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Commentationes Mathematics* Universitatis Carolinae 

11, 4 (1970) 

ON THE FIRST DERIVATIVE OF REAL FUNCTIONS 

D. EREISS, Praha 

(Preliminary communication) 

Z. Zahorski in [1] defined the well-known classes Mt 

- AL of sets of real numbers. (We denote R the set of 

all real numbers and (<&, Ar) ** (fy, ou) for a,, <tr e K , 

& > Ar . For E c K, we denote IE I the outer measure 

of £ .) 

The following theorems are proved in [1]. 

Theorem A: Let f be a continuous function defined on 

( a,, Jlr) . Let f possess the derivative (respectively the 

finite derivative; respectively the bounded derivative.) f9 

on Co,, <60 • Then for each oc e R the sets i x e (ou^Ar), 

f'G<) -> ec J and ix e (a, Ar), f'Cx) < oo } are ele

ments of JVL (respectively .M • respectively H^ )• 

Theorem g: Let £ e MA. . Then there exists a nonde-

creasing function f which possesawthe bounded derivati

ve on R such that E * < * « R , f'C*) > 0 } . 

Zahorsfci formulated the following problem. 

Is the analogy of theorem B valid for classes M^ and 

M% ? 

J.S. Lipinski C21 proved that the answer is negative . 

At firsts we shall solve the following problem. 
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Let S, G, Z be subsets of R * The prooiem is xo 

construct such a function f defined on. R that f posses

ses the derivative f on R , E m Kx s R , -P'Cx > .» 0 3 , 

G » «C x m R , f*Cx> & + oo } and 5 is the set of all 

X « R such that f is not continuous at x and 

t> (x) > 0 . 

Theorem 1 gives some necessary conditions on the sets 

5,G,E and Theorem 2 says that these conditions are also 

sufficient* 

Theorem 1: Let f be a function defined on (a,9 Xr) 

which possesses the derivative f* on (au^Jlr) * Let ot c R , 

E - {* e Co., ̂ ),fC*,x)> oci , G*ix e (a,A>),f9(x)** +00^. 

Let S be the set of all x e E at which f is disconti

nuous. Then the following conditions are valid: 

(i) S is a countable set, G is a Ĝ » set of mea

sure zero, E is a F^ set and S c G c £ . 

(ii) For each x € G - S and Jh- # 0 either 

K x , x + iv)nEI > 0 or (x, x + Jh,) r\ S 4» 0 • 

(iii) For each *x € £ - G and c > 0 there exists 

£, > 0 with the following property: 

For every A , 4v e R such that 0< •— < c, lJh,+ J% I < £> 

either I Cx -t- At,, x + *t, + M/) r*iE,l> 0 or (x + Jh,,x + Jh+ A)n 

oS 4= 0 * 
(iv) For every perfect set P e l - 5 there exists 

such a portion Pd of P (:Ue* F0 » i n P 4- 0 where 

I is an open interval) that there existv^m> <?,inclosed , 

£ Ap a?U^such that for each x * ̂  and c > 0 there ex

ists €> > 0 with the following property (P): 
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For each Jhf Hk e R with 0 < -r~ < c , \H + M* I < £ , 

* + *$v c % 7 X+4J> + ̂ e " P and for each open set H c R -

- C P0 u E ) such that for every open interval I c R~T9 

the set 1 n H is connected the inequality 

(i^nEnC^+^,x + ̂ + ^ ) | + ICx+^,^+^+^)-C^uH)l)>^l^! 

holds. 

The proof of the conditions (i) - (iii) is similar to 

the proof of Zahorski's theorems A,B. The proof of the con

dition (iv) is based on the fact that if f' is finite on 

P then there exists a portion 5 of P such that for 

each ^ x e P y y, <. to we can write the differen

ce «f (cc) — f(<yb) as the sum of f f and 

-S (f Cir ) - f (a* )) where (a. Hrr ) is the sequence 
-Tj* 'H* 'Tt' 11.. t 4V 

of all bounded intervals contiguous to P0 <*> < /y*7 x> > . 

Theorem 2: Let S, Gr, E be sets of real numbers 

which fulfill the conditions (i) - (iv). Then there exists 

a function $ which possesses the derivative f' on K 

such that 

•f is continuous at x e "R if and only if x € S $ 

at each x ̂  5 the funetion. f ia discontinuous i from the 

right as well as from"the left 

G - (x £ R , fC*> . + oo * , 

E * C*e K. , -TC*) > 0 i 

R - E ^ x c H , -TCx) - 0 ? , 

f s £, + v , where g. is an absolutely continuous 

nondecreasing function ami vC*)-» X a^ -+A--| flj^., ̂ ^ ^ 

C {^M} is an enumeration of all tlements of S )• 
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We omit the proof of this theorem in this paper; the 

detailed proofs of all theorems contained in this paper will 

be published later on. 

On vhe base of Theorem 2 we can easily prove the charac

terisations of the sets -£ -PCx) > oc $ . We define the 

following classes of subsets of & . 

E e M* if £ c H is a T$- set and for each per

fect set ? c R there exists a portion T0 of P such 

that a) either Pa c E or E n F » HFL . E, closed and 

b) there exist m -» 0 such that for every x € F-, 

and c > 0 there exists €* > 0 with the property (P). 

M* * M„ n M * , 

K - M3n.M* . 
Theorem 3:l»Let f be a function defined on (cu, Or ) 

which possesses the derivativf on (CL7 tir) . Then for each 

oC 0 R 

•Cx e Co,, J&-), f'Cx)> * } e M * , <x e (a,^), f Cx)< ocl €.M* 

2. Let .E € Jl* , Then there exists a nondecreasing 

function f defined on R. which possesses the derivati

ve on % such that E « 4 x € X , ^ ' C x ) > * 0 J 

3. Let E^, E 2 « M * , E^ A E^ • 0 . Then there 

exists a function -f which possesses the derivative on K 

such that 

£,,« {xcH , rCx) > 0*, E^=<5<6 .R,f'Cx) < 0$ . 

Theorem 4: l .Let f ae a continuous function defined 

on (cu7Jbr) which possesses one derivative ^ on (cL,J!r) . 

Then for each ©o e K. 
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2. Let B e M* . Then there exists a nondecreasing 

absolutely continuous function -f defined on R which 

possesses the derivative on 1? such that £ •» {* e R , 

r <*) > 0 3 . 

3. Let .En, E 2 <s .M*, £4 n £ a « j0T . Then there e-

xists an absolutely continuous function f which posses

ses the derivative on R such that 

E,,- -toe € R, fCx)> 0}, E 2« {* e R , *'£*) -* 0 K 

Theorem 5: l.Let f be a function defined on. (a,f £r) 

which possesses the dinite derivative on (a,,ir) > Then for 
each oe « K 

{* e Co,,*),<rCx) > <x}cM£, -C* eCa,>), t'Cx)**} e Id* . 

2. Let E € Ad* . Then there exists a function -f de

fined on R which possesses the finite derivative on R 

such that f is an absolutely continuous nondecreasing 

function and £ ~ { x e R , f ' C * ) > 0 : * . 

3. Let E i t E a € Ai* , E1 n E a » « . Tnen there e-

xista an absolutely continuous function f which posses

ses the finite derivative on R such that 

^•{cxcX, rcx)*>o*. Ea**<*eR,-rCx)^ 0} . 
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