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APPROXIMATICN BY HILL FUNCTICNS x)

Ivo BABUSKA, College Park

Introduction

The finite element method has become a very effective
method for numerical solution of partial differential equa-
tions. See e.g.[13,[2]1,(3] and many others that deal with
the engineering or matheinatical aspects. In a series of pa-
pers we shall build up one Qariant of this method for boun-
dary value problems of partial differential equations espe-
cially of elliptic type. See e.g. [4]1 - [15] . The problem
of approximation in the fractional Sobolev spaces Wl‘(xm)
is of special importance for this approach. The problem is
the following. To study functions w, (x) with compact
support such that for every f e W:(Rn_) and 1 >m >0
there exist C, (fy, ), f&=(%,,..., &,), Mg integral
F=1,..., 1 such that

. . _ s- has,
teH 'w,’_'m,)g b ) i E Gt ,3) 0y (—p— wlcr,)
P
< Cls¢ lw:“”) 5,
provided 0 g p &M’ € e, « 2, with

x) This research was supported in part by the National Sci-
ence Foundation under Grant No.NSF GU 2061 and in part by
tﬁ::’?guic Energv Commission under Contract No.AEC AT(40-1)



@« =mim(-f,~-0B) and € is not dependent on ¥ and
! and A 1is a non singular matrix and that the support
of @ ($#) 1lies in an LM neighborhood of the support of 4
with L independent of ¥ and 4 . An approximation proper-
ty of this type will play a very basic and important role
in further papers (see e.g. £4) - [101).
In this paper we analyze some necessary and sufficient

conditions on @ (x) 1)

for the above approximation pro-
perty.

The name "hill functions" describes the fact that the sup-
port of the functions & ( %_ ) is small (of order h ).
The special kinds of these "hill functions" have been stu-

died by different authors and called by different names.

1. Some results of the theory of the Fourier Transform

We shall quote here some known results of the theory
of Fourier Transform of generalized functions without
proofs. For the proofs see e.g. K. Yosida [161] or Gelfand
f171.

We denote R, the m -dimensional Euclid space:
X=X, 00, %) , Mx W= ‘.%1 (x; % . Let

S(R,) 2) be the totality of all rapidly decreasing
functions (at oo ) with the usual topology (see K. Yosida

1) After finishing this paper I received information that
other authors received result very closed to that in this
paper, esp. Fix, Strang, De Guglielmo, see [181] - [211].

2) We shall very often write simply S instead of S(R,)
in this and analogous cases.
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[161, p.146).
The space of generalized functions over S(R_) will be de-
noted S'(R,) 1 . For any ¢ e S(R_) we define Fou-

rier transform: F(PI)(Q) .

(1.1) F(9)g) = (&) = .,/" &9 ¢ (x) ax ,
m

with (X,8> =

w M2

351 %%

and the inverse transform
(1.2)  F(91(@) = 2™ S5 E P g (yrax .

It is well known that the Fourief transform is a conti-
nuous mapping of 8 on 8 (See e.g. [17], vol.2,III.§ 1.1).
Let ¢ € S, then

(1.3) FILF(P) = 2m)™p (~x) .

Let ¢ ¢ 5" . The Fourier transform of ¢, i.e. F(4) will
be defined by the equation

(1.4) (F(£), F($)) = (2™ (4,9) .

Let €L, c S with L, the space of all square inte-
grable functions on R, , then F(¢)e L, and

(1.5) 1P ? Y 2 ud T3
'LZ = ."‘3

Let A now denote a linear mapping R,, on R, - let this
mapping be given by the matrix A of order m  (which is
necessary nonsingular) 2). Let A™ be the inverse mapping.
1) If fe L, then (f,¢)= 4”11; dx, $es .

2) We shall denote the matrix and the mapping by the same
symbol.
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Let £ ¢ L, ; and let us denote (A#)(x) = (A x)el, ,

(A1 8)1(x) = £(AX) . Now let fes’ ,then Afe S’
with

(1.6) (A$,®) = 1AL (£, A P)

and 1Al be the determinant of the matrix A .

A generalized function # € S’ will be said to be pe-
riodic with the matrix of period A  if and only if for e-
very ¢ € S and every M = (M,,..., &, ), %y integers
4 =4,..., m , we have

($,9) = (¢, %)
with
1"(.!_) = 9(£-A&) .
A closed set X will be said to be a support of § € S’
if and only if (4, @) = 0 foralld e $ and ¢ =0
on some neighborhood of K 4 it will be written
K = sup f v,

A continuous function g.(x) will be said to be a
multiplier if g ¢ € S for every ¢ € S and 9.¢0—» 0
if ¢, — 0, »=4,2,... with the convergence in the
topology of 5 . A function £ & S’ will be said to be
a convolutor if

fpd = (£,(§), d(x+§)) = w(x)e S
for every ¢ € 5 and if ¢, — 0 in topology of $§ then
f#d,, — 0 in the topology of § . If ¢ (x) 1is a multi-

1) We emphasize that the support in our sense does not mean
the minimal support. In the literature very often the notion
support means the minimal support. But this is not our case.
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plier then - (¢) = ﬁ' is a convolutor and
?(ﬁt”) = P (f) F(4) .
Let 4 € S’ have a compact support then F (f) is a

multiplier.

Lemma 1.1. Let w € S’ and 2, =Elixl £a;; 4=
=4,000,m ], mupp. @ ¢ 0, . Then F(w)(€) is
a function which could be continuated analytically in the

complex space (4, ...,4,) , 4; =65 + 47; and for

every € > 0 there exists C(e) > 0 and g(e) 2 0
that

4-&)!1!4-...4-:%*..)[1 |
(1.DIFI(E + iz & (1+)1E)1%) c«.“" ! -

See [171,v01.2,Ch.III.,§ 2.2.

Lemma 1.2. Let (L), A =(h,,.c.,4,), A3 = 65 + 13':7-_
is an entire function of m complex variables such that for
every ¢ > 0 there exists C(e) > 0 and g(8) = 0 that

(4,1. ;))g“lt... +Ca + szl

(1.8) 14(p)1 £ C(eYU+1el1®) e

Then there exists w e S’ with supp. @ c.ﬂ.& ’ g=(a1,...,ah)
such that #(») is analytic continuation of F(w)(€) in the
space of complex variables (4 ..., 4, )= 5, 4;=6; + 1"':"- .

See [17],v01.2,Ch.IIT,§ 4.

2. The net function
Definition 2.1. The set L& R, ,L = Elis = (he,,..., & ),
h,}- integer] will be said to be a nornal net. Let A be a

linear mapring R, on R, by a matrix A , Then the set
L,= AL will be said to be a A -net.

- 791 -



Theorem 2.1. Let a function g e S’ with compact sup-
port be given. Further let ¢ (4e,,..., £, ) be a function de-
fined on the normal net L, , and let there exist 0 £ v <

and ¢ > 0 with le (&Hecn:_«_,u". Defining
(2.1) f -&%Lc(_&g)q,(g-.&&)cs 3

the sum is convergent in the usual sense of the theory of

generalized functions and the Fourier transform F(f) is

LA, Y
(2.2) F(#)-P(gr)si;.l_c (&)e

with F(g) as a multiplier. The sum in (2.2) is conver-
gent in the sense of the theory of generalized functions.

Proof. 1. Because g @ S’ has by assumption a compact
support, the series (2.1) converges obviously in the sense
of generalized functions.

2. Because g has compact support F(g,) is a multi-
plicator (see [17], vol.2,Ch.3, § 3,p.4 and p.7). The series
in (2.2) obviously converges as a generalized function.

Let ¢ € S 4 then
(F(g)(x) §c<g.n““*'*", wix) =

= (az&ccgne_““‘""’, FlgI(x w(x)) =

= e e TG vk =

= E ¢ (8)(FigI(x), et ABE> Ly

Now put 4>=.F'1 () . We have
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-1, =%
F-Yce ‘<Ah,‘)1’(£)) -

-m ~4<§, x> -i<A >
= (W™ ¢ e E oy (0 dx = P (Er AN .

So we have

(Flghx) E o) e T

= (27)™ Ec(&)(q(g), Y +AL))
and so

(2.3) F(4) = F(g) iccg)e“‘b"” .

. _The spaces
e cas o«
Definition 3.1. The space W,_ (Ry), « 20 will be
the space of all functions £ € S’ that

(3.1) IFCI* 1+ 1x12®) 6 L (R,,)

and

m 2 2 2
(3.2) 2oyl fhyecy = HIFCOTAsIg10n

The spaces W:CR,,) are the fractional Sobolev spaces.

Obviously WS(R,) 2 Wf (R,) for 0¢ x € 8 and
W: (xn\) = Lz(R,,J . The norm introduced in (3.2) is e-

quivalent with the more common norm used in w:(x“)

2
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4. Some approximation theorems

Definition 4.1. The function x () will be said to
be a trigonometrical polynomial with periodicity matrix
BaAT"2a v

tion z(x) as a finite sum

if it is possible to write the func-

y(x) = i a (i) v A,
o= (g, M) .

Theorem 4.1. Let us have w,(x) € 8’ A= 4,2, ..,
e R ,with compact support. Further let a regular matrix A

be given. Let there exist trigonometric polynomials zx, ,

pom Ay e , K with periodicity matrix B = (AT~ 72
such that
5 )

(4.1) Alx) "5§1 .1? (g(_)%a'_(ﬂ
with
has the following properties

1)
(4.2) - ACO) £ 0

2)
(4.3) IA(X =2 (AT) 181 £ Z (U1, ¢t 2 0

for all x  such that

. (4.4) IxU & LAY .an™

1) AT  means A transposed.
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and 4y = (k,,, ve., Aoy ), fe“: integers
3)

(4.5) 2K I =D, 7 20.

Then there exists an operator A (f) which maps Wf(R“)
into W,_'-‘(.K,n) , D g £ £ 3 , such that

1)

r
= x-hA%k
(4.6) AR () = 2 % ¢j(h, ¢, e (B202
2)
(4.7) I£-Alh)ell £ Kn“i4
W (R ) “w,{’cx,,)

where
(4.8) w=min(t-a, 8-a) and

X does not depend on % .
3) There exists a constant I, such that if & is the
compact support of £ e W:(R,,,) then A(h)4 has com-
PR * :
pact support @* such that @* c th where QL" is the
I/ neighborhood of & .

Proof. 1) 1. Let
1

" 031
%, (x) = Re fah®-1 for lx it £ 1
=0 for lixl = 1

and R is chosen in such a way that
(4.9) S e (x)dx = 1.
Rﬂl

-

1) In all that follows C will be a general constant, with
different values on different places.
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Flacing ¢,(x) = F(s,) we have ¢ (x) € 3

and because of (4.9) we have ¢, 0) = 4 . Now let
P(x) be a trigonometrical polynomial with the periodi-

city matrix Q2ar (AT)"1 such that we have
(4.10) 1pix)-11 £ Clhxnt for Uxl & 1
with

Obviously we have ¢ (x)e S8 . Let us put

e(x)=F1¢p .
Because ve, (x) has compact support, e (x) has a com-

pact support, too.
Now let f e wzf’cx“) and let G be the support of £,

Let us denote

(4.12) f,=FUFs.0xn) .

Then fh also has compact support which is in K4 neigh-

borhood of @ , where K is a proper constant indepen~

dent of H .

Let us show now that

[
(4.13) Ho = Flyecn ) € CH 1€ hyn,y

where w is given by (4.8). In fact we have

2 - 2 2 2e
(4.14) u%-u%‘mﬁ).czm {:F’(ﬂl M-plx mI Ao lx1*) dy |

We may write

(4.15) LIP($)2 11 - U+Ix ¥ dye S n+ [ ...
Ry lhtés Bxshl>4
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Because of (4.10) we have also
1dx)-41& ClixH® for every 0 € A £ t
and Ixl £ 1.

Therefore putting A = “« 5 Wwe have

.16 . & C 2o P22 e hx 1) &
(4.16 ‘ailﬂ C SIFE) P 1 Pen?“1+ Ix 1*%)dx
20042
& CR*™LIFOE A+ Ig P% %) g x € c»-."“nuf”z,‘w

because 2 + 20 £ 23 .
So we have
(4.17) e & CH20e0? .
7 lg{;nn CH wpicr,)

Because ¢ (x) - 1 is bounded we have

" 2 (18 bkt

.18 e €C IF£12 4+ Ux 11%%) dx £
(4.18) lgl{nu m{au % 1 82¢ ¥
& Cminen?
WA (r,)

2. Let us now select a trigonometric polynomial 2, (x)

(with matrix of periodicity 2am (ATY™? ) such that
(4.19) VA(SIB (x) =11 & CAxN®

for all x, Nx M & LAY 'Nam™ .

Let us now put

(4.20) R f (2~ F AT M 2m) - B Cx M)

where §o, = Ff- dCxh) = Fe .
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Because ¢ € $§ the series is obviously convergent in
"
1'.2 (.{ZA ) where
a
(4.21) n:‘:-E[g,ATgs(.x_,,.,.,x“), Ix;1 &€ 32

and ¢, = is periodic with matrix of periodicity
1 ATy
A 2 .

Let us write
(4.22)  § = B(xhIL§t, B o fa (x- 5 (AT de 270

=B (xMI[E + E* T .

Let us now show that
x 2 2 20 2
(4.23) é}i_lfh(_ag)l 1+1x1™)dx £ Ch "“Wz"tk,,,)

In fact we have

(4.24) 0/, 163, ()1 (1+llx 12%) o x1"¢ c»:"c{:_ 1§81 dx 1™
A

“C2 L, -'{': 1y, (x - % (AT) "4 20 2a Y200 <
Lo P ‘*ff." Fe) (s~ 5 (AT 80 20011 (51 ~ AT T 291 a0 ) ™2
= c»:’;i“ngr”ré'lcrmﬁ- % (AT "3 20172 ¢
“ Ch";i“I&l'“(.“.[nklcr'f)(ﬁ)lzd.g)"’ P2
RN 1™ 6" 141

wlcr, )

Because ¢ € S, for every f£ > 0 we have for x e .ﬂ.':
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16 (x40 - (AT) "R 20701 £ Cop IR, 8 4 0

and so we have chosen 42 such that the series i Y wd
- 2,%k40 =

=

is convergent.

3. Obviously the funétions ?h’,. =% (xh) f (x)
3 = 1, Zyeoiy 2 are periodic functions with matrix of pe-

riodicity (2a) (AT’ 71- . So we may write

(4.25) Sy = I O camyethAE?

Let @ Dbe support of £ . Obviously there exists a con-
stant X such that §  =E(x, ¢(x,Q) & Xh] is
a support of the function F-'(f, (x)xy (x#)P, (xh)) .

Therefore

(4.26) £ Y g, iy (A E (s dyg = 0

e
for all x outside of @, . So in (4.25), C;'(&)- 0 for
all % such that Ak are outside of &, .

Let us define

X~-hAk

- &
(4.27) F(x) = ™ zc:*c_&)a,- (=)

=1
Using Theorem 2.1 we may easily show that
(4.28) (Fg)(x)=§, (OA(x M) = BXMIACRIE (X )+ B (xhIAGHIFH).

Let us estimate 4, -g¢ 'w: ) > e have

2 1 2
(4.29) 14,-qlpeiy ) € CL o 11-F amAGIIIE G0l el 1 Vdxc+
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* L% P xOAGRIIEE 12+ Ix F)dx +
A

+ 2 L5 O IAR -2 AT A,l’(hl,m— T AT R dx

Beo

toLan B! 2+ lx1*)dx I =CCL+L+1 +1, 1 .
Because of (4.9) we have

(4.30) LAY B (x)~1] & Clxu™

and therefore

(4.31) I 4 c»-.”‘nf Ix 2“C1+1x 1*) Pfildx & C o f‘uuw,.m -
A m

Because of (4.3) and the boundedness of E (xh) A(xh)
(independently on £ ) we have

(4.32) 1, ch“‘wlw,,(w .

Further
I, = Is,a + Is,a where
I, 1.203,,1? P (xm) (26, PIA(x M =27 (AT 12 .
*
el + 2T (AT 30 1% ) ax

= 2 2 -
L, g‘.‘a o B (BRI B GO IA et = 20m (ATY i 12
clelx s 2L AT 1) dx .

Because of (4.3) we have

. I’Aﬂé Chwgz f ‘Eb(i)lz 2(‘“)“&"2“#2‘ 4‘(4+n“+ (AT)-1& lz‘)dﬂ
*0
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£ Cm'z B )N L (FEPIx1PIdx
A

Because of 2« + 20 £ 23 and (4.5) we have

2

p3 2 g g
CH I wn/;(?”)

Ig’ 1
We have analogously

L, % enif rgr e’y 12 d
A

By the same way as in (4.2 3)we may show that
X (x) |2 hx 1Pdx & [y .
;{:-'EA»Q‘-” Ix i*Pax = Cll ¢ WA R,,)

So we have

2 2
(4.33) I, £ CAM U4 Nace

Further we have

2 2 2 e, ATIANT &
I“g CRLIATFPGI U+Ix01")dx & %_J"\?IFH +Axll )-_——7—44-!;“ A ax
< 20t 2
C 'wnwfckﬂ)
and therefore
2 2
(4.34) L&CA™ Ifhyneq y -

So we have
_ “
e, g-lw:“n) £ Ch u“wz"t'k,»)
Because of (4.13) we have

“
19 -9 lyscn,y © 0 1¥hypcq

q.e.d.
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Let there be given the functions c, € $’, 4 =1,..., x

with compact support. Let us introduce

(4.36) Pl, o, B,ay,.., )
= e ehve )% Y& DCRIN l’*”iz zc‘*(&)w( b”'w"
w’(s(g”,‘4 3 £ 2 £ ) .7 “m)

A<¢o axbile .

The value P describes the approximation property of @y

with respect to the spaces W: (Rm’) and wf (R, -
Theorem 4.1 says that mssuming (4.2) - (4.5) we have
P, &, B, a,..., @) £ Kh“ .

Let us now study further questions.
Theorem 4.2. Let there be given the functions w,e€ S',

hAml..,n with compact support, and A be a nonsingu-

lar matrix. Then there exists a constant C > 0 such that

(4.37 P, x, B,a,..,@,)2Cu™, g>a«.

’

Proof. Define

L2
. = & $)(x)- )0 x 1%
(4.38) T, (#) %ﬁ) {wlf‘ £)(x) 5?-&,‘(3)1’(«%7 mxN Ix 1 dx
with %(ﬁ)q s’ , periodic with matrix of periodicity

AT AL ana teaWE(R,), B>« .

Obviously
0«5 ec u#nw‘m”)
Now put 4 = 1 and select g € w‘”cxﬂ) such that

T,(g)=r>0, l!g.lwzp‘\“’ = 1.
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Such function clearly exists.

X
Now put fh(g_) = 9‘(7) 3 then we have

R £ Cmm-2s
hOWAR,)

On the other hand

m~2c

L, () = I (g) &

So because

P . s ¢ Bl
2Oy (3, @y, Wy 2
AN

we have
Pih,«, B, a,.,a )2 e’
and the theorem is proved.
Let us now study the case ~ = 1 .
Theorem 4.3. Let there be given a function € S’ with
compact support and let be given a nqnsingular matrix. A .

Further let there exist a C > 0 such that
(4.39) P,x,B,w) € Cau?

forall 4 2 m > 0.
Let further A(X) = FC&), AC0) % 0 . Then for
every S & L

(4.40) TACx - 20 (AT ") 1 & D) I x 1547
provided that Ixll € dl(&), d(&) > 0 ,

Proof. Letp°>0,x9°-zt,a_t_,l£nep°] and

K% c _Q,:" , My = 4. Let & be the. characteristic func-

tion of K, ,, and put £ = F-'(g) .
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By (4.36) there exist coefficients ch (s
'Y 1778}
IC* (R & CCn) el , 02 gcm) <

such the for

(4.41) OR(x) = f - b3 C“(&)wci—ﬁ'—‘-"—’i)
we have
(4.42) '¢‘"‘£"w“¢u £ en?

%2 (Rm)

and C does not depend on £

By Theorem 2.1 we have

(4.43) F(™ () = ¢(x) - G™(x)IA(x4)

and G"‘(,g) € S’ is a generalized periodic function with

matrix of periodicity CAT! % . Because

sunp ¢ c _(11 we have for all 4 < 1

(4.44) ¢“(§>uw.‘“ ) {:yI¢(,g)-G"'(g)/\(gh)lzf'ld-lgc_llu)dg_

+ f lG"Qg)I’IA(&h mm*)'g)l‘mﬁy T ATy 90 12l .
QO

Because @ (x) has compact support A (X) is continuous
(see Lemma 1.1) at x = 0 , Because A(0) # 0 by the

assumption there existe H > 0 such that
(4.45) My > IA(xtN >, , 07 <Ny < @

for x € 2, ad & < K
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By (4.42) we have

1 h Iy 2y
.46 — \“a &« Ch
(4.46) x,",,' TS "™ ¢x) X

because ¢ is the characteriatic function of KP s2 and
°

also

(4.47) K’{ 1P ()2 1A (x4 - 20 AT "l 12 dx & C M2Y*2S
/2
for all S & 0 .

Define now
(4.48) Al - 20 (AT ") = AL (%) ..

By Lemma 1.1 the function Ay (x) = Ay (Xgyenny X))
is analytic entire function of m variables x ,..., X .

So we may write

&5 4 n
(4.49) A&('&’ gé-zn 144-.2,.4%.; T R P e

and the series converges absolutely in a K9o/2 . So we

may write

S .1 w b Ln
(4:50) Ay (xh) = n2o ™ ‘14,.2.4»%,'4* Ryeri By 470777 Xm

[
-ﬂgohpvﬁ (X1,.ao 2 X9 M) .

Now put

2
(4.51) rin, &) -K’.‘/'M-% (x, £)dx .
Let 0 £ ¢ (&) be an integer such that

Yip, ) =0 for all 0 & p % g (M)
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and

Ar(q (), ) £+ 0 .
From (4.47) we have

s 16% (X1 1Ay (x M) dx £ C o) W2TH2<
and hence

.52 2¢.(4s) LY 2 2
(4.52) b {/2|G (x ) qu_(ﬁ,l ax =

2
& C () M2 27, o(h‘“‘“’)KP{ G ex)? dx
/2

But by (4.46)

(4.53) Wex)m
53 GT(x) YY) +x(x, A)

with

K,'/ In(x, w1 dx € CCaINT

0’2

So A Ep g, &) & Clr) A% o 0D
and

(4.54) QiR) 2 4+ < .

The theorem 4.3 follows from (4.54) and (4.50).

5. A closer'analxsis of the one dimensional case

Now we shall study in more detail the case m = 4 and
x« = 41 . Let us prove the following theorem.

Theorem 5.1. Let @ (x) € §’ and @ (x) have com-
pact support. Further let F(a@) = A(x) fulfill

(5.1) ACO) * 0
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(5.2) AQrse + x) &£ KxIED (&)

for Ixl & d(4) ,d(R) > 0 (see also the 4.3). Then

t? t?
g+t , 78, ¢ >0 cannot be a support of w(x),

where t’m min [L; £ integral , £ =2 ¢t 1 .

Proof. By Lemma 1.1, it is possible to continue

A(x) = F(w), in the complex plane z = X +<i4 and

(5.3) IA () & (1 +1xI%) ¢ e

The function A(2) has zero of order t' (t" = min [ £;
L integer £ 2 t] ) at the points 2w e,
o= .iy=2,-4,14,2,... , Dbecause of (5.2).

Let us introduce the function
(5.4) b, (z) = aimt (L2 .
: + - “t2
The function

"

x* A(2)

(5.5) y(z) = o (=)

is an entire function and because of (5.1) we have

v(0) & 0.

We have
(5.6) Lo, (x+ ig)h 2 1akY - gl .

So for lgl > 4 we have

V()| & (4 x %) ¢. glast72esinl

e >0 rbitrary

and also for lgl € 4
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(5.8) I¥(z)l &« 4+1x1¥re .

So if a+ & % %’ then ¥ (=) is a polynomial and if
Q< -;—’ then ¥(z) = 0 which contradicts with (5.5) and
(5.1). Finally, by the use of Lemma 1.1, the theorem is pro-
ved.

From Theorem 5.1 it is obvious that the function

1
P (x) = P"(Fr b, (x)) € 5’

fulfills (5.1) and (5.3) and has minimal support.
The functions g, (x) have been studied by Schoenberg

and called B-splines. For numerical construction see [14].
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