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Commentationes Mathematicae Universitatis Carolinse

11,1 (1970)

MEAN VALUE THEOREMS IN THE THEORY OF LATTICE POINTS
WITH WEIGHT II.

Bfetislav NOVAK, Praha

§ 1. Introduction. Let 4 be a natural number,
22 and let

L2
Qlwe) = G luy) -’,124@_“ Adj Aty

be a positive definite quadratic form with a symmetric
matrix of coefficients and determinant D , 1let {

denote the form conjugated with @ , Let further M’;,lb;
and oc;

7
Let 0 < _ﬁ <‘.?l < ... be the sequence of all positive va-

be real numbers, M; >0 (4 =4,2,..., 1 ).

lues of the form ¢} (m M + Ir ) with integer /m.,, ,

Myyeeeymy Ay = 0 and for integer m., =20,
let
bnf-a,,u-
am = Z e =1 (4

where summation runs over all systems of real numbers

Mgy Abyy.iey Ak)  Such that @ (uy) = A, and

wy = Ay (mod Mgy, 4= 1,2,..., 1 .
For x& 0, @2 0 put
2:r4,,£10g¢g

I @ _Me -,’(—ﬂ’
AP(JO Fip+ nZ“a”a -A,,) \G‘,(x)— W ,
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%
where M= Vfﬁﬁ'ﬁ: , =1 ifqMoa,M,.. M,

31

are integers, 0"= 0 otherwise. Let further

(1) 'F;(.x) = AQ(\x)- \é,(.x)
and

¥ 2
(2) Mg (x) = .o/n;,ml dt

For @ = 0 we obtain the known "lattice rest"
P, (x)= P(x ), studied in a number of papers (cf.e.g.
[3],the bibliography in (41,(5) etc.). From the defini-

tion of 1?0 (X) we can easily see that

X
[Pot)dt =B, (x) .

The significance of the study of the function ?,(.x)
has followed from classical papers by Landau [3J. In the
recent paper [2) Jarnik pinted the following circumstan-
ce:

Let the form @ have integer coefficients, M =1,

ac?-a,b;-o (3 = 1,2,...,% ). Then for
og¢<%-2 it is

3 Bx)= ocxt", gcxnn(x*”);

for SD > -g- - % we have then

1 94
W B = 06T, B = 2o

’
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while the estimates known for %-2.‘9@ £ '—é - 52- are not

definite:between O- and JS) -estimates there is still
a gap (cf.[2)). Let us mention only that in the case of
© = 0 this may happen for £ = 2,3,4 - i.e. we ar-
rive to classical problems of the theory of lattice
points.

As it has been proved in {2] both () -estimates
(3) and (4) are valid (under assumptions brought there)

for all o 2 0. For P& % - % better (L -estimate

is given by (3), for 93 -'2‘- - % by the estimate (4).

For this reason we can imagine that for @ = "2‘- - %

the estimatea (3) "turn into" estimates (4).

Certain confirmation of this conjecture is given by
the study of the function (2) which is the main object
of the present paper. In [6], considered as the first
part of this paper, the function (2) is studied for P =
= ( ., Further results are brought in [8]. So we are gi-
ving here a generalization of the results from [6] and
partly frcm (8],

The general method used, i.e. the representation
of the function M‘, (x) by a two-fold curvilinear
integral as well as explaitation of the transformation

of the theta-function is due to Jarnfk (cf. e.g. [1]).

§ 2. Notations and suxiliary theorems. -
If not said explicitly otherwise, we shall preser-

ve throughout the whole paper the fcllowing conventions
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and notations (in addition to those introduced in § 1).
The letter ¢ means (eventually also various)
positive constants dependent only on @, G, 2y, M;
and o('?'
depending, moreover, for exemple on € is denoted by
cCe) etc . If |Al € cB, wewrite A € B; if
A€B anda B € A simultuneously, we write shortly

AX B . The symbols O, 0°, [ have the usual mean-

y 3 =1,2,..., £ . A positive constant

ing, that is, they ere related to a limit step for X—
~>+00 and the constants involved are of the "type"

¢ . Moreover, constants of the "type" ¢ (& ) are ad-
mitted if a positive parameter € occurs in O rela-
tions (and similarly in f2 ). We eclude from our consi-
derations the case if A(x) = 0 for all x .

p denotes a nonnegative number, X a suffi-
ciently large positive number, i.e.x>c, m, h, f2
(indexed as it happens, etc.) denote always some inte-
gers, ® , m (again possibly indexed) denote natural num-
bers. If £ and M occur simultaneously, it is always
(Jv,k)= 1 (the same for h4, k, etc.). By an inte-
gral we always mean the (absolutely convergent) Lebesgue

integral. For a real let

L 4

Sewrds = i [ fa+it)dt

(@) had )
and (for x > 0,~cofa & +00,1=La,&))

&
[tmdt = [#gritrdt
1
qrovided, of course, the integrals on the right hand si-

|
des exist.
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For a real number ¢t 1let <t > denote the
distance of t+ to the nearest integer, i.e.
<ty = m#m It-pl .
Let
< min  A(gE-a k), Bo max  <o;MkD.

Mgy WMy oy 3= 1,2,

It can be shown easily (cf.[4],Remark 2,p.431) that

Let us put further M‘P(t) = Mp,'! (t) and define by
induction for every m, t 2

t
(6) Mg:,ow (t) = »[MQ:"* (y)dy .

(Realize that in [6] the notation differs: Mz (X) from
there is according to this definition Mo,z (x) , etc.)
For 4 complex, Red > 0 . Let

M 0= Oy = 3 a,, e
and
(8) ”"é’:
F(s)e Fn; )= Om) - -—-;;37;—" s ,
P Me'“"‘g'“"‘;
(9) G(w)=F (%)= Fib;-ay )= Ohs-oty) - ——ogg— .

(For 4 complex, Res > 0O and T positive real, we
denote by A% the branch of the function /.;e pos8iti-
ve for positive values of A .) The functions (7)-(9)

are, as known, holomorphic functions in the half plane
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Res > 0 and bounded in every domain of the form

Res 2 € >0 .
Let us close this paragraph by seversl auxiliary

assertions.
Lemma 1. Let @ >0, &> 0 . Then

¢ X (»+4)

1
(10) M?a""(‘x,’ m@v’ [¢ 8 P (o )

Proof. Let first @ > 0. By direct computation

we get for + > 0

P (‘b) = 1 ﬂﬁ_)_ﬁu‘db
? 2Ami é') AL
and thus
IRty [ of EAiCa? & dnran’ .

By absolute (and‘ uniform for )<t £ T< + 00 ) con-

vergence of the integral we have for Yy > 0]

’
0)_4

, s
Moy)=M, (g = ";‘Z‘rl A ¢ .{w-‘m Fm) G i s)d s,

Since the function F(») G (»%) is a holomorphic function
and bounded in the domain Res & £, Res’ 2 @ we can
see easily, using the theorem of Cauchy that the value

of the integral

F(r) G(#°) .
av S A

%
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does not depend on @ end & (cf. e.g. [8],Lemma 2,p.
159), therefore the integral (11) can be estimated by

the expression
@ ¥ dt at’
¢S/ RetReOIER D)

for an arbitrary R > mag (@, ) end thus (taking li-
mit for R—% + oo ) the integral (11) is equal to ze-
ro.

By this our assertion is proved for >0, m=1.
For P > (0 and m arbitrary, we proceed by induction
(on each step using the integral in (11) being zero).
Validity of (10) alsc for @ =0 is now easily obtained
having in view that both sides (with X and m fixed)
are continuous functions of the variable © at the in-
terval [0, + c0 ) .

Remark 1. This lemma is usually (cf.[(13,[6] - [€])
brought in the form containing a member of the form
0(x™=*) ., Extending (in an obvious way) the defini-
tion of both expressions in (10) for complex,'Rep?g
20, we obtain two functions of the complex variable
®, both of them being holomorphic in the half-plane
Rep > 0 , continuous for Ree & 0 (continuity with
regard to the set ‘Rep & 0 is meant here) and thus
the equality (1C) is valid also for @ complex,

Rep =0.

Lemma 2. Let a form @ have integer coefficients
and let the numbers M; be naturel, & integer, 3=
=1, 2,..., X . Then for & complex, Res > 0, it is
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g ;%)

=M ™ J7 o )
(12) O(w) m%%ﬁm‘% e m2 € ’

where
oy ™ S, b oy g ey o)

-4 -2k g aymy o)+ REE TS (Mo )
By Ragy s g 31
if 5‘5"’(”:# O,then it is
x
(13) S, te,0my X Ao .

Proof. Cf.[5),Lemma 1,2,8.

For the rest of this paragraph let us assume that
the assumptions of Lemme 2 are fulfilled. In (4],pp.430-
431, it is proved that there exists a constant e, =c

such that for R“ < e, there exists exactly one sys-

tem m, m,, ..., m, with
— m‘
(14) Ry = A (s~ w;he) .

If further f,,.p,,..., N, is a system different from

the system m,, m satisfying (14), then it

z,""
is Bfi-wjh)2c, -

m,

Now, we can define: if (14) is satisfied by just

one system m,, My yeeey,m, put

(15) s‘b,.ﬁ, = s’b,k,(m‘g»”‘;.'",ﬂ;? »
Otherwise we choose one of the systems satisfying (14)

(e.g. according to the lexicographic order, to be defi-
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nite) and define the value 5h,,, again by (15). (In
thie case it is necessarily R, & ¢, ).

We shall further call the pair M, singular,
if (14) is satisfied by two distinct systems m,,m,,..
ceog M, (then it is R, = ¢, ), or, if the system

of the numbers m, , m,,..., m, satisfying (14) is

unique and the value (15) of the sum Sh’“ is zero.

We shall further say the number f¢ to be singular if any
pair A A is singular (all the time it is (h,fe)=1).
Pinally, we shall the case we are dealing with, singular,

if there exists a constant ¢ = ¢ suh that all natu-

ral & , for which Rb < ¢, are singular 1). (Remark

that we should say more properly that .k is singular
with regard to @, o« , M,’,,Qra-,, 3=1,2,..,% etce But
since we consider both the form @ and the numbers s,

1)’7- and M; fixed, there is no danger of confusion.) It

is clear now what is meant by a non-singular pair, etc.

)

Lemma 3. 2’ Let ,:,=f’x-+1‘,t.

1) In [8)the singular cgge has been defined only for ra-
tional %“,, acﬂ_,...7 o"lb by an equivalent requirement:
if Ry, = 0 then Sp, 4 = 0 for all A .In this paper
there is also the value Sh’b defined in a slightly
different way. Existence of the singular case is shown
in [51,pp.393-395.

2) For rational *y, “,’27"', o, see [81,Lemma 4, and

also Lemma 2 in [6]), Lemma 3 in[7].
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-2 ———4 Ld
a) Let R &VX, h+0, It —ﬂ*k’ l< g/ - Hd=0

then

_ cRg Xx
o e_uuﬂzm@w
R 1402t -2k 0¥

and for a singular pair h,. &k we have even

ex
+ é‘;’("fﬂ’“-%’kp)

X
F‘(b)<<-*_'q (1‘-“2‘*‘_%’."?} .
¥

X
w1+ 3t - 20§
b) For t << .x"i it is

F (» $r¥ed

(17) Tz— << X .

(16) Fn) <<

For o'= 1 it is

Fin)c<

Analogous stateirents hold good for the function G (») .
Proof. a) If o“= 0 we get both estimates imme-
diately by Lemma 2 (cf. e.g. [41,pp.432-434, the rela-
tion (36)), since by (8) it is F(4)= 60 (4) . Take now
d"= 1 (i.e., all the numbers &, M,, o, M,,..., x, M,
are integers and thus R, = 0 for all 4 ). As above,
we shall see that the required estimate holds for the

function ©(») and the rest is done by the estimate

¥ <*
<< X << Ak
é" WX (14 521t - 2012 )%
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b) From the relation (12) for A =0, k=1 we
obtain immediately for + << x"i

F () .xfﬂm e-'."—iﬁ-’

1+-§+1

<< L3 2

»FH U+ x’-ti)*’g*} <X ’
since fce'°§<<4 for fel0,+c0) .

Remark 2. The first part of the preceding lem-

ma can obviously be formulated as follows: If

a=leit, 14- 8 cc gho | 440, then (16)
holds good and we can write there 7 instead Rh for a
singular pair 4, A .

Let us bring some further estimates we are go-

ing to use in the sequel without any reference. Let

A=

i~

+it, w=i+it’. Then

1 X
<
ot~ Texltetl

e»\((bfb ) << 4

endforlt--z%&l<<£w, M4 0 it is

I -

§ 3. The main theorem. In this paragraph we are
g8oing to prove the following

Main theorem. Let a quadratic form @ have in-
teger coefficients and let the numbers f;, M, 4=1,

2’_,,, & be integers. Then it is
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1 o 1. %-
(18) MP(.X)<<.>< bgwbzf'mm 1(,&;{:) ’

where we put M(A,% Y=A and 5’ means that for
singular /& we put 41 instead of R‘_ .

Let us assume throughout this paragraph that the
assumptions of the main theorem are satisfied. Clearly,
the relation (18) is a special case (for m =4 ) of the
relation

§rn-} _, 1 . %3 1
(19) qu(‘x)« X ué& o2t mim (j’;‘;. ' Re, )

(under the same conventions as for the main theorem).
Now,we can show easily that it holds the following
Lemma 4. Let there be some m = ¢ such that (19)
holds. Then this relation holds for all m .
Proof. Denote the right side in (19) by F, (x).
Both the function F, (x) aml the function M%”(x) are
non-negative and non-decreasing. Therefore, if (19) holds
for a certain m = ¢, then also
My e () = My )y £ XM, (0 x B 0=, ).
If (19) holds for some m = ¢ > 1 , then it is

.
Mfﬁqc.x)é‘i; 4 Mona () dy =
- (M (45)-M,  (x)) << LE, (4x)
3&- ¢sm Pn X 'm .

But now we have
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F, (hx)<< xi*i*;%sz“mf—f(i-; , ﬂ; ) <<

4

-

F-g+m 12 f+prm-3
KRGO+ = A e SR B (),

because of (R, << 1, k= ¥X)

Frpem-1

§-fom 20¢1 E
(20)  F )» x5 2 kT KX .

Putting together we obtain
MQ,,,-4(->~’)<<'£' F,x)=F,_, (x).

From what has just been proved,the assertion of Lemma
follows by an easy induction.

In order to prove the main theorem it remains to
prove

Lemma 5. There exists m =¢ such that (19) holds.

Proof proceeds in two steps like the proof of the
main theorem in [6] (pp.720-724), so we can do it more
briefly here. For the rest of this paragraph let m be
great enough, m << 1, A= -JL‘ +it, &'-&-’-it', Denote

F») G(&) X o &7

RO P (4 5™ ’

H (t,t'; q’,’-') =

Clearly it is
HEt -t a0 Ht, -0 ), Hit, ¢ o) = Hd,t5-ay)

Hence by Lemma 3 (for g = &=~ -;!? ) we obtain

(21) Mg,n(.x)<< T+T+T,, -

- 65 ~



where

2w 2w
T~/ J ..dt’at ,
~2wr -2w
- « 2w
=/ /..a¢at+ [ / ..dt'dt ,
- 2w ~w ~c0
. o® o af
T=f [..atdts [ [ LAt dt

(all the integrands BrelH('t,t’;océ)l, w= [——-——ég‘_1 X .3("i ).
For T, we obtain by (17)

Fepem W b olt’ frpem-§
(22) "]:((.x / /m)dt<<x .

For the estimates of T, and 'T; we shall need

the following easily provable relations (cf. [6],p.721-
722)

87 g 1
ot A’f::uﬂ) x7+% ™ '(ﬁ ' T ) for = c>%
@3) [ty du< ,
—%-ﬁ for Y= i— 5

where T2 0 and where we put mmem (A,'s- Y= A

Now, consider the Farey s fractions corresponding
to VX i.e. the fractions of the form 'h/,k, , where k £/x
(cf. [3),pp.249~250): For each of these fractions ““f
there exist uhiquely determined neighbouring Farey’s
fractions "‘Zk" ""7,*,", &, & VX , ice. "’Zk’< b/p <

< /& ana vetween P&’ ana /A’ there is
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exactly one Farey’s fraction corresponding to VX -
that is #/k . Then, if we denote by £’,"’ 4 the inter-

val
b+t h+ b
[ 2” */"‘h’ 9 ZJT *,.'.kl )
it is

i = [2:7%-;{;—“’“ , 2#%«»%% )
where or & 4} , 2} & 207, Thus for t e *u,h it holds

1t~ 220 <o e .

All the intervals ﬁ:‘h’“ are mutually disjoint,
and, their union being the whole real axis,
£, = <~w, w) .
Let us estimate first T, . If tedfy o, h+0, '« w,
then it is Ial, [A+4/1>> %l , ‘therefore, by Lemma 3
we obtain (keeping the convention about 'R‘u according

to Remark 2)

P

w *1—%4-15 , @ rmet ¥ 21+t
rg<<.{(x ‘,55 E(ﬁ) fw'[ T+ T ¥ dudt
and thus by (23) ( £g-X can be omitted for x > 2 )

% P -
(24) T« .>r.;1é+ flgr.x S A" !‘H—‘L << x‘fﬂ”?lg,.x <<xl+?+” 1,
2 LET X

(Note that for both estimetes we could assume m > 1,

m> ,1"- ~2-@ .) .
Applying the inequality lablé%(lal’ + 1 412)
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to both integrals in ’l; we obtain with regard to the
relation |G ()| = |F(5)! the estimate

o oo —
lF(/a)la'+|F(b)lz
(25) T << dt'd;
? 4 ..{ -,{,' A (L + -t t

We shall prove first that for t 2 w it holds

(26)

; d.t" << xn-‘l
I tt,fq(i_‘_‘t_tll Yl L P+ .
First we have (xt & w >> VX )

S dt’ 4 7 du ™
<< =X __
¢4 oL +It-tN™ <« t"”‘—'/.‘a (I“-Hw)” < tP+ ?

80 it is enough to estimate for {-,--3‘- > w- the integral
Lt np-2th gy
b v TP If;*-t—t')"‘ <X / tPHI(t~£/)P*+2

(here it suffices to assume m > @ +2 ). Now, we can

find easily that the function t'(t-1”7) has, for t €
elw,t -‘%J, the minimum either for t'= w” or t' =

=t~ -g; and it is, therefore, greater than ¢ /x . From
this it follows

¢-1
np-2, x P > dt’
I<< X T(E’/ TaoE -
The remaining integral can now be estimated by the ex-
pression ¢ '%‘- as easily checked by a direct computa-
tion (ef.{71, p.617 - in the formula (31) of L6] the

sign in the last row is erroneous). This proves the re-
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lation (26).
From (25) and (26 we obtain

1 PG 1FG)|?
To<< ™7 [ JE@ILITEI 5,

The integration path will again be decomposed into inter-
vals :Crh’,. and Lemma 3 will be used in each of them

(it te 20’,,,,, then It-g%}k<<ijrx ). Using (23) we ob-

tain

’ 21.’1""_01_ 1
hézﬁqu"mm (kg,'ﬁ:').

According to (29) the right side can be estimated from

1
below by the expression c.xih'w, 5 which, having

in view (21),(22) and (24), finishes the proof of the

lemma.

§ 4. General () ~e3timate. In this paragraph we do

not impose any conditions neither on the form & nor on
the numbers Ma-, >0, 4, and x;, 4=1,2,..,x (except
Ax) # 0).

Theorem 1.

M, (x) > .xiw*i

From this theorem it follows immediately



Theorem 2.

=1 o %%
B = aoxF
Since we have

X
y H;(t)ldt & Vx M?(.x)

it suffices to prove the next stronger assertion:
Lemma 5. If Re A(x)% O then it is

x .
[max (0,Re B (£))dt >> KEoEed
#4543

X
S max (0,-Re B, (t)dt >> x .
Analogous statements are true for imaginary part, too.
Proof will be carried out on the basis of Lan~
dau’s identity in a manner brought in some special cases
by Jarnfk in [11,[2). As known (cf. e.g. [3),pp.226, 8 ,

p.178), it is for @ > ¥

g
MY mg e g Qn /AT )
(@D Bloom —Sgrg— X7 2 ;;:4q{ ,

where .7!,“, (z) is Bessel function of the IS kind,

O< .1;< S\.;< ... is a sequence of all positive numbers of
the forn & (% - ;) and

.3 ,
b - 5 o T
~

(summing up over all systems m, 6 m,, ..., m, with

ﬁ(%- «;, )= A% ). Let us remark that this formu-

- %0 -



la follows immediately from the expression(a > 0, @>0)

xXh
_ A1 e " O(»)
()= 75 o AP ahb

using the trensformation from Lemmas 2 for h = 0, fe=1
(it is valid - in this case - even without any assump-
tions about Q , Mj_ and Ly ) and having the order of

integration and summati%n interchanged (for @ > é”— ).

iy

Let now w = e , ReA(x) £ 0 and

let m Dbe the least index such that Rea,, # 0 . From
thie we can easily determine Re A,(x), Re B (x) in
the interval (A  ,A,,,) and from the form of ‘Re%(x)
it follows immediately that Re %(x)_-;é 0. According to
(17) there exists, therefore, the least index - let us
denote it g1 - for which it is Rew®,, * 0 (hence
Rewly,= 0 for m=4,2,.,.,2-4). Taking into consi-
deration that, as known, it holds
<< .><!é

X, & 4
hence the series ,
:{ 7%
meq .'A.:
n

converges for t > -~ , we obtain from (27) with aid of

the known relation
:’f*f’ ()= |75 cov (2 -7 (o + ¥4 + 7}))4-0(2:-’1)
(for Zz »>+00 ), d9=-%+“/4+4/2

‘i—'-*g o0 4 -3 4
Té’(oc):ﬂ%;a& Mz;xfp"‘f;ﬁm&ﬂ\/l; X =1l )+ 0% "2)

-7 -



for ;a>g-. Choose now ‘a’-c>é‘- 80 thyy for'(vap
®
it is

Re w &, IRew o |
ﬂ ﬁ n-fbﬁ ’ﬁ*é .
For a natural m, p& @, let (7 = 1,2,
de+4-1,2
Xyg (m) = 31;; (m + 2 ) .

Therefore
7 . - _AyF T
s I (2 ﬁ,u,_, (m) c‘,)- (-1)
and, according to the choice of © form > c also

2ty >
(28)  1FRe By (mN)>> %], (m) 332 0T

f
Thus we have proved that for P& @, , m>c, 4=4,2
there exist numbers a%, (m) such that (28) holds and

(29) 0(’-'9 (m)= W; + 0 (m)

(for m >+ 00 ). At the same time

(30
30) .x90m)<a<¢(m)<x4,§(m+4).

For the proof it suffices to show (for o & 1 ) -

that there exist numbers X; o , (m) (form>c,j=1,2)

satisfying analogous conditions. Because of (mm > e)

«,’,',a-wl’
Re B_, (61t = Re B (x omm)-wem,,,(m»»ﬁ' $
x,m(
and
¥y gl ‘r
-./' oy ReB (D) i=-Re B (x,, o(m)+Re T % (0 (D 5> m* *F

- f2 -



and since the length of the integration path is O(m)
(m — + 00 ) there exist (for m > ¢ ) the numbers

(m) and X (m)

% 2,01

,?’4
such that

_46m)< X, o (m +1)

.xz', (m) < *, @ R

9

xM, (m) < xz’9_1 (m) < .xz,? (m)

and
b+ P-1+ A
(= D" Re B_, (x4,p.q (mN>>om” " F

(3 =1,2). The established values meet all our requi-
rements.

For each @ 2 O and for all »m > ¢ there exist
numbers x”y (m)7 4=1,2 such that (28),(29) and (30)
no1a 3’, But, according to (28) it is

X ) ) K,’M(ﬁ“)
>
[max (0,Re B (£))dt 3..,3';4(..:..‘ J: ,'_Hmkeg ) dt
x-1 + 9’
> m T 5 \x‘%2 2
1<<m <y

and analogously for the other integral.

Remark 3. Theorem 1 for @ =0 can be found in
[7),Theorem 2 for an arbitrary @ = 0 and for o -,g-
= 0, M7- =41, 4+=1,2,..,% can be found in (2]. From
the proof of Lemma 5 it follows, by the way, a stronger
assertion: If Re A(x)% 0, ¢ 2 O, then for all

3) Note that this proves directly Theorem 2.
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natural m > ¢ there exist numbers X o (m), F=1,2
such that (28) to (30) hold. Analogously for the imagi-

nary part.

§ 5. Consequences of the Main Theorem. In this
last pai'agraph let the form @, have integer coeffici-

ents, let the numbers M, be natural, .0'? integers

(4=1,2,...,2) . From the Main Theorem it follows im-

mediately
Theorem 3.
x*1 for069<§--%— s
'i'*?"i‘ Iz-fl o % 0
X << M‘,(o:)« x Lgox for p= 7 =20,
x§+p+i forp>!2°--g-,pao.

Proof. The first half is Theorem 1; for the proof
of the second half remind that by the Main Theorem it is

*';’ ’ 2041 X f‘i’ 1 2’-114-2
Mp(x)<<x ™ 3 M (ga) =% 2 M

so we have only in each case to estimate the remaining

J

sum in an obvious way.
Theorem 4. In the singular case it is for @ = 0
+o+
Ms’ (x) X xg e+

Proof. With regard to Theorem 1 we are only to pro-
ve the upper estimate. But, by the Main Theorem, we have

in the singular case ( 1 written inatead of Ry )

£-3 4 $ep+4
M?(x)«.x u%s""n” << X
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Remark 4. Theorem 3 shows that the lower esti-

mate by Theorem 1 cannot be further improved for Jid >

> %’“‘g’, @=0;by Theorem 4 it follows that it is ge-
nerally unimprovable for all [ =2 0.1In [9] it is shown
that, if the numbers o, Xy eeey Ky are rational
and the case is not singular, then there exists a con-

stant K = ¢ such that
1

M? (x) = K\x'm-f- o (x™

for Og§o<1"—-—5» )

My (x) = K x*Lgx + e o gx)

for = %— —% =0 .It follows that generally the upper

estimates by Theorem 3 cannot be improved for 0 & p £

(3
£ 7" '3' as well.
For derivation of further theorems we shall use

the results from (10]. For t 20, 820 1let

o) = B, (x)=, et min® (B, .

According to (5) and (18) we have then

~-1
x
(31) Mo (x) << x = Fag g, k-0 ) .
Let us gather the results on the function F(x) in the
following
lemma 6, a) If t< 3 ~4 and if at least one of

the numbers o, ®,, ..., o€, is irrational, then
F(x) = a(«%) .



b) Lett<3-1, 8-t & « ~1. Then for almost
all the systems o, &,,..., %X, (in the sense of the

X -dimenaional Lebesgue measure) it is
F(x) << \xqi.tgf’x R
where 2= 3x -1 for B<n-1+t, T=3x+2 for B=r-1+T.

c) Lett<pB-4, 9> 0 and let the inequality
(32) BR>» A7

be fulfilled for all f¢. Then
Ae-tt#'l
F(x) << X

a) Let o =y = - = K, t< f3-7 ¥>0eand
let for all s be

(33) Cocde) >> w7 .

Then ‘

iaT)
7 for t < B-2,

X
ﬁu’ 1

F(x) << x T x Lgx for t= 3-2,
%0% ¢t .
atf-o—a—# for t> B-2 .

Proof. See [10],Theorems 3 - 6, 7.

On the basis of this lemma we obtain from (31) the
following theorems:

Theorem 5. Let 0£ 0 < %- ‘3‘ . If at least one of
the numbers «,, Koy peeey %y is irrational, then

MP (x) = o (x*™")

For almost all the systems 0y, Kpgeer,y <y (in the sen-
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se of x -dimensional Lebesgue measure) it is
$+p+4
Mg (x) << x 7 T E g g™ x

Theorem 6. Let O$@<-g--g— , >0 and let (32)
be true for all R . Then it is

2241 4
M9(x><< x!'d 9—'%"’ .g,‘g,. .

Theorem 7. LetO4p<%§-%, 7 >0, %, = c=...= Ay = o
and let (33) be true for all 4& . Then it is
Rk
o < IR 2o

for0‘¢<-i-2 ?

b3 g torp-§-220,

x”"*ﬁ’*%., .x*ﬂ"} for @ >% -2,
ez0 .

m As it is proved ih [9], the o -estimate
by Theorem 5 cannot be generally inprdved.
In [12] ,Theorem 3, there is proved the following
- estimate: Let Y be the supremum of all the numbers
[3> 0 such that there exists a sequence of nonsingular
paire = b, k= Ae, such that Lom Mo, = +00, #,<<1,

and

(34) Re << Vo id

(or equivalently B << H™® vy (5)). Then for 0£ p &

é%‘-4 it is for every € > 0

- g7 -



Mg (x)= e P i,

(if 4 = + 0o, then the exponent is £~ 1~ € ). As sta-
ted in [12] (it follows, by the way, from Lemma 3,p.392
in [5)), if = Ly=...=4 =0 then 3" can be defined as the
supremum of those 3 for which (34) is fulfilled by an
infinite number of fe.

Hence the result of Theorem 7 is, in general, the
final one, while in Theorem 6 there is a certain gap
left. The assumption of the juet\ formulated assertion ge-
nerally cannot be omitted. In [5],pp.393-399 there is,
for a given number 3 > (0 constructed a form & and sys-
teme of numbers M; , o ,
that the inequality (34) is fulfilled for an infinite num-

b',_- ,d=1,2,...,% such

ber of & eand - in our terminology - the singular case

- Frori
occurs. By Theorem 4 it is M?(.x)#( X (the con-

struction can be also easily modified so that the inequa-
lity (34) will be now, for every (3 > 0 fulfilled for in-
finitely many & ).

From this and from Theorems 6 and 7 it follows the

final result, formulated as
Theoren 8. Let 04 p<F-F, G mdpm omop = 0, faly=
=,=l=0 and let ¥ be the infimum of &ll numbers 3 ,

for which the inequality (33) is satisfied for all &k .
Then ‘

My (x) 1;-42 41 2041 K
ﬁ@ﬁﬁ“ % = max( T+ T 2w g+t g



Remark 6. In [11] it is shown that for % > 4
it holds

4‘1 , % I 4
(35) '%(.x><<.x .‘5‘ A min F )

where for @=0 &f ie replaced by 19, 24¢ . From this
(on the basis of Lemma 6) there are, alike as above,
derived 0 -estimates of the function T'; (x). But
from the relation (35) we cannot obtain such a number
of final results as in the present paper from the rela-
tion (18). In the singular case we have for P> 0 on-
1y 0(.)(% ' {-), which is for %4 woree than [l -estima-
te by Theorem 2. Analogously we obtain from (35) the es-
timate Ofui-' ) only for 0$p<% -2, etc. For compari-
son let us say that, under assumptions of Theorem 7, the

relation (0 & @ < % -2) (e£.[11]) can be proved.

- 291 ()| X 29+ o
i Zgx =( 'I’ffﬂ T+

1 4 :
only for o> m . For y £ L we obtain only

the ineqnyality
T Lg R )I
+% u-n-a 'Zé.x + P/z ‘

L.
[

=~
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