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Commentationes Mathematicae Universitatis Carolinae 

11, 1 (1970) 

ON EXISTENCE OF THE WEAK SOLUTION FOR NON-LINEAR PARTIAL 

DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE 

J. KACUR, Praha 

Introduction. In this paper we shall be concerned 

with existence and uniqueness of the weak solution for a 

boundary value problem of equations of the form 

Z(-l1UJ>\(X9tfu,)m f , 

where the growth of ou.Cx, fj) in £* is considered 

in a wide span. 

We use well-known methods in reflexive spaces, na

mely the calculus of variations and the method of mono

tone operators. These methods are discussed and develo

ped in the works of Browder T5],C6J; Nedas [1],[2J; Vajn-

bergf8j; Leray-Lions [ 7 J etc. 

The mentioned authors consider the growth from be

low and from above, given by polynomials, having the sa

me degree, e.g., 

-c + ci,\fr'*il£Mfra*<«,f,)* ct«+lfl~) , 

my > 1 is a real number. 

This condition can be weakened for the derivati

ves D̂ /U- with \£.\ < & 9 because of theorems of im

bedding. 

We shall use the same notations as in [ll,(2]» as 
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there are here many references to those works. We shall 

denote 

• Aill 
D m -%. * r—TJ where >t i s a multiindex, i . e . , 

vxH.~ dx? 

i s di70.., iH ) i s a vector, i^ tor I • 4,..., N 

are non-negative integers and l i I s X *L .£ **fe # 

In the present paper, the growth a-, d x , f^ ) 

in & i s described by functions of certain clasaee. 

Let u3 con9ider real functione q, (AA, ) 9 fcr which 

there exists a positive number AA,0 such that 

I q,CAA,)e C C-o07 oo) n C*CAA,P7 oo ) ; torAA,^A4hf 

fyCAA,) + AJuqfCiA,) i s non-decreasing and 

iunv (q,(AA,)+ AA,q,'CA4,))=* oo ; AA,'ty(A4,) i s even 

for ( AJL I t> AJL0 . 

II For each Jt > 4 there exists a constant c(Z) such 

that C^CZAJL) £ cCl) • q,Cu>) fcr each AA, & ML0 * 

III There exists I > 1 such that 

q,(AA,) & *q>CJt44,) for each AM & AJLP . 

Now, we shall denote *M # flL • 7W the classea 
7 ' »» ' 3 

of the functions q,C4A,) satiafying I; I and II; I , I I 

and H I . Let us have fr. (AA,) e 77T -fop a l l U\ 6 Jk 

and suppose 9# 6c* > ^ 9* Cc* ) (resp* tfoCuy^gg (44.) ) 

for ea^h <i9QL with HI, l£\ £A and x* ^ ^:0 . 

Then the condition for the growth posses9e3 the 

for**1 

V * ' V *ct4+&**,+** (h)} *>*»*'**• 
^^^(^)^mijaC\q%(AA,)\, lq^(4i)l)) flu.I > x^ ) . 
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Thus, the growth <x^ (x 9 1)*AJL ) in if'AJL is limited 

only by the properties of g^ CAJU > and growth 

d* (x9 T)*JUU ) in D^ic for .i -# £ is limited by the 

functions 9^ Co.) and <fe (<u) in a very simple form. 

In this work we find the weak solution even in 

such cases, when the degrees of polynomials differ by 

estimating from above and from below at the same member. 

We construct Orlicz spaces L 5 (Jl) by means of 

functions (% (AJL > * 44, q* (AJU ) - see Krasnosel'skij -

Rutickij C4J. Then we construct a space Wjf' of Sobo-

lev's type in the following way:\^CXl)s fu,e L* (SI), 
» o 

for which the distribution derivatives D^x** c L * (SI)9 

il is a bounded domain of T? ( JM -dimensional 

Euclidean space). 

To the given equation we choose Q*(u,) so close

ly as to obtain even a coerciveness. In special cases, 

the algebraic condition for coerciveness is of the form 

When the growth is described by <^Co.) € 7H for 

li I 6c Jk, , then "V/^ is reflexive. 

By the class m we can describe even a very 

small growth, e.g., 

<*<* C*f % ̂  ** ff̂ f -£» < • f* I +" * > * Buler 's equation 

of Example a) in §3, being of this type, stands very 

near to the equation for minimal surfaces• 

By means of the class Ttl we can describe a very 

wide span of growths even very fast, e.g. 

*n(*iWm%4,€ #In both the caaes ^ and WM 
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the space VvW need not be reflexive. 

In § 1, a preliminary material on Orlicz spaces 

will be found. 

§ 2 deals with existence and uniqueness of the 

weak solution, if the growth is given by the class 171 . 

§ 3 involves solving of existence and uniqueness 

of the minimum of functional constructed to an equation, 

when the growth is given by the class fit . Generally, 

we work with a non-reflexive space. In the space WJ? 
G 

we define a convergence which is weaker than the weak 

one but with respect to which %£.+ is sequentially 

compact. 

Using Serrin's result 19J» we prove lower semi-

continuity of the functional with respect to the conver

gence just defined. 

In § 4, existence and uniqueness of the weak so

lution is studied, when the growth is given by the class 
le 

/Wl± . In this case, too, W-* need not be reflexive. 

§ 1. 

We begin by presenting some fundamental notions 

from the theory of Orlicz spaces (see £43). G-(AJL) is 

called to be m N-function if it is of the form GFCAAJ)*? 
t-uJ 

-=• /h(t)Ai# where *(t) > 0 for t > 0 is a conti-
0 

nuous on the right, non-decreasing function satisfying 

* (0) m 0 and.i^n * (i) m >¥ oo . When k(t) is 
t ~+O0 

a continuous increasing function, let us denote by 

ft (t) its inverse function and define P (v) -
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/
hrl 

st(4)dt . V(ir) is an .N-function, too, and is 
V 

called to be conjugate to GCct) . In the general case 

ft (t) is inverse in some sense to A>(i) (see £4J). 

Further, we shall understand G(AA,) f V(AA,) - maybe with 

indices - to stand for the N -functions. There holds the 

Young's inequality AA, • v & G(44,) 4- V (nr) for 44., 

IT >. 0 . If Q,0u>) is a contiuous, convex and even func-
QCu) 

tion defined for 144,1 > 44, and satisfying Jum —~- s 

& CO } then there exists an )4-function G (44,) such 

that 
C- luJ*' for \AA,\ £ 44,M 

/ G tec)-* , where c„ ot> and .-46. 

0,(44,) tQT \A4,\ £ A4,1 

are suitable constants (they exist) and cc > A . Q>(AJ.) is 

called the principal part of G(44.) and it is denoted 

p.p. G(44,) -= 0(44,). &(AAS) satisfies ^ -condi

tion, if for arbitrary Jk, > 4 there exist constants 

C (h) and 4A,9 such that (?Cl*,<«,) £ eCfe? fr (>u.) for 

each xt >. >tt0 . 
H 

Suppose Jl is a bounded domain of R . 

The Crlicz class L - (St) is the set of all real 

functions 44, (x) defined on il and satisfying 
f>(A4,,&) m fG(AA,(o<))dx < OO . 

Oriicz space if (SL) i s the se t of a l l AJL CX ) 

on i l , for which (AA,,^T) ** f44,Cx) <v(*.)dx< CO holds 

for a l l funct ions o r ( . x ) c L p C i l ^ , where V(u) i s 

conjugate to Q(AA.) , with the norm 

144- I I , « t*4JL4% I (44,, I T ) l , 
G fC*v\.?S*i 
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Lr* Cil) is a Banach space. IL (It) is the 
\s \a 

closure of bounded functions in the norm of 1** (It) • 

If G(AJL) satisfies A9 -condition, then E Cil) = L C-D* 

98 L* CiL) -In the other case £ Cil) is a nowhere 

dense set in L £ COL) and E^ Cil) C I^Cil) c L* Cil) -

For >u, € L* and or i L*? (GCu,)? PCtr ) l>eiag: conju

gate) there holds the Holder inequality I (AJL <V*)\ -£ 

*\u,\f . lirL . 

Assertion I. If O,(AA,) e Tfr , then there exist 

.ft, Q> 4 ahd constants C^ , C-? ̂  such that 

(1 .1 ) CilAA,lf%& JULCfrGA,)** C^I'U'I*' for JU, fe JLL0 . 

Proof* There exists G(AA,) satisfying A -con

dition with p.p. Gr (AJL) SS jm,q,(ju,) . The existence of qj> 

> i and a is_.a consequence of [4] (Theorem 4.1). 

Iterating the inequality in III, we obtain 

2*9,0*) - S ^ c e ^ ) , a* a. M,„) . 
If 0 < oC -s ^ ^ 2. ^ then the preceding 

inequality implies 

We prove the existence of jfi, > A and £* by contra

diction. Thus, there exists -Lit. ? such that AL^—* 00 

and 
a-<4 m̂.) ^ 

Let us denote K* vn#m * - a - — 3 — # K > 0 (see 

11,1). Every xi^ is of the form 4^, m ^""^^i * w n e r e 
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>C4V̂ € (u>07£u,0 y and fffl is a positive integer. Accor

ding to (1.2) we have a contradiction: 

Example, frf/i,).* vfr IT^AA,* (l*>> JbnAjb)*... (&n ...l<n,u.) ** 

where >t4~- ^ jj, tf, £ 0 and ^ ,#.., ̂  are real num

bers. Let us extend <^(4.c) continuously on (- oo, *+• ©o) 

to obtain an odd function for 144.1 > 44,0 . If oc > 0,then 

9,(44.) e 'Wk • li' 0(0 m 0 9% > 0 , then 9̂ (44,) € M± . 

Let us have 9^(44;) € 7 ^ for 141 £ it. There e-

xist G^(JU,) with p.p. G. C44,) ** <C4, 9^ (44, ) . Now, we 

construct W £ C A ) s 4 44. € L^ (il) for which JPAJL e 

elL (XL)}, where 5*44, is the distribution derivative 
*. 

and -t is multi-index with l<t\ 4s Jk,. We define 

V^(il)ss\vL » 0> *W* (intersection) with the 

norm H 4 * \ ^ . . ^ M>\* 1^ • 

Let £(JI) be the set of all functions defined 

on XL having derivatives of all orders extendable con

tinuously on IL . Let 3)(XL) be a subset of all func

tions from 6 Cli) which have support in il . 

We define "$/£ «? 3)(SL) 7 where the closure is 

taken in the norm of "VCT 
W 

Lemma 1. Vvl* is a Banach apace. If 9^ f44*) € 

eWl for K I .£ Jt , then it is reflexive and separable. 

Proof. V 7 is a closed subspace of H L* (IL) 
& *^ 141*4* % 

(topological product of spaces L * (il) ). 

- 143 -



If Q*CJU,)€ 171^ # then 1 * s E^ is a reflexive 

and separable space (see [4J,Theorems 14*2 ; 8.2 and 

10.1). 

Let £- C"RM) be the set of all functions from 

£ C R N ) restricted on il • 

Lemma 2. Suppose q% CAJL ) € 171^ for 1 -i I -6 Jt » 

There holds £_ C K N ) » W.^ C H ) , where the closure is 

taken in the norm of W~->, 

Proof is very similar to that made in [3J (Theorem 

3.1) and thus we verify only the basic points of this 

proof. 

AJL € E^CJl) possesses the following property: 
Q 

l -u,#^ CX , F)B < S , i f *me6 F < (fit) , where 

X (x^V) i s the characteristic function of the set 

F C JfX , Using the Lusin's theorem, we conclude that 

• * < X + i i W 6 0 . L < e f i f lit I < cTC£) . 

Let us denote tu Cx ) the mollified function of 

f $U.Suppose W * ) € E p C i l ) and pCor^P) .6-4* We 
have 

£arC^)CA4.JiCcK)-<u,Cx))dx-=:^ / &*l£]!L. fnrCod^ 
*3) 

•;• Cu,Cx +k*?LY-JULCx)dL* •&& &•... 

^ L ^ ^ * * * * : , * 6 t : + * * > - * < * ^ * * • 
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By reason of the previous fact , (1.3) and lv IL — -2 , 

we obtain I w* - w L —•> 0 with At ~* 0 . 

The rest of the proof i s the same as that in [3J• 

Lemma 3. Suppose (^CAJL) C 7fl0 . Then ^ C ^ O c ) ) 

i s a bounded mapping from L* ( i l ) into L* ( i l ) 7 where 

p .p . Gr(jus) =r JuufydJL) and POtc) i s i t s conjugate. This 

mapping i s continuous i f and only i f <frCAt>) e TTL -

Proof. For conjugate functions GCAJL) , VCw) the

re holds V( %/")< GOa.) , ( ^ > 0 ) (see £4 l ,p .25) . 

(This i s easy to see in a geometrical sketch.) 

From this inequality we conclude 

(1.4) &£+) < p-< (&(«,)) f or <^(w)^v\GCw)) 

(w 2: wQ) , 

V" Co,) 7 CJ" (AJU) are inverse functions to V(AAA, 

G ( W ) for u, > 0 . As a consequence of the definition 

of the norm, (1.4) and the Jensen's inequality we have 

<l'5> \^(wU)\ ±£Ptq,(w(x))]dx + 4 * 

& C +XGtw Cx)]dx , 

where c is a constant. 

G(w) satisfies ZL -condition and the first part of 

the lemma is a consequence of (1.5) (see £43 p.95). 

If q-(w) € Tfl- , then (1.4),(1.5) imply conti

nuity by reason of £4J (Theorem 17.3)T 

In the case a-6a,) £ fft we prove disconti

nuity of the mapping (^(AJLCX. )) • At first, from the 

Young's inequality we have 

(1.6) GyfCu,)P"/Vir) -£ xx, -4- W and hence 
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p-'c&cu,)) * i -££--- . 
The fact that q,(u,) does not possess III, implies 

V (AA,) does not satisfy A* -condition. From this we 

conclude that there exists v Cx) € Lp CIL) such 

that IV-VLL. & d > 0 m where 

. v U ) if l/î Gc)! £ m, , 
t>̂  C*x)-^ ' 

**• \ 0 if I«r0x)l > <n . 

We can suppose nrC<x) .> .44^ , where AA, m V (QCAA^ )) 

and CTCAA, > » 44* ̂  Co, > , ..t4> ̂  ,44̂  . 

For AA^CX)* &~itV(nrCx) - *-^C^))J we have 

Zum, J (J(AA<(X))ctx ** 0 and because of A„-
AJU-+GO Jt "* z 

condition for G(AA,) M 1 4 ^ II,. —> 0 (see £4 J , 

Theorem 9*4). 

With respect to (1.6) we have 
(1.7) H^C.u^MHp ^ | l i ^ - ^ Jl.p > j > 0 . 

I--* q, (0) » ( ) , the proof is finished; otherwise 

we prove (1.7) with <fr*(u) » C^CAA,)- Q>(0), &*(AA,), V*CU). 

However, L* s L** , !•£* 3 L* and, in addition,, they 

have equivalent norms. 

Theorem 1. If <^(AA,) € Wl$ , then 
(1.8) Mm, C £C**f*>J dx * 00 ip.p.G(Ai)*A4,gXA<,)). 

I41/*»«-»» <* tnla 

If <y(4A,) e 1% sat is f ies 

there exist JLfA>>0 such that /fc~/b <" 4 

(1.9) and t^>^ - (^CAL) ^ (^(XAA,) ^ C^O^ ^ <^(AA,) 

for A £> ^ f AA, & AA,C $ then 

44, 
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Proof. From (1.2) we conclude 

l"-*^*) * &(&">*,) . 

For arbitrary X > Z we find an integer /n > 0 

such that £*"*& X < Z^ . There holds 

(1.10) <^(XjUL)~cyU^u--£r4) >ZmH^Cu) * 
^ ptm.-4l«, A & n 

^ofq(u,)jL^r- * Jr * *-*&(«*) , 
where 0 < ct & £cu^ 2. , Z > 1 being fixed. Suppo

se G(u )ss u,q,(u) for \u\ >u* > u*0 and let us de

note .a-Ca-),for lul st u. 

^ \ 0 , for \u\ < u^ 

9.-*(AJL) is an odd, non-decreasing function satisfy

ing (1.10) fcr all X ^ Z > A and AL & 0 . 

Now, we prove (1.8) by contradiction. 

Thus, there exists {xc^foc) ? satisfying fl.i4^ I —* co 

* Gtu^oL)] , A A 

and J —-—2= cLx -6 A for all m, \ A is a con-

stant. Let us consider u^te) ts Xfair (** ) f where 

I1i/Ĵ  III -» "R > 2 and hence A ^ —¥ oo . Evidently, 

- C + G(AJL)& ufy*(u>) -6 (rf-o,) holds for each AJL, 

where C is a suitable constant. There holds 

In regard to the known inequality p(AjL^G)> i ^JUU^G 

for IIAX.IL > 1 . it suffices to take "R«2fe-M> an<* 
A hence A * ̂  - ^ 2 (C + 4), which gives us a contra-
°H 
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diction. The remaining part of the theorem will be pro

ved analogously. We set again il^ -» -\t/V t̂> , 

From the first inequality (1.9) we obtain, as in the 

previous part of the theorem, the following estimate: 

(l^l)%X^j^GL^(x)3d^c)^^&LAu^U)]dx . 

From the second inequality in (1.9) we deduce 

\ty(LL)\£ cf^ \AJL\^ + c for a l l JUL and taking 

9**C«,) * ^ *(«<\£°r \«,\ * ^ 

x btynrt, LL '(^(u,,) 9 for \AJL\ < AJL^ 7 

in account of (1.9) there holds 

\<f*(Xju,)\6C9X*\cfi*(4A,)\ -f e for a l l AA and A.> 

*£ X0 ? where c i s a suitable constant. 

Thus, considering the inequality G(AJL ) & <LL <^**(JLL) £ 

£s G(u>) + c for a l l AA> , we obtain 

* «*/*) «p - • %^ar„ (x) V * 

^I***a*tr^Cx))^A caA^»^*r^<r^))ll? t e ^ 

^c^a^c^frr^cx)]ci*^c)^ c . 
Now, considering ft sufficiently large but 

fixed, we conclude from (1.11) and the last inequality 

C • Xl**"1*" .6 A which gives a contradiction and 

the theorem is proved. 

Corollary. If (^CAJL) e W ^ satisfies (1.9), 

tfatnjttm, 1 fK^L d* ~ «>>(p.p. & UJ«**frft<»>J. 
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Proof* There exists a c such that \<^(AJL)\ £ 

£(.££!£}| + t for each jut. We have 

,i.c *p r 

It suffices to know JU»n, H - ~ ^ IL * oo . If 
844-11-% «> ^ v 

a G (AM- ) M .• « 
I -—7- 1 » C ^ the Holder inequality implies 

f GZA4. (*)!_,. _ /* GIAA*(X)} AJL(X) . 
Jsi l i l t f " d * ~ V .ocCx)# TEf" <** * C and hen-

ce we have a contradiction with (1 .8) . 

Lemma 4 . Suppose C^(AJU) € 7Tl% and p.p . G(AA,)S 

ss AJLC^(AJL) . Then there exist constants * 7 C± 8\ich that 

( 1 . 1 2 ) / G C P ^ C J C ) ) C I ^ ^ C 4 Z JLGCITALCX))d* + c» 
*SL *\$\*fk n * 

0 £l 

for -a, e WL^ , where &£«•) ar <xC«t) and U 1,1̂ ,1 £ h. 

Proof. Firstly, we prove (1.12) for 44. e <2) (XI) 

and to this purpose it suffices to prove 

We imbed il into the cube & C *RN with the 

length a of the edge and with a center in origin. Put

ting AA,(x)m 0 for x e *RN - il we have H 

^SAA, 
( ̂ ^ M . ^ . ^ ^ ^ ^ ^ ^ ^ d . ^ m ^ a ^ Ů ^ ^ . 

!I*here hold x 

from convexity for G(u.) (GCoCU.)4<*G(«.),<*• < A); 
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Glu,Cx)l* Gt2a, :%2^7-& J * C <*- ^f^ J + c > 
i f 1 «6 o^-f-a, -6 2 a, from A2-condition for Crf-w.) 

( GC2a.*t) .6 c.GC,*,) + c *o* each >u. ) . 

Applying the Jensen's inequality in (1.15), we 
J*i SJUU 

have Glw (*)1 £ <• f Gt-xrrlcLe + c and hen-
-f ! » ^ Cr*Si ft1 

ce (1.13). 
>• * -^ /• ^ . GLu*(x)J , 

The functional/Gr-u-Cix)Jd^"^^u6t)- , .» • dx 

is continuous from L fil) into L„ Cil) as a conse-

quence of Lemma 3* If #,e ^C fil) ; we choose AL^ £ 

m $ ( i l ) satisfying II w^ - A* i^h —• 0 . 

Clearly, we may allow m- —• oo in (1.12) for JU, e 

€ «DCil) , and thus we obtain the required assertion. 

§ 2. 

In this section, we establish two general theo

rems for existence of a weak solution, where the coer-

civeness is assumed and then we state algebraic condi

tions to assure the coerciveness in special cases. We 

work entirely with the reflexive spaces, except Theo

rem 4,concerning the compactness of the imbedding. 

The boundary <9il of the bounded domain/Xc'R'* 

is supposedto be Lipschitzian (see 131) • 

We shall denote positive constants by c with 

or without subscripts and in the same discussion it may 

denote different constants. 

Suppose cu 6cf f . ) for li I & M, real func-
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tions defined for ,x € H and - oo ^ f£ -c co with 

1̂ . I ̂  ̂  ( i , ^ a^e multiindices). They are conti

nuous in %j for almost every x e IX and measurab

le in :x by fixed f^ . (By this designation we un

derstand <X,JI CiX, §J ) to be a function of x and 

a vector f =(£,,—,£*> > w*iere the integer 

d £ cjaxxi ti, lil ̂  A K> 

Let us denote K s ' £ i , l i l £ 4 e 3 , L . » * C i j ii I ** -fe? 

and M some subset of K with K D M D L . 

We assume <j^ Co, > e W 3 , i e M being chosen 

with respect to an equation given in such a way that 

(2.D u ^ * , & > i - ^ " ^ z , ^ C§,) 

for all t c M , where ^ ^ Co,) € c C-a>, oo ) with 

0 ̂  ̂ ^C^)^9,4CG/<r(^C-u,))J? d-al^x^),p.p# G^to>» 

» AJLQSAAJU) and G"' its inverse function for AA*>0 » 

If every pair of <&(**>)9 <fe (**) for i, #> e M 

satisfies one of the inequalities ̂ ^ \ . f ; 9-/ (***) 

for ..u^ -* *û  , then the condition (2.1) can be rewrit

ten in a slightly stronger but synoptical form: 

(2.2) l a . ( x f ^ ) l 6 c « + ^ ^ ^ » +*M, 

where fy>£ (u,) e C(~oo , oo) and 0 < <foj,Cu>) & 

&mwK(\q*(u.)\f\<fr-(M,)\) for \AJL,\ >: u,0 -

Condition (2.1) or (2.2) involves a-fo,j:j) sf 0 

for i ̂  M and cu (x, f . ) are independent on ft 

for all t € M and i £ M * 
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To the equation given with (2.1) or (2.2) we cop-

struct a space W^ s f) W * with the norm 
& -i«M O-̂  

VAC II *»#2L WPf-ct/L to which we add I^IL ,-. in 
**£> 4«M G^ S r A ) 

the case CO,..., 0) * JM . 

From (1.1) (Assertion 1) there exist -ft f £ > A 

such that W*Cil> C Vi/f* C W* C i l ) (algebraically 

and topologically). Condition (2.1) or (2.2) can be wea-

kened by some information of imbeddings of W-& 

Lemma 1. Suppose (2.1) or (2.2) . Thena^Coc,!)*'44, ) , 

i e M i s a bounded, continuous mapping from UC. in

to L__ ( i l ) ( P. being conjugate to G. CAA,) ) . 

Proof. From Lemma 3,§ 1 and (2.1) we conclude 
^GfCG^m^V^G^LG^CG^))!) ^ V^CG^CAA,)) 

for each \AA>\ 2t AA.0 * 

Similarly as in Lemma 3,§ 1 we obtain from th is inequali

ty that cu Cx.7 D^AA,) i s a bounded mapping from W^ 

into LpClD-The continuity follows from the results £4J 

(Lemma 17.2, Theorem 17.3) . 

Condition (2.1) i s stronger than (2.2) . Indeed, 

we prove/m^vClc^C^)I, \^(4±)\^ £ l<fcLG~? (GJ.(AJU))1 

for \AA, I ."2. AJ^ . If G4 (AJL) £ G^ (44.) , then l*tt & 

^G"?CG^(4JL)) and hencei^at)Ug^rG:fC(y^C^))J 

in regard to I. If G^(AJL) * G> (44*) ( \AA,\ >• AA0), then 

BCir*) £ TK(nr) for Inrl *> o^ Co^) (see C43, Theorem 

2.1) and hence PfW> & VC1(a>>) (\<ir\ > <K ) . 

Using Lemma 3,§ 1, we have 

c^tGl\Gi(4M))l^^ Pr1(GitG^(Gi(4A.))l) • 
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for \AA,\ -2? AJL and the proof is complete. 

Having Lemma 1, we are able to present the defi

nition of the weak solution of a boundary value problem 

(see [23, [3]). Let 1Q be a linear subset of £ Cil > 

with <Z7C12) c 1$ c £ Cil) • Let us denote \!g m Op , 

where the closure is in the norm of W__^ . Let 

AJL Coc) € WL* represent a stable boundary value 

condition and 9. e C V-* )' (dual space), fyQir)** 0 fcr 

W e W-v . the non stable one. (For the Dirichlet s 
O ju 

problem, i.e. \4*=s W ^ 9 the functional g^ is not 

given.) 
Jk 

AJL e W H *S called to be a weak solution of 

the boundary value problem, if AA* - AJL0 € VL* and 

for all <v e VI* 

(2.3) /ZDV^^Jdx.^fj, + ̂ ^W 

holds, where f e ( \L* ) ' and Ctr, f ]^, (nr9 9*)^
 are 

the values of the functionals at the point ir #. 

Using a variational method we shall suppose the 

symmetry: 

(2.4) \ g ' r^ « % ^ * *fr in the sense 

OfM 0?4, 

of distribution for all 4 7 £ € M . 

Lemma 2. Suppose (2.1) ,(2.4) and 1% 9. € C\4*). 

Then the functional 
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(2.5) <J>C».r f0dt£ ]Lm D^nra^ (x,l>*(u.+ 'tir))dx -

- (v, f>jt" Ct/V *-><9.a 
i s continuous on \F and has a G&teaux differential 

at every point equal to 

(2 6) ^ ^ r ^ ^ ) c ^ ^ M
P ^ ^ ^ » ^ r ^ ^ ^ ) ) < a t i > < ~ 

Proof of this lemma, is the same as that in C2J 

Theorem 2.1). We use Lemma 1 and Lemma 2,§ 1, only. 

Now, monotonicity conditions and a general con

dition for coerciveness will be written: 

(coerciveness). 

(mono tonicity). 

(2.8 a ) ^ Z Cf 4.^)Co^fx,f^)-o^rx f^)3 > 0 

for £ * 13, . 

f ~(i,,...,%ihnmCi»--->%.'>are rea l vectors 

with <i » ea*<4 M . 

A functional <b C4-t.tr*) defined on V. x VI 

is called to be semi-convex (see Browder L6J), if it 

is convex and continuous at AA, by each ir fixed and 

if ̂ — * w (weak convergence), then 0 (AJU^V^) ~+ 

— f 0(4L9<v) uniformly for 44, belonging to a boun

ded set. 
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Theorem 2. Suppose (2 .1) , (2 .4) i (2.7) and one of 

the following conditions: i ) (2.8); i i ) there exists 

a semi-convex <p (AJL,tr ) where 06a.,AJL) S» 0(AJL) 

i s from (2.5) . Then there exists the solution of (2.3) . 

If (2.8a) i s satisfied then the solution of (2.3) i s 

unique. 

Proof. Let us define 

• ^ f-i I 2- TnroL, (X,D*(AJL.+ ir»dx ~ 

- a c"R) . 

•XCR) is measurable and i<W X CR) * oo on the 

ground of (2.7). There holds 

0(*r)zfK.XCtK)dt-CR~K(£j{X(*)dA-c) , where 

"^M,* - "R - But i*"* 1 / A6*)«aU » oo and 

hence Jtum 0 (nr) » oo. VC* is reflexive and i) 

or ii) imply the lower semi-continuity for 0 (AM) and 

hence there exists a point ir € V L at which 0(AJL) 

attains its minimum. 

If we construct a G&teaux differential at the 

point tr , we find - with respect to (2.6) - that ir + 

+ JUU0 is the solution of (2.3). Uniqueness is clear 

from (2.8a). 

Now we shall apply the theory of monotone opera

tors - see e.g. Browder E53,£61f Leray-Lions L7J. Let 

us assume M * M 4 u M 2 with M i 2 L . 

(2.9) The imbedding W.£ — r f \ V * i* compact. 
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i f £ 4= 1̂  J almost everywhere in A , where oc e fti 

and /3 e M2 . 

(2.1D ^ f * ^ ^ ^ ) / ^ ! ? ^ ^ ^ ^ ) ) ^ ^ , 

if 21 I f J. - —* oo , uniformly for f̂  , ,£ € M - *•* 

from a bounded set and «x e Jl , where 9^ . (4tC) QTe 

from (2.1). 

if .*£. \$. \-+ 00 uniformly for f£, I € M ~ L ^rom 

a bounded set and o< e £1 . 

Let us denote Citr9 A(nr,4^))^^ £$*'">'a^Cx 9 

-tcM. "̂  

where cC c M and /? 6 M 2 , 1̂ 1 -f -*. 

Theorem 3. Suppose (2.7) and (2.1) (reap.(2.2)). 

If one of the following two conditions i) (2.8), ii) 

(2.9)i(2,10),(2.11) (reap. (2.11a)) is satisfied, then 

there exists the solution of (2.3). I? (2.8a) is satis

fied then the solution of (2.3) is unique. 

Proof. It is sufficient to verify the hypothe

ses of Leray-Lions Theorem L7J. 

The operator A (>u,,ir) is continuous and boun

ded from V-* x VU. into C V^ Y because of Lem

ma 1. If (2.8) holds, then M^* # and the mentioned 
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hypotheses are verified. 

In the other case we must verify: 

1) if -U^ —* AJL in Vj> and (AJL^ - *tc, 

A (AJL^^AJL^)- A(AJL9 AJL^))-* 0 then A (or, AJL„) -* 

-kA(lr*,X6) in ( K ) x for all V e ̂ , 5 

2) if AJL^ —--> ,u, and A (/V, *a^ ) —*• /tr' in (V.*)', 

then (AJL^9 A(nr9 AJL^)) —> (AJL9/VT') , for allve V . 

In the case 1) we can prove from (2.1),(2.10) 

and (2.11), resp. (2.2),(2.10) and (2.11a) similarly 

as in £73(see [23 Lemma 3.2) that it is possible to se

lect a subsequence still called tu^} , satisfying 

V^AJL^CX) —*!?'AJL(X) for |i| .6 Jk, almost everywhere 

in Jl . For i c M *e have 

(2.12) O^ C* , D * (4JL0 + AJL^ » —• O^Cx, V* (*JL0+ U.)) 

almost everywhere in Jl - From Lemma 1 we have 

(2.13) ila» (* , D* (AJLC+ M,m))L *-= c for a l l /rt . 

It if a ty , then we have (2.13) for 

V*y<X,i C K , D^Cu*-*- x ^ )) . From the Young's inequa

lity and (2.13) we conclude 

for all m> . 

As a consequence of the Valle^-Pousin's theorem (see 

L43,p.ll3) TfcfcLt (X9D*(JU0 + AJL^ » have uni

formly absolutely continuous integrals and thus from 

(2.12),(2.9) and Lemma 1 we conclude (\f, A (^AJL^ » -~> 

-+ (%A(<V9AJL)) . On account of (2.13) ,(2.9) and 

Lemma 1, It A (<ir, juum ) \ * c holds* W « V-
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implies A(nr, u^)—** A(nrfju) in the spaee (\JL)' 

1 «-« ^ . 

In the case 2) we obtain 

for all nr c \L . 

(2*14) £ 5^*fe-"*>*« ,̂3>*t"-f. + *V> -i* ̂  0 , 

because mD*C«._- <u,fl — V O and Ia* Cx.&-OL + 
*T«- ^ tTV-rOC ^ J 0 

+ u^))^ * C for i e M4 . 

f*lfc*f"*+CxMCU0+A4,m))dx~ (U,A(^44.^))^ 

""^Z PVa^fx,!^^*^)^ . 

From this and (2.14) we conclude 

( 2 # 1 5 ) ^ * ^ 

-JX TPu&t (XtTf(A4++v), T>0(UO+ 44,)) doc . 

But 

X^^^^^p*^ -+ 

holds as a consequence of u^ —-* .-a- in V&, and 

*t Cx,lftu,+ir),T)P(u0+44^))-+a,4 (XfTftub+v)^^ +u) 

in the norm of the space L F, , because of (2.9) and 

Lemma 1. Thus, from (2.15) we have 

Cu^ ACir, <tt^))—• (ufir') -

In the next we shall establish some sufficient 

conditions for coerciveness, compactness of imbedding 

and equivalence of norms. 
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We shall use the following condition for coerci-

veness: 

(2.16).ZMf^6,,^) *<*,£„&<*(&>- ft . 

In the case of non-Dirichlet problem we suppose 

(0...O)e M . 

Lemma 3. Suppose (2.2), (2.16) and let g^i^o) e Vt 

satisfy (1.9) for i e M . Then (2.7) holds. 

Proof. From every sequence dt^ II ^ — > CO it 

suffices to select a subsequence 'V^. satisfying 

(2.7). 

According to (2.16) we have 

* et & , £ S * C»*Cs+%))ci^ -

- e ^ ^ f l i ^ C J ^ f ^ - i . ^ ) ) ! ^ - c . 

Let us divide this inequality by B t/^ •+ -a,0 II * . If 

(2.8) 21 —— 2 a •*-"*— 

5t 
is bounded, then the assertion for v^ is true as a 

consequence of Theorem 1. Otherwise the fraction in 

(2.18) converges to infinity for a suitable tr̂  

Then, with regard to (1.9)i the corollary of Theorem 1 

6ives us ^ £ g n > y ~ a ^ ) ) _ ^ ^ . 
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Lemma 4. If we substitute (2-7) by Condition 

(2#17), Theorem 2 remains true. 

Froof . From every sequence I'l̂ -fLrfe ff^'P0'..''^.' 

suffices to select a subsequence t&j^ satiefyiiig 

<f> (%^ )-+ OO . Let us define F(» • J*fy(t)cLt , 

cyCu.) e Wt^ . fy(u.) is increasing to infinity be

cause of I. 

The following estimations hold: 

FC*> -» FGi>#) + £ (^Ct)dt * F6U + fix? (*) 
for /3 > s$ where j ^ is a suitable positive number 

and hence F(/») & 2A>Q^(A>) for A* _> />^ . 

(X^(AJL) is an odd function and thus ¥(-/>) -6 2*>$>(*) 

for /& fe /»„ . On the other hands 

for >fc -> ̂  a n d F r - * ) . > i ^ ^ T | ) for A>£<%. 

( 4JU . >*>_. - <*L. A. a-?« suitable positive numbers.) 

Thus, there exists a constant c such that 

From this estimate and (2*17) we obtain 

*M*C1&U 4L^*4&'»'CK:(l>*(44tf+*<r))dt -

- ° a n v * v ^ -<- , 

where the inner integral has a definite sense for al

most all X e Jl . By reason of this inequality and 
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Theorem 1, Lemma 4 follows. 

(Xf£t wi l l denote the bounded domains of JZ**. 

Let T be a mapping from (T onto J l . We shall ca l l 

T regular , if i t i s of the class C4 and a 1-1-map-

ping (X onto J l * Let us denote DT the Jacobi #s 

determinant of T • 

Lemma 5. Let &6u,) be an N-function and u,e 

e L* Cil)# If T i s a regular mapping from (X onto 

J l with c^ & \DT(<ty)l 6 C% in (Xf then v ( ^ ) s 

**U,(Tty,) belongs to L* ((X) and liar JIL £ e fl/OA^^, 
a. & 

where C i s independent on AA~ . 

Proof. Let us assume £/Y^>e E pC^>, J^ PLif(<y,)2d<y£ 

& A . We have 
f<j>Cnf)v(«})d<y.* f i/(T-i(x))<*(T~''(x)) \T>T^U)\dx£ 
£± f tS(T'iU))4A.(x)dLo< . 

ci -*1 

On the other hand, we have 

£PLVIT^Cx)lUxmfr_i(£J>l<ftyn\Dr(<*)i<%*^£mf(y)3dy, . 
Prom both inequal i t ies and £4] (Lemma 9.1) we conclude 

"^H. r»K ~ Ctwt ,„ . for each u. e L* (£1) . 

Lemma 6. Let T be a regular mapping from (X 

onto Jl with C^ -6 1 D T C^) I .-£ C 2 in £T and 

GC-u,).N -function. Suppose ,a. e W* Cil) - If irCy,) & 

«u,CTy),then v e W* C(X ) and l v l ^ ; * C S^wica) -

We recall W. Cil) s V/* „ where G> Cic) sr 

« 6 C-K,), \ i \ * 4 . 

Proof is the same as that in £3J (Lemma 3»2), 

We use only Lemma 5 and the fact that 
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IUA-'*IWOV> KZt ° ' for each -&*<---, 
where AJL* C X ) is the mollified function of AjuCxy 

(see the proof of Lemma 2,§ 1). 

Lemma 7. Suppose d Jl € C . Then for each 

bounded domain Jl* ^ TL there exists an extension 

for functions from W * (Jl) to functions belonging 
0 

to W j C n* ) and 

e 0. 

where C is independent on u , 

Having Lemmas 5 and 6, the proof of Lemma 7 is 

the same as that in D3 (Theorem 3-9). 
Theorem 4. If &SL € C1 and 6- is an f4 -func-

4 
tion, then the imbedding W (JL) — v E fJl) ia com-

pact. 

Proof. Let {M.^1 be a bounded sequence from 

W^ (Jl), i**- tu>~t„i -« C » Let us take an arbit-

rary Jl* D Jl , We extend every AJL^ to a function be

longing to W £J1*), still called -u.̂  with 

lw II 4 *-.. -£ C - because of Lemma 7» We can suppose 

#J1* Lipschitzian. For a smooth functions € WfJl*) 

and I J M * Jh,0 • d-iarf C<?J1, d Jl* ) we have 

A*,(x + Jh)-4A,Cx)mrjh,-jL -fe- (x+tJh,)cit , 

where jc € J l .Supposing v C x ) € E p ( J l ) and 

ypCirCoc) !* !^ 6 1 we have 

/*> n«N «^irCx)rAcOc-l*Jt)-4^rf)c)3rfx « 
(2.19) j P ^ ~ 

m,i.Jk* fdt /vC*)§!£.Cx + tJh,)clx . 
4x1 + 0 ^0, &*> + 
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(2.19) holds also for A4inCx) by Lemma 2,§ 1. Using 

the Holder's inequality in (2.19) f we have 

U.20)J^V>U)t44^(*+Jh)-44.(^^ ' 

.lt&t*+tH)Kdt&C*\M,\ IK>*wWs - C-\M,\ • 
OTQ <* # " * - v 

Taking supremum in (2.20) with respect to nr(x) we 

obtain lA4,m,(*+to,)-44,mt(x)l .& C'l^I-From LA J (Theo

rem 11.4 and Lemma 11.1) the compactness in E (XL ) 

follows. 

Corollary. Let us have JNf-functions G± (44*) 

for every -i € M satisfying 6^ C44,) £ Cxj, (44*) for 

44, £ -u^ and |<i| > |£f . Suppose <9.J2 € C* . 3:h«n 

the imbedding W ^ — • D W* is compact. 
W 4«M-t- *{ 

Assertion 2. Let O^f^) for each -t 6 K satis-

Cb (44,) ,_, 

(2.21) (J4(44,> & &0C44,) m 04(44,) for (44, Z 44^), 

where U l » I t , \fr\ < Jk, . 

If there exist numbers *fî  , £* from (1.1) cor

responding to Grp (41,) and satisfying 

(2.22) %.<*-. N 

fl-П. 
then IAA-I^M & c(dZ ID44^L + I44, l\r ) and the 

w£» u\*Jk Qi ®9 
h ±.-1 

imbedding W^ (Jl) — • V : *-* compact. 
& &0 

Proof. Vj? C Wi* (algebraically and topo-
"""' "• • • \Sr n*>o 

logically). 
Using the known imbeddings we have 
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There holds (see £3 ] § 7) 

Hi*lL,* &c( £ HDVft + Uttn, > . From both in-

equalities we obtain the required inequality. 
1 1 f 

Finally, W C W and the imbedding W -¥ 
&0 fV **• 

—¥ t, (JlL) i s compact. 
%0 

Assertion 3. Suppose (2.1),(2.7),(2.9) and (2.10), 

where the equality is admitted. If a*, (x ^ £ . ) is inde-
* 9 j w 

pendent on £# for all i e M . Z e M . m then there 

exists the solution of (2.3). 

Indeed, the hypotheses of Leray-Lions Theorem are evi

dently satisfied. 

Assertion 4. If (2.1),(2.4),(2.9),(2.10) (the e-

quality admitted in (2.10)) hold and o^ (x, fi) is in

dependent on fi for all 4 e M2 f t e >L 9 then the 

functional from (2.5) is semi-convex. 

Proof. Let us define 

(fifa,**)* X fdtfT>4'A4,a,4f(x>V*(4A0 + t44,))do< + 

^ Z . f0dt^ +Cf7tr> + 

flj Co,) and 0 5 L C V ) are continuous and bounded 

over the space V-* as a consequence of (2.1), Lemma 

3§1 and Lemma 1. Regarding the properties of O-f-*, f ^ ) 
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and (2.10), the functional ^ <*-t) is convex (see £6J)« 

By reason of (2.9) nad Lemma 1, 0a Cnt) is continuous 

with respect to the weak convergence in V% . 

Assertion 5. If the stable boundary value condi

tion u,0Cx) s 0 in the problem (2.3), then (2.7) 

follows from Conditions (2.16) and (2.1). 

Indeed, we use Theorem 1 in the estimate 

In many cases the weaker conditions than (2.16) 

and (2.17) will be sufficient. 

(2.16a) .IJ^^f^^C.ZftfefM-C 

for almost all x € H . 

for almost all x e II . For the Dirichlet 's problem the-

w is . Cj 2 0 . 

One can see easily that one of the conditions 

(2.16),(2.17),(2.16a),(2.17a) implies Condition (2.11a). 

Assertion 6* Let us have C^CAJL.) e 7)t, for 

all i € K and suppose q^ (44.) >• q^> CAJL ) = 9 3 C*o, ) 

for >tc > -ct̂  , where ^ e L ? ^ c K - L . Suppose q^(«-) 

satisfies (1.9) for all i £ K . If (2.2),(2.16a),(2.10) 

and (2.22) hold, where M s L f M 2 * K - L , then there 

exists the solution of the Dirichlet's problem (2.3). 

Proof. We define A (tr, 44, ) as in Theorem 3, put* 

ting only A^"m L , Mx M K - L . 
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Condition (2.9) is a consequence of Assertion 2. 

If we have Sjl e C * , we do not need Condition (2.22), 

because (2.9) is a consequence of Theorem 4.) One can 

see easily that Condition (2.16a) implies (2.11a). Thus, 

it suffices to prove coerciveness of the operator 

From (2.16a) and Lemma 4,§1 we conclude 

(tr, A(nr)) * c, 2L /^ &± tD'^ + ir)!** -

Similarly as in Lemma 3, we deduce from the last inequa-

(ir, A(nr)) .̂  „ fl 

llty — 2 ^ — j y ̂  lf fl^S * — f a? . 

The rest of the proof is the same as that in Theorem 3. 

Remark. If the stable boundary value condition 

4A>0C0<)& 0 ,then in Assertion 6 we do not need Condi

tion (1.9) for fy^CAA,) i, e K , by the same argument 

aa in Assertion 5-

Assertion 7. Let us have q% (<c) e 1fl3 for 

all i 6 K and suppose q^ (<tt) £ <fr- (<u) -= cy0 C<u) 

for JU, £ AA,0 where £ £ L , £ e fC-L . Suppose (2.1), 

(2.4)t(2.17a) and (2.S). For non-Dirichlet problem sup

pose, in addition, (2.22). Then there exists the solution 

of (2.3). 

£££&£. It suffices to prove <p (tr) — Y co , if 

^KA^V** inhere (jLCir) comes from (2.5) • Similarly 

as in Lemma \ we have 
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+ C2 Jl G0 t4jL0+<vlcLx - c - J l i r t f ^ ~- C . 

If (2.22) holds, then the required resul t wi l l be ob

tained from Assertion 2 and Theorem 1. We use Lemma 

4,§1 for the Di r ich le t ' s problem, and 

^ ) - < &K £ <h CrC^+nr)] dx-cW »„* - C ' 
holds. The assert ion follows from Theorem 1. 

Examples. Suppose g^ (*JL) € 7ft% tor a l l 

i e M and l e t -f &*- ) a. C/& ) be measurable boun

ded functions defined on IX, £?J1 . Let us consider an 

equation of the form 

(2.23) .21 C-4)mltitUCx)a..Cjr4JLn m f , 

where Zi(x) £ <L > 0 are measurable bounded functions. 

^ o 6 ^x* an(* fytfa) give the stable and non-stab

le boundary value conditions. 

a) If 9 ^ 6 t t ) ^ 0 for i t e { - « ? , « ? ) and for 

a l l <i e M^ and i f the imbedding w£ —*. A Vv^ i s 

compact, then there exis t s a weak solution of the equa

t ion (2.23). 

b) Ket <£ (AJL ) £ 0 for AJL e C- OO , oo ) and 

l i l • Jk . 

For }il < M, we assume $" £u,) .£ 0 for AJL >-0 and 

O-. (AJL) .& 0 for x<-< 0 * Then there exists a weak so

lution of (2.23). 

c) If ̂  (AJL) > 0 for AJL e C- OO ? oO ) and for 

all <C G M , then there exists the unique weak solution 

of (2.23). 
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The cases a ) , c) are evident from Theorem 2 and Lemma 

4. In the case b), i f vL -—--» t r in WIT . then for 
**• Gr f 

A ^"ilk-v 4^t^MCM)Pivgk: CVLC44,0+ tv))cLx 

holds. 

$%(v) & jUyn^4Mf <t>% Cnr^) , where - t g ^ i s a 

suitable subsequence of {a£ I . Indeed, i t i s possible 
•w 

to select -tt^ ? from fijlJ satisfying P*4^. C«x> -* 
• w «%» 

—• 3>^ir CiX ) fcr a l l i c M - L , almost everywhere in 

I I and 0 ^FU)ss/^(t)cLt for A>eC-oo,oo)* 

Thus, Assertion b) i s a consequence of the Fatou's 

lemma. 

The concrete examples of this type are 
— &JUL, + tyC4A) ~ 4 9 

where m. > — A and tm,» 3s. 0 \ m- - /m-* real num-

bers. 

§ 3 . 

Now, l e t us consider a wide span of the growths 

(2.1) given by the class 1TL . If CLCct) does not pos~ 

sess Condition I I , then Q^C-ctfoc)) i s not a mapping 

from UtCSL) into the dual space JU£ ( J l ) ,where p .p . 

GGt-t)«*-CCd,(-a,). Indeed, in such a case there exists 

1/Cx) e U*CfL) .such that oo ~ j£G[vCx)2dx £ c + 

-^J^yCx )fyCvCx)) dx , C being a f ini te constant. 
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ty> (v (x)) 4 L.? (II) because of the Holder ine

quality. Thus, the method of monotone operators is not 

directly applicable as in § 2. In addition, we must ad

mit the values 4- oo for a functional from (2.5) if 

we intend to use the calculus of variations. Finally, 

if the functional from (2.5) is finite at the point nr9 

it need not be finite at the point v «+• *\r* and thus 

there are difficulties with the Gateaux differential. 

The weak solution for special cases of this di

rection was obtained by M.l. Visik 110J, by means of 

the Galerkin's method. 

We shall solve the Dirichlet's boundary value 

problem for the minimum of the functional 

(3.1) *ftr)«^fx,»*irW^^6(yirWy + Ffr) , 

^ T - J ^ o n d>Jl, for 4-0,1,...,*-*, 

where *> i s an exter ior normal, - t , ^ are mul t i - indi 

ces with l i l £ M, , \£\<<Jk, . 4A0e wfcXl) sa t i s fy

ing (p (4A,0 ) < CO gives us the boundary values. V(nr) 

i s some l inear functional. 

Let M, M - . A L . K and L be from § 2. 

l)f-(&c,$£)*£0 i s continuous in a l l variable* 

(3.2) .x e JL,\f4 K o o for i e M^ and (O,**.,0>{ M . 

2) * C y , f̂  ) i s convex in f ; 

3) i n ^ ^ ^ - ^ ^ n ^ ^ C l ^ - ^ O t ^ f C x , ^ , 
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where X ( ff ) i s a positive function with^&w- X Ce0)mQ. 

(3*3) â Cpc £ • ) ia a real-valued function for 

ocellf \fji I < co witb ^ € Mx - I t i s continuous 

in f • for almost every * € IL and measurable in .* 

by fj fixed. 

(3.4) ffrCx, f*)l * cCI+fJ^GiCfr)) . 

(3.5) ^C^f 4 )4 .^C^,^)^^ 4 | . M ^( :^ ) - e , 

where * > 1 ia constant. 

(3 . 6 ) <*i <-*>, 6 w for a l l * e M. and-----f-----e TO. 
•<i- "* *** ' 

for a l l -J- 6 M a . 

Let us construct a space W^tfJl)-* i*t e L^CJl) ; 

D ^ i O u e L * , C i l ) } , where D"*^ i s the distribu-

tion derivative, -£ € M . Let us denote W-̂  « 

» A W* Ot) with the norm H^ll . » ZM I D ^ /L , 
*«M 6 / wgj' *•* <% ' 

to which we add \JUU 1 /rt% in the case CQ,..0 0) 4 M . 

(3 .7) Let the imbedding W.^ —*i J M W 0 . ( i I ) D0 c o m P a c t * 

Let us choose A & 4**+ £°r a l l i e L such that 

\A*\ % & Q4 CM,) for 4 X ^ ^ 0 (the case " f i^ are lar

ger" i s of more interest) and denote fi** mtln,{<fi4 fie Li. 

(3.8) FCnr) € CW*~1 ) ' (dual space) ; 

(3.9) fix, J4 ) i s s tr ic t ly convex and (frCx^ fs) 
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is convex in £ , 

Theorem 5. Suppose dSL Lipschitzian for ^t > -7 

and dJLe C* for .fz, » 4 . If (3.2) to (3.8) are sa

tisfied, then there exists a minimum of (3.1) in W-f* # 
Q% 

If, in addition, (3.9) holds, the minimum is unique. 

At first we prove two lemmas. 

Let us define wjf SL {M* & W^? f for which 

Blu, 

fy^V - 0 on <9J1 for JL ** 0949.„ , jfe.-'fj.ln this 

case 2>fJl) * w i * need not be true. WJ* is e~ 

vidently a closed subspace of W_* • 

We introduce *X convergence in the space wJf 

by the following way: AJL^ J £ > U 7 <U^, AM B W£ , 

for all trc4>Co<) € E - (Jl) and for each I € M % 

Pj being conjugate to G. . 

In general, W-* need not be reflexive and *X 

convergence can be weaker than the weak convergence. 

Lemma 1. w j * is compact with respect to *X con

vergence: more exactly, from any bounded subset B C W_k 

it is possible to select iu,^} c B an^ ^t € ^xfc 

such that xt,^ -3—-- >cc . If dJl <= C* for >jx * A 9 

O A. 

then WL+ --s closed with respect to *X convergence. 

Proof. The space L#* (SL) , G being an J4 -

function, possesses the properties (see £41,Theorems 

14.3 and 14.4): 
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1) Prom any bounded subset A C JL* (It) it is pos-

sible to select i^u^ ! e A 9M^B L? (XI) such that 

(3.10) £u,m,(x)v(x)d* —y £u,(x)v(x)cLx 

for all irCx) € E p ClX) ; 

2) whenever (3*10) holds, then there exists a such that 

WLJZ i s a closed linear subset off! L? (71) 

(cartesian product). By a successive selection we find 

**~.e B and x / ^ € L* f i l ) for a l l i € M satisfy-

ing XTu.^(^)vu>Cx)cLy * jE^CdOv^CtOdx 

for all vc*} € E^Cil) and for each i e M . There ex

ists 4JL(X.) € L^ fil) such that ^6^ "175$ ^ • 

We find easily that D^ALCX) » Juf*}(x) for all^eM. 

and thus the first part of the lemma is proved. 

Now, suppose .«. — — • xc for ̂ ^ c W . , 

44, c W.^ , In accordance with (3.10) there exists c 

such that Î U/̂  I * -» C and hence 44, 
>n< 

the norm of the space W CJL) . Thus, we have 
i 

$#1 =* 0 on <?J2 for ^ - 0, 1, ...,Jk-2 . Now, 

l e t us suppose J% m A an<i Bit e C - Using the 

Green's theorem, we obtain for each \fe 6 CJl) 

where -$>» i s j , -th component of the exterior normal >> 

and i t T 2 i + (Qf..* A,-. 0), \i\ = M-A. 
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From *X convergence we conclude 

(3-n) -4->*--w'V^rf*-*^i-,*'«*-v*«u . 
Let u. denote ^ C9) = ^P'tt^cpd.* ana aimi_ 

larly -Pfjp) . There holds 

( 3 . 1 2 ) 1 ^ , 1 ^ 1 1 ^ . 0 ^ ^ * ^ 5 , ^ , vert). 

Restrictions of functions from £(j£) on &JI 

form a dense subset in C(dfL) « (3.12) holds for 

f (p) f too. We can uniquely extend i^ , f on 

C(dJl) and thus f^(g>) —> 4 Cy) for each ife 

e CCS A). In (3.11) we substitute & m ». yr y 4 

6 C(dJL) and then we sum up (3.11) through -̂  m 4,2,... 

..., N . And hence 

(3.13) {^l^vr** -+ 4^*+*** 
for Ul a A - < . 

From (3.13) we deduce 

^ $^*.-i—VFdL* 9° for a l l Ye C(<?JL) and thus 

•~« iyj . 
In the case <p> > 4f <?J1 is Lipschitzian. Sup-

pose 4 < 4t < rr-r ; /» -̂  -ft. For xt 6 WJj£ we have 

at least D * ^ %>.̂  6 L^(<9JL) , where •£ * % -

- jjfSl)* and '* ' * ^ - 4 . For 9? € £ *-7E > there 

holds (3.13) and 
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where (£* + <£ ** 4 • Restrictions of functions from 

£ CTL) are dense in L» (d SL) . We can uniquely ex-

tend f̂  , f on U C0JL) and f̂  CV) -+ *(&) 

for each g> e _L , (&J1) . From this we deduce 

A*jk,-1 ** 0 on ^-^ again. 

Lemma 2. Let us assume (3.2) to (3.4) and (3.6) to 

(3.8). If xc^ mx » ^ . x ^ , XX € tf£ , then 

0 6cX, 4- XC/) -6 i(W </*tf <b (44^ + 4JLM ) . ^ * *l.-4«? ^ • /«, 

Proofs xx^ -^g—-• x* , where xi^ , xx. e i S ^ im

plies xx — * 4JL in the norm of the space W * ~ * # The 

results of J. Serrin LSI can be extended to the higher de

rivatives and hence 

The functional / ^ ( x , 3)^x^ )<iiX is continuous 

from, O H-* into L,CS1) as a consequence of (3.3), 

(3.4),(3.6) and (3.7) and with respect to £4J (Lemma 17.2 

and Theorem 17.3 where we set M^ (44,) ** JU, ). The functio

nal P(v) is continuous because of (3.8). Thus, we have 

(l.U)0Uo+44,)* Mm,4«tf jLu*fJ)lC«,, + 44,„))cL* + 
r ° m-*c6 **• 

4- Hum, JLq,(#fT>t(A4v+44,m))dX+ JUm, F(44,0 + 44>0) -* 
/fl-«4* 00 i t i . - 4 ' O © 

-£ JLufTV Afttf 0 (A4s0 4- 44/^ ) . 
m> "^00 

Proof of Theorem 5. Let us consider 0 (44^ + M, ) 

ver the space W - ? . We admit the value 4* 00 for 

0 C44,0 +> 4M) . From (3.5) and (3.8) we conclude 
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On the ground of the property of ^v we have 

,& £<% (2%?^)d» * c91*,+*$* - c . 
1+ 

Cn the other hand, I-u^ + ̂ fl^.,, -6 ctu,0 + ul j , 

holds and WuLm 2/ G CAA, OC )) c& for H4A.U *1 1 0 

(See £4 3/Theorem 9.5.) Thus, we conclude that from any 

sequence I-u^I ± —• 00 i t i s possible to choose a 

subsequence A*> tor which 0CAA>O + AJU- ) r—• 00 and 

hence 0 CUa + AA*) —t 00 i f iu II 4+ —+ 00 # 
wg* 

The last statement is true in the case f, m 1 , too, by 

reason of the inequality G+ (~ > - fy I** I fc Cf' Ĝ  ^ ) - C , 

for each K U 4 ; for suitable constants c '?nd e . 

Let \AL 3 be a minimizing sequence for the func

tional 0 Cuc + AJL) . By reason of the previous fact the

re exists C such that f 44,^ t^* £ c . Using Lemma 1 

we find JU € tvj£ and a suitable subsequence s t i l l 

called AA,^ such that AA,^ -*%-?-* AJL . With regard to Lem

ma 2 we have 

**& <p(U0 + *r) m 0CAC0+4A,)* &^<mf 0(iJL0 +44^) . 

It ire W* and - | ^ £ - « - f ^ - on dSL 

for £ as 09
A,...fJk,-4 ,then ir ** 1T-AJL0 + AA»0 and 

it - AJU0 € )&-£, and hence 0(AA.0+AM) & gffnr) . 

It (3.9) holds and JUL^ ,^4,^ are two points of mi

nimum, then we have torAA,.& tAA^+(4- t )AA\ t c (0,4) 
£Ltf(x,1>\) + C1~t)fCx,T>\)~f(x,T>%)ldx + 

+ &£t<fr(x,S>\)+(1-t)<^X,P*AA,%)-^ m 0 
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snd thus D AX, » J> AA* for lilss Jt almost everywhe

re in Jl . Considering the Dirichlet problem AA^CX)™. 

SZAJ, Cx) almost everywhere in JX . 

Remark 1. Theorem 5 remains true if we substitu

te (3.7) and (3.6) by 

(3.15) ty(x7 %A. ) ~ 0 almost everywhere in IX for 

all I %i I <: co, i e H2 and °i
4^

) * ?#f for all 

i 6 M . 

Indeed, if AA^ - J — • JUL f AX^ ? AA, e '&+' 7 then 

a suitable subsequence still called AA,^ JPAA^X) —> 

—• l>^4ju (<x) holds for all i e M - L , almost 

everywhere in JL * Using Fatou's Lemma, we obtain 

(t^/D^V^W^ £*%&%* fjfrt*,TP(AA,.+AA,„))dLx 

and hence Lemma 2. 

Remark 2. In the case M, -m A Condition (3.2) can 

be weakened to (3.2') with respect to the results of J. 

Serrin t9J (Theorem 12). 

(3.2') 1) t f*, Ajb 7 f^ ) & 0 is continuous in all 

variables, \i\ m 4 • 

2) i ( X , AA, 7 ^ ) is convex in f tor each 

X € IX , \AA*\ < co . 

Without loss of generality it is possible to sup

pose in (3.2) or (3.2')'. f <X 7 f+ ) £ - C only. 

Examples. Theorem 5 is applicable in the follo

wing types of examples: 

a ) ^ ) - ^ uy^i^H\^wi>i^tt^ii^A)^<ucd^-
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~£м,*ŕdxd/ÿs . 

J (ж&)a 

Ъ)ØÜ^~£Kj^)W 

c)ф(м.)m/JiFЃ+ľ%} dxdnf" f^мtïdxdnj, . 

дu> q , ,дм,s& &)<j)íu,)= /Jli(-§^-)í*(^ř*Jh(JU.(x,^))-4J.4}cLtxcL^ 

where O é Jtv(-b) e Ttt, . 

§ 4. 

In this section we establish a weak solution of 

those equations when the growth (2.1) or (2.2) is given 

by the class Wl , We shall consider dJX e C* . Let 

•U^ e Vv/.̂  give us a boundary value. 

Theorem 6. Suppose (2.1), (2.4) and let the func

tional from (2.5) have the form (3.1). Suppose (3.2) to 

(3.5),(3.7),(3.8) and fy(M,) e m% for all i e M^ . 

Then there exists the weak solution of the Dirichlet's 

problem (2.3). In the case (2.8a) the solution is unique. 

By reason of Lemma 3,§1 we must prove at first that 

(2.5) defines a functional over Wjt . 
Gr 

OL^CxfT>*(M,0+tv)) are measurable functions on 

J l x < 0 , A> . Using (2.1), we have 

(4.1) Z i P V I I a 4 ( x f P i Y . i t # + t v ) ) I ^ C f X tDV» + 
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* Z. \J>*vWqm(J>*(u>o+tv))\ . 

Let us consider some member from the right side of (4.1) 

by t fixed. Using Lemma 3,§1, we obtain successively 

(4.2) f \V*v\\<toir(J>i(u,0+tv))\dx 4* 

ilpVI • la- . (JP(u,0+tv))L * » V L (4+ 

Arfjfr l^H (X>*(U.04rtv))Jd* * WTv\e(C + 

+faGjt(jr(u,0+tv))cLx£ IJ>*vl00(c+£fy(lJ>iu+)dx + 

+£(xi(lT>i'v)cLx) . 

Thus, on account of (4.1),(4.2) and (2.1), the functio

nal (2.5) is well defined over WJ+ . In addition, it 

is bounded on the bounded sets, because of Lemma 3,§ 1. 

By Theorem 5, the functional (2.5) attains its 

minimum at a point v m W*? , 

w 
We shall construct a GSteaux differential v only in 

some directions; precisely, we shall prove 

(4.3) JUm» ?(<*+**)-#(*>),,„ o for eachiTc^ril). 

We use the idea of C81 (Theorem 5*1) and [2] (Theorem 

2.1). Let us denote o ^ (oi^ f^ ) the mollified func

tion of O^ Cx, f^ ) in §£ by ,* e SI fixed 

(see (# ) of Lemma 2,§ 1). Let to, u£ to,0 be fixed. There 

holds 

(4.4) I •VJh,t*,U ) I * C (U^ «*. LCuCQ^ CI fj))l) 
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for a l l i i M , 

(4.5) l ^ j / M f ^ c C A K * ^ , 

where a ^ (x, ft) * &a****J*'l $* } for a l l I, &, 

I * M • 

By means of o^uCxf §* ) l e t us define the func

tional A (*\r) from (2 .5) . Similarly as in C 5.1, we ob

tain, with respect to (4 .2) , (4 .4) and (4 .5) , 

+ <*+**))) dx -V(SP) . 

The inner integral is a continuous function in s*, 
because of 

Ou^^^tu^+^+^fP))^^ a^(xf^(u0+nr+^ *f)) 

for almost all x e XL and 

(4.7) II &l^(xfP'(AA,0+v'+*9>))lv & e 

for all /* e CO, A ) . 

Using the Vale^-Poussin's theorem analogically as in 

the proof of Theorem 3,5 2, Tf&a^-(*,TP6u*<,+v+A&)) 

have the uniformly absolutely continuous integrals. 

( Jh, 7 &(x ) being fixed.) 

Thus, for suitable /*0 & (0,4) 

<fiK(nr+$>)-0(v>)^Ik fj>*&^H(*7T>*(u„ + ar + 

+ *0*f))dx -FCtf) 

holds and hence there exists a derivative in the direc

tion if } from which 

(4.8) dj-Cgr^y)-^^) -. 
V 
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V 
m ±fdt££MT>+V*4JhC*,J>*(44.Q + nr+t#))dx -F(if). 

CL^(X$*(4JL0+V+ **)£-;-* a ^ (x, T)*(4*0+<ir+t<f)) 

holds almost everywhere in SL • 

By the reason of (4.1),(4.2) and (4.4) the Lebes-

gue's theorem gives ^L^V) r—jr* 0 (V) * Now, we are 

allowed to let A become to infinity in (4.8). The inner 

integral in (4.8) is again continuous at t m 0 . Thus, 

in the point v of the minimum we obtain 

^4ZM1)Va.4C^,P^+-tr)><ix- Fdf) « 0 

for each tf e 3>(Jl) . But, 3> (It) ** \ S ^ and the theo-
<* 

rem is proved. 

Examples. a) Let us construct the Euler's equation 

to fl(ir) from Example a),§ 3. This equation possesses 

a weak solution, 

b) Let us consider the example from § 2, where q^ (AAA € 

€ W L and dSL e C* * There exists a weak solution of 

(2.23) in Case b. 
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