded set, too.
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Moreover, F possesses the bounded (on every bounded set)

F F =-derivative F” onall C(CG) and
(3.3)  FU(x)ha)= [K, (»,t,x ®)IhCt)dE,
¢
F/(x) (n, 4 )m)= [K2, (n,t, x(t) hCt)dE
&

for every » € G, x,h, e CCG) .

Theorem 9. Let K be a Uc -function on G x G > E, ,
F the Urysohn operatar generated by the function K . Let
there exist K:“ s, t’ «) foreveryneG, we E1 and
almost every ¢ € G ; suppose K; , ” are . U, -

w2
functionson G x G > E, . If there exist functions H, L,

M ’
such that

defined on G x Eq- and bounded on every bounded set,

LK(a, t, )& H(tw), 1K (6,2 )l €L (¢u),

K", o, %)l € Mt )

for every A6 G, « € E, and almost every t e G , then
'F is the mapping of C (G) into itself Lipschitzian on
every bounded set. The operator F possesses the Fréchet
derivative F’ on C(G) Lipschitzian on every bounded
set, and the bounded (on every bounded set) FF =derivati-
ve F” on C(G). The formula (3.3) is valid for all
€6 and X,h,Mk e CCG).

) Theorem 10. Let K be a U, -function on Gx G > J,
J=<-R,+R>, R >0, F the Urysohn operator gene-
rated by the function. K . Let there exist K*, (4, ¢, «)
for every A € G, 4 € J and almost every t € G ;suppose
that both K‘;‘ and K:‘ are Uc ~-functions on G x

»x G > J. If there exist functions H, L,MeL(G) such
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that .

I Koyt )| £ HCE), IKL (o, )] € LGE), 1KY, (i, B e )] MCE)
for every 4 € G, 4 € J and almost every £ € G , then F
is the Lipschitzian operation frolee‘[.x €C(G): I llc £ R}
into CCG) having the Lipschitzian Fréchet derivative F’
and the bounded FF =derivative F” on the open set
Dp={x e CCG): HNI{: < R3%. Moreover, the formula (3.3)
is valid for all » € G  whenever x € _‘D'; and f, Le €
e CCG) .

4, T ferentigbilit
the spaces L, (6), f 2 2
Unless otherwise stated, G denotes a measurable boun-

ded subset of E,‘ . By @ there is meant the zero-element
of Lz ( G) .

Iheorem ll. Let g be a function of two variables on
GxE, , De{xelL,(G):s l(atll,_‘< R3, 4 an opera-
tor defined by M x(t) = g,(t, X (¢)) for almost every
t e G and every X € Dy (0 < R £ c0). It 4 naps Dy
into L, (G) and

) Il
(4.1) "“@ —-,—*”x ., - 0,
then zh is the zero—-operator on Dn. -{61? .

Proof (The proof depends on the arguments of MsM. Vajn-
berg [2,pp.91-92]), Suppose there is a function X, € D,-{6}
such that h..xo Ct)= 0 for all ¢t of some set with a
positive measure. Then there exist 4 >0 and Fec G with
mey F >0  such that
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(4.2) lhx,(t)] > a

for almost every t € F, According to the well-known theo-
rem (see [3),p.92 ) there exist a numter & > 0 and a
set Ec F with mes E > 0 such that

(4.3) | . () = &

for all t € E , Since mes E > 0, one may find a point
t, € E such that if 1l 1is an arbitrary neighbourhood
of f, , there exists a subset of E with a positive measu-
re lying tn U (in the opposite case we obtain a contradic-
tion the Borel-Lebesgue covering theorem).

Now, let D(t,, 2 ) denote the ball in E, with the
centre in %, and the radius X and put &-E nDCt,,&"}
for M= 1,2,.. . Define the sequence {x § by

.x“LtJ-O ittes G-A‘., -5.“) =X (¢) ir te Ae -
The absolute continuity of an integral implies that
From (4,2) and (4.3) it follows that

Tho .gm.x.cen‘a)* (L lgct, o (EN14t ) -
Il Xl q‘l.x.ﬁu'mi q‘:.x. (t)*at)¥

1% entapt e,
= a ——a
(,‘/.;l %, () 2ot ) L Ymes Ay *

But this contradicts (4.1). Hence Ax = € for all x ¢
. D‘- {6} ; this concludes the proof.
Using this theorem it is easy to prove the following
Zheorem 12. Let g be an N-functionom G x E, ,°
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X, € Lz CG ). Suppose.that an operator of Nemyckij .
is generated by the function ¢ and maps a neighbourhood
of the point x, in L, (6) into the space L, 6 (G). As-
sume & & L, (G). Then the operator o possesses at ,
the Fréchet differential

(4.4) dh (s, 2)= box (x € L,CE))

(4. x _denotes the point=product of the functions .{~ and
X ), if and only if there is a function @ on G such

that

(4.5) g(t,w) = act)+ am-br(t)

for almost every t 6 G and every « € E_ ..

. Proof 1) Suppose g satisfies the assumptions of our
theorem and (4.5) holds. Set

HiX,, )= X+ U, @ (x,,5)mh(X,+ X)-h X,~HC(x,,x)
for x € L, (G); we have cw(x,, %)= 6 as x €L,(6).
Hence H (X, ,* ) 18 the Fréchet differential of 4 at the
point X, .

2) Let &re L.’CG) and suppose that 4 possesses the

Préchet differential at the point X, with the farm (4.4).
Put '

fr_x. € Lz"( G) . The operator @,,  satisfies all the

assumptions of theorem 11 (with R = a2 ). Hence W, (x)= 6
[ ]

for all x € L,CG) and

Gelt, %, ()4 X(E)) = QCE, X, (EN+ A (X, ,x)(E) =

- @it () + b(t)x(t) =
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= [ (t, X, (=& (t)x,(£)]+ [xo )+ (£)] - £C4)

for almost every t € G  whenever X € L, (G) . But
this is equivalent to (4.5)..

The following theorem is a local form of theorem 20,2
[1,§ 20); its proof is quite similar to that one.

Iheorem 13. Let @ be an N -function on G x E,, ,
%, € L, (G) ., Suppose 9,:‘ (t,« ) exists and is boun-
ded for almost every t € G and every « € U where U
is some neighbourhood of the set {x,(t): t € G ¥ in 51 R
Assume 9,'“ Ct, o) is continuous in the points &, C#)
for almost every ¢t € G . If 4 1is the operator of Ne=-
myckij generated by the function g , then 4 nmeps a
neighbourhood of X, in L, (G) into the space L, (G).
Moreover, the operator Ju possesses at &, the GAteaux
derivative hﬂx, and h'x, (4 )= 9.;(-, )y (yel,@G),

Now, we shall state some theorems concerning the first
Fréchet derivative of the Nemyckij operator in the spaces
.L,,,, (G) (p > 2), There is a theorem 20.1 in [1] giving
a sufficient condition for the existence of the GAteaux dif-
ferential of that operator; the following theorem shows this
condition is also sufficient for the existence of a bounded
continuous Fréchet derivative.

Theorem 14. Let g be an N ~function on G x E, |
suppos e gf“ct,.u,) exists for almost every ¢ € G and
every & € Eq . Denote by 4 the Nemyckij operator gene-
rated by the func'tion 4,0y 4., the operator defined by

(4.6) h,x=g C,x) (xelL, (G).

Assume o > 2 and put 2:;1_‘;-! , n= ﬁz- ; suppose
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h, is & continuous mapping from Lﬂ (G) into L% &),

Then A is the operation from L, (G) into L,_ ce),
Lipschitzian on every bounded set and having on L” G¢)
the continuous Fréchet derivative 43 L,;"[L”—* LLJ ; the
operation A,' is bounded on every bounded set and
hxiy)= (h,x)ey, X, €L, (G).

The proof of this theorem can be omitted. Its princip-
le will be evident from the proof of theorem 16. For com=
pleteness, we present a lemma which is used in a verifica-
tion of theorem 14:

Lemma 3. Let @ be an N -function on G x E, . Sup-
pose 9,'“ Ct, 44 ) exists for almost every t ¢ G and e-
very m € E, and define the operators 4o, 41, and H
for X, ng € L.”CG), by

hx(t)=q (t,xCt)), M,x(t)= g, (t,xC(t),

Hex, ) (4)= g, (¢, %x(2)) ap (2) (teG).

Assume f1 > 2 andsetg:;%, /Lefé" - I,

is a continuous mapping from. L,,,’ ¢(G) into L, (G), then:

(a) g is a continuous mapping of l_” (G) into L.g(G))
Lipschitzian on each closed ball D = {x € L ce) :

: H.xll‘_ = R ,
»

(o) H(x,*) (x e L” G) is fixed) is a continuous
linear opgration from Lﬂ (G) into Lz(G) ] H(','y,)
is a continuous bounded (on every bounded set) operation
from. .LﬁCG) into L%CG) .

Similarly as theorem 14, we can prove the following
local
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Theorenm 15. Let @ be an N -function on G x
x E, ,suppose 9,'“ (t, «) exists for almest every ¢ €
6 G and every 4w« € E,. Assume 2 >2, X, € Lﬂ &),
u is a neighbourhood of X, in Lﬁ CG).Let h 'be
the operator of Nemyckij generated on U by the funetion
9, 4, the operator defined on Ll by (4.6). Put '

ge'i—.ﬂ—," , L= ?'-% 5 assume Ah isa mapping from

u. into Lg_(G-) and _,31,1 is a mapping from Ul into

Ly, C.G). Then the following assertions are valid:

(a) If the mapping ,h," is continuous at X, , then the
operator 4+ has the Fréchet derivative £ 'x, €
€[L,(6)+L,(G)] at the point X, and h'x, () =

=, x)ny for every np € L, (G).

(b) I A, 1is continuous on the set U and if V is an

open convex neighbourhood of X, in L” ¢), Vcu,
then the operator 41 possesses the continuous bounded
(on every bounded set) Fréchet derivative 4’': V- [Lﬂ_(G)-r
= Lo (G)) and h'xly)=Ch, x)qq, X6V, € L,C6).

Now, we shall deal with the second derivatives of the

Nemyckij operators in the spaces. L, (G) (n = 2).

Lenng 4. Let g be an. N -function on G x E, ,sup-
pose_,.qz:', (t,4 ) exists for almost every ¢ € G and e-

very . € E . Let h,h,, h‘, H ‘and K be the opera~
tars defined by ' .

hx(t)=@lt,x(E),  h, x(t)= G C(t x(EN) ,

Ay x(Be g (,x(F), H(x,y4)(t)= h x(t) 42,
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K x,ng, 2 ) (k)= Iy x () qg(t). 2 (E), X, 04,2 6 L (G).

e 2
A= 3

Assume f > 3 and setgnﬁ"g’-, ){.-'ﬁ%,
Let 41,3 be a continuous mapping of LﬁCCr) into L, (&);
then: i

(a) A 1s a continuous operation from L, (&) into
L’_ (G) , Lipschitzian on each closed ball DR =
={xeln(G): Ixl, & RJ .

(b) .61,.1 is a continuous operation from Lﬂ'(G—) into
Lx CG) , Lipschitzian on each closed ball Dy

() H(x,*) (x € L,ﬂ CG)) is a continuous linear
operation from L, <) .into L,_CG-), Hc, ag )
(y € L, CG)) 1s a continuous bounded (on every boun-
ded set) operation from L., (G) into L, &)

(@) K(x,°,*) (x € L, (G)) is a continuous bilinear
operation from L.ﬁ.CG) = L, (G) 1into L."CG-) 5
K(,4,%) (y,z € L,(G)) is a continuous bounded
(on every bounded set) operation from L.” C(G) into

Progf. ad (b) Let X, a4  be the arbitrary elements of

Lo (@) . The function g_‘; is an N -function on G x
* E, . A contimuity of ¢ (¢, +) for almost every £t € &
follows from the existence gfz., Ct,.u. ) for almost every

t . ! .
e G and every « e E, that g ¢

e , 4¢ ) 1is mea-

surable for all « e E, , it follows from the measurabili-
tyof g.(-,a) forall « € E_ . Hence, bcth the func-
tion fh x amd 4, X  are measurable on G . A coentir
nuity of Jl.l implies (see [1],th.19,1) the function
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Goe (-, t ) 1is bounded on < X(#), 4 (£)> tor al=.
most every ¢ € G  and hence [11. ]
1
hyx-h,y=(x-04)- ,o/'lp‘(ry,+r(\x-ry_)) dz .

- -2
Using the Holder inequality (with exponents f2-2, ;f%-?)

we have
aﬁh,,x(t)-lz,,q(t)l"dt:ﬂ(oc(t)-@(t))-/»’lv,(y*-r(a-xy.))(é)dzlzté
¢ [TIxce- ct)t"-(,f’l ! (g ()T (XCE)-ng (6D ldz )* ]t «

P, Y 190 % xtv/-g 4

& (f1xCt)-ngct)™dt 73
[

L JC ’/'u;:, Ct, g (8) +2Cx () -y (£))) Iﬁdr)"’dt.'l #

. 1 n
£llx-ny |{‘f57. [&f;/' lgl, (¢, gct)+zlxct)-
gt Pz at 15 -
=l “C: L/ ’(/ 11y CtyagCt) 4 2 (x (£)-gg(8))) "t a1
[ [ :

Since h, 1 L, (&) — L, (G) is continuous, then there
exist a, £ 2 0 such that [1,th.19.1) ‘
Lh,(yex(x-y N € arlr-ly+zT (.x-n,)l‘_” .
Suppose. X, 4 6 Dy (R >0) ; ‘then lggp+2(x~-
-:q.)ﬂ,_wé R (0ex «1).
Hence, there is a function ¢  which depends on R , only,
such that .
" - » 2
L[ 1gy, (t,ap(8) + T(X(4)=y(8))"d$]* &  (R) .

‘Therefore,
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lh,,x-h,'y.ﬂ'_‘é Il.x-ry_',_’_- e (R)

and 80 hq is Lipschitzian on Dn and continuous on
The assertions (a) and (¢) follow immediately from the
assertion (b) and from lemma 3.
ad (d) Let X, g, 2 € L, (G) 4 according to the

elementary Holder inequality we obtain
2 (3 £ 4 2
1K (X,n4,2) () "= lq,l, (¢, % (8D Ing.C8I " 1z (#)1%2

é#q'lyct)l"-c-

Hence

1 r, -3 .
a1z 2550 1gt ot xcenl” .

2 1
6ft KCx,y,2)8)"dt £ 227

'[llqllf”+lz’,:;+ (h-3)Nhyx M ] < co ;

the function K (X, 4, z ) is measurable on G , evi-
dently.
Hence K(Xx,y,z)el, (G).

Let X be a fixed element of L, (G); then K(x,,-)
is a bilinear mapping of L”CG) > L”(G) into L!.(G) .
According to the Holder inequality (with exponents -#f'%',
n-1, n-1)
1
1) [ 2 L
lchx,».,,zw,_: E./lq.‘:,(t,x %y (2% 12 (£)17dE]* &

€ Lf1gf, (¢, %t D "as 1 L/ Ing o't IP. L/ 1 o1t ety
[ &, -~

for every a4, z ¢ L, (G) with ﬂtg,l,_" 1, ”z,,_”é 1.

This relation proves a boundedness and hence also a continuity

- 543 -



of the mapping K (o, -, - ) on Lo(G) = L,(G).

Let a4, 2 € L-n- (G ) be fixed. According to the Hol-
der inequality

WK Coxyag, 220, & b, > My Iy - Iz U
for every X & L” (G) . Since 4, is a continuous map-
ping from L, (&) into L, (&) , there is a constant
¢ (R) for every R > (0 such that lh,xl,_< ¢ (R)
whenever || x 'L, = R (gee corollary 19.1 in [1]). This
proves a boundedness of K(+, 4,2 ):L (G)» L, (G) . If
X,, X, & L, (G), then
IK (a8, 2)~ K(u,,q.,z.)l'l_: I, 5 -, 56, I, - Hry,l,_p- izl .

8o a contimity of the mapping My, implies a continuity of
K (+yng,x ), which completes the proof.

Iheorem 16. Let g be an N =function on G x E_.
Suppose 9,." (t, ¢ ) exists for almost every t & G

ut ?

and every 4 € Eq ; let 4a  Dbe the Nemyckij ope rator gene=-
rated by the function g, h.’ and 4v, the operatora defi-
ned by

(470 Ay, x (8) = g, (£, % (L)), by x(t)=q., (¥,(L)) .

Assume 11 > 3 and set g = pe =L, 12 4,

T
mn=-1 -3

is a continuous mapping from l..‘l,b (G) into L, (G) , then
the following assertions are valid: 4. 1s the operation
from L (G) 1inte Lg- (G) , Lipschitzian on every
bounded set, having the Fréchet derivative A‘: L, (G)—
~LL /&) — IT,'ICG-!J
set, too.

» Lipschitzian on every bounded

Purthermore, 4. poassasea the continuocus bounded (on eve-
®y bounded set) F F -derivative A": L_ (6) —
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= L@ L (62> L (6)] and (x,4,x €L, (6))

A (y)=Ch, x)ny, R'xCy,x)=Chy,x)-ng-2z .

Proof. The assertions concerning the mappings -, ly’
follow from lemma 4 and theorem 1l4. |

Put K (%, %)= My X oy Z, Gy (X, )= BCx +2) ' - KX, 2
According to lemma 4, <), is a mapping from L”(Gr) > _Lﬁ_(G)
into LL, (G) — LgCG)T . Let x, 26 L (G).There is
M (t) € C0,1) for almost every Z € G  such that
G Ct,x(E)+x (D) -q, (b, X (£)=g, (T, X (t)+ B(t)z(t ) 2CE) .
Hence, according to the Holder inequality with exponents

-1
%1 -1, n-1:

llm,(\x,z)ll“”_w’]= ,"'/;L‘:f:’ lla),(oc,z)(y;ll,_’,y-

= Wi [S19u Ctx Ct)r 20t 00y ()= gl Ct xCED gy o) -
- 9":, (¢, X(y(t)z aN*dt] i,
. n-3
£ W‘” A E,f 192uCt, XCtI+ DI 2 C8) - @, CE, X (¢ ))I.’E'dtJ .
. L"flgcwl'”df * [flzcotatl* -
[ 4

= llh, (x+bz)- M, x ll,_‘" E3 ll,_”

Let_ € > 0 .be an arbitrary number, x € L” (G) . There

i d >0 such that lh, (x+18z) - A, x| < € when-
ever ‘lla(“,_”<'o". *

Hence
N, Cx, 2) il

, L LelJ ’
——m:,v&g & b, (x+dz)-hxl < g
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for all z € L, (G) with Iz IIL”< o . This means that
ddh(xy,z)eK(x,yg,x) . According to lemma 4,
KCotyr, e d6Ll x L — L, 1 , which proves the existence of
" the = FF =derivative of 4 at every point X € L”(G).

Denote this derivative by A" . Let x,,
elements of L, (&), then

.xz be any

14 h ﬂ
Xa= X U Ly Ly Ly ]

] " =
“uyh, T, o W ) R 20

[}
= gl M. 12i, o1 Gf’%s“’ X, (E Ny (t) = CE) -

1
gttt Nyt dt 1 <

7
",' py »«:/‘: 4[/!9‘&“ (t))-g  (t, %, atl ™

LS Inget) "t ] o %/:zct)t”dtl;‘ -

= '4‘141“4'/‘11 ;X‘ "'h

’

which proves a continuity of A" on ‘.‘1» (G) (canside-
red as a mapping of L., into[L”x‘ Lﬁ—s L£J . A8 N, is
a continuous operation from L., (¢) into L, (G), there
is'a numbep ¢ (R) (R >0) such that ﬂlta.'le £ e (R)
”
whenever || x HL £ R (see corollary 19.1, [1]). Hence
»
[ PRr”

. " )l
IR Pty 4 Z Wb/ (g, 20 <

é "1—"1-,.“-/"‘:":,:" K, X “l-..' lq.ll,_’: Iz ML”-‘- e (R)

and it proves a boundedness of 4" on each bounded set.
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T} Al. Let g be an N -function on G x E,,
x.eL”(G-) (41)3), u '.mneighbourhoodof
%, in L, (G). Suppose that G a (t, « ) exists
for almost every + € G and every « € E . Let A
be the Nemyckij operator generated on U by the .function

9, #, and M, the operators defined on U by (4.7),

P CH
Set ¢ = 1—;‘:-'7’ /;-1%,,3.’;_3 ; suppose A, is

a continuous mepping from W into L, (G) and .h, is

& mapping from U into L,‘ ¢CG).If V 1s an open con-

vex neighbourhood of X, into L” (@) such that Ve U,

then the following assertions are valid:

(a) If,h’ is continuous at X, , then 4 1is & mapping
from V into L% (G ), Lipschitzian on every bounded
set and having on -V the continuous bounded (on every
bounded subset of V ) Fréchet derivative .AH‘;: V —
=L L, (6) — L,vt'Gv)J . Moreover, 41 possesses at:
the point x, the FF -derivative A"X, €
fllyxL,~L, ] am hixiy)= (h,x) 4, Ko)ypz-

-h".x,(q_,z) ,xeV, 4, zel,(G).

(b) I£ 4, 1s continuous on U , then A’ is Lipschitzian
on every bounded subset of |V and 4 has the continu-.
ous bounded (on every bounded subset of V ) FF ~-deri-
vative A" on V., Furthermare, AxCy,z)= (b, x) -
ez if X e V,q,zeLﬂ(G).

The proof is similar to that of theorem 16.
The disadvantage of theorems 16,17 consists in the as~-

sumption 41 > 3 . The following theorem is valid for .p 2,

but its assertion is weakened.
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Ihegrep 18. Let g be an N —function on G x E,
% € L _(6), U  aneighbourhood of x, in L, (G).
Suppose g.:‘ 4 4(.) exists for every 4« € E_, and al-
most every t & G. Let . be the Nemyckij operator gene-
rated on 1L by the function 4, JL;‘ the operator defi-
ned on Il by (4.6) and e the operation defined on U x
x L, C6) Dby
M (x,y)= 9.:." (e, x)ey (xel,ye L’_(G-JJ z

Assume 42 > 2  and set g:ﬁ%’ A= f-;?:f . Suppose

.ﬁ,’ is a continuous mapping from U into L, (&) and
b(,y) a mapping of U into L, (G) which is con-
tinuous at x, for every 4 € LoCG). Let V be an
open convex neighbourhoed of &, 1lying in U . Then A
is an operation from VY into L‘J..(G’ , Lipschitzian on
each bounded subset of Y and having on V the continuous
bounded ( on every bounded subset of V ) Fréchet derivative
it V2L L (&)= L.,_(G')J. Moreover, 4. possesses the bi=-
linear FG -differential h'x,: L (G)x L, (6)— L, (6)
at the point X, and. A'x(g)e(h,x)n, h'x, (g x)=

=he (X, g xmb(x, z2) 2y as xe V,y x €L,(6)

Proof. The assertions concerning the operators 4, £’
follow from the proof of theorem 14. Set K (X, ,x ) =
=h(x,g)z, @02)1y)=h'(x+2)y )R 'x(4)-Kix,42);
then ke (X,4y)Z = R(x,x2): 24 5 evidently. The inequa-
lity

|K (o, ) xd)(t) 1P e (o, g XD I% e H2(t)* &



;7— Iz ct))™+ -&},% - | hCx, 081"

holds for almost every t € G  whenever X € ll, 4, X €
e LoCG).

Hence
z 1 4 -2
SiKeqy,2xeat < gl v T el < o,

which means that Kc.x,a},z ) e LR.CG) .
Now, let x Dbe an arbitrary point of Lﬁ (¢), =
a sufficiently small number such that x,+72x & |/ . There
is A(t)e (0,1) for almost every ¢ € G such that
9,;Ct,x,(t)+rz(t))-9:£t,w,ct»=glzci,x,(t)frzﬁ(t)z(f))-z:z(ﬁ).

Hence

e, ¢ ]
A «.,wﬁuw%J uyuf“i*? e, (x,, vzl =

”’.A«.{b L/1g, G, o) rez(t Dyct)-gl, ct, x, ety 2) -

- G O, o, (ENny (8) 2 () | b it -

W,Aufu LSigl tt xCtrrzdbitn=ct) -
- 9,“,({, 0Nz ctrzl* * lag C2)l dui £

£, "/uqv Izl E@fk," Ct, 0, (8)+ TP E)XCENZ(E) ~
% = 1
- @“.(f, &, (6 x (¢ )lﬁdﬂﬂ‘: [flry_('t)l”df I*=
(.4
el ll o (¢, +TVb2,2) - b (X,,2 )”L,,

Given € > 0 , there is 0> 0 such that ll4e (3 +

rvdzx )-h(.x.,z)ll,_’< € aallrvdzx I, < o . Hence,
r's
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for all % # (0 with || < 7,’5‘: (zeL,(G) 1s
e
fixed) the inequalities

-'é-i' lay (x, 72 "u,,-u,a‘ e, + 82 ,2)- 4 (ar,,z)llL: €

are valid, which proves that K (&,,*, ) is the
F G =-differential of the mapping 4 at &, . The map-
ping K (&, 6+, ) is bilinear and hence we can write

K(%,ny,x)=0e(x,,4) X = h'x,(y,x), Yy, € L”(G')-
This completes the proof,.

The following theorem shows that in the most of non=-
linear cases being important for applications the second
differential of the Nemyckij operator in L..z (G) does not
exist.

Theoren 19. Let G  be a bounded measurable set in
E,, 9 an N-functionon G > E, . Suppose that the-
re exists _g.:“(t, 40 ) for almost every ¢t e« G  and e-
very 4« € E, and that 9,4:,_ is an N -function on

@ 3¢ E1 . Assume there is a constant M > @ such that

19'“,ct, w)l= M for almost every £ € G and every
AL € E, . Denote by 4 the operator of Nemyckij generated
by the function. g (according to theorem 20.2,[1,§ 20 J,
M maps L, (6) into itself). Let &, be an element of
L, (G) ., If there is an interval ) ¢ G and a constant
m > 0 such that: | 9:"3 (t, x, (Nl 2 m for almost
every t € J, then the mapping 4 has not any second dif-
ferential at X, .

Proof. According to theorem 20,2 in [1] the mapping
M possesses on 'Lz ( G). the GAtesux derivative A" .
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Put

Lys @)= % LR (x+2m)iy)-h'x (31
for oy, z€ L,(6), = % 0 ., There is#f¢) e (0,1)
for almost every ¢ ¢ G such that
Gty 3t TZ(E)) =g, (8, %,(E)) e G, (1,0, (4)+ v B(E)2(E)) - T2 ().
From that and from continuity q_““‘ («t’ . ) for almost e~
very ¢ € G it follows that

. ! . L
L Ly 2 (B0 = Mo g (8,5, (E)+THEICE)) -

o i4Ct)z(t) = 9‘:3 Ct, > (E)) g )z ()

for almost every ¢ € G . Hence, if any second differential
of J at &, existed, it would be equal to 9,:‘.('/ or,)-;y.z
(almost everywhere on G ), Let t, € J eand put g(f)e

=x(t)= |t -'t,l“z for ¢ € G, Then /y‘,xeL‘(G) and
2 2
G/Ig,‘:‘(t,«,({));y&)z cer'at a__’/ 1g ,Ct, x,ceNI*-
b=t Idt 2 m . L1+t 17 7dE
2

But the last integral diverges and hence g,:. C,& )ry-x¢
¢ L,(e). This proves our theorem.

Remark. If q,:“ct,.u,)- [/ for all &« = of so~-
me neighbourhood of a set {&,(¢): £ € G 3 and almost every
teG , then according to theorem 12 the mapping 4 has
the F F -derivative at &, equalling to the zero-opera-
tionon L (G).

Bepark. When this paper was submitted to press, we ac=~
quainted by means of [14,§ 5] with the recent results of P.P.
Zabre jko concerning the differentiability of mappings in func-
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tional spaces. But our results are quite different than Za=
bre jko s assertions. .
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