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12,2 (1971) 

A SHRINKING OF A CATEGORY OF SOCIETIES IS A UNIVERSAL 

PARTLY ORDERED CLASS 

Ludek KUCERA, Praha 

Introduction and summary. Partly ordered class 

( P ; 6 ) (i.e. a clasa F together with a reflexive 

and transitive binary relation on P ) is called univer

sal if every partly ordered class can be isomorphically 

embedded into C P, £ ) » 

All partly ordered classes can be considered as 

shrinking of categories: 

If K is a category then a shrinking of K is a 

class of objects of K together with a partly ordering 

€r defined by a & Mr if and only if there is a 

morphism of a, from Mr into Ir . 

In [13 it is proved that, under an assumption of 

non-existence of measurable cardinals, the shrinkings 

of binding categories are universal. A binding catego

ry is e.g. the category of all algebras with m--ary 

operations, m & 2 , and their homomorphisms. For the 

definition of a binding category and the other examples 

see UJ. 
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The main result of this paper is 

Theorem 1. In the Godel-Bernays set theory, the 

shrinking of tne category of societies and their compa

tible mappings ([2]) is a universal partly ordered 

class, 

(A society is a couple ( X . P) where X is 

a set and P is a family of non-empty subsets of X * 

A compatible mapping from ( X , P ) into ( Y, R) is a 

mapping f s X —• Y such that f ( U) e R for 

every U e P •) 

The proof of the theorem 1 is based upon the theo

rem 1 of [1J which says that the shrinking of the ca

tegory ITVC (aee below) is universal: 

Objects of Ine are indexed families of sets 

(A^,i< 1) , A| , I sets, 

morphisms of Smc from (A. , •£ c 1) into 

( B» ,.£. e J > are all mappings f i 1 —> J such that 

Al D Bfci) for every I c I , 

a composition of morphisms is a composition of 

mappings• 

The theorem 1 is an easy consequence of 

Theorem 2» There is a full embedding from I*ve 

into the category of societies. 

(A full embedding ia a one-to-one functor F : X — • 

-—y 1, which maps K onto a full subcategory of L ,) 

The proof of the theorem 2 is divided into three 

steps: 

1) A full embedding of the category of all sets and 
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identities into the category of societies (§ 2)* 

2) A full embedding of the dual of the category of all 

sets and inclusions into the category of societies (§ 3)* 

3) A full embedding of the category hui into the ca

tegory of societies (§ 4). 

In the paragraph 1 we shall prove some lemmas. As 

a consequence of the theorem 1, we shall construct a 

simple universal concrete category (see 131) from bina

ry relations and societies in the paragraph 5. 

§ --• Definition* A category £oe (a%) , iru natural, 

is defined as follows: 

Objects of Soc Cm,) are m, + \ -tuples ( Jf,̂ ,.#., T^), 

where X is a set and .?,... , 7^ are families of non

empty subsets of X 7 

morphisms of S<rc Cm,) from (JC,^,..., f^) into 

CYJ,Hi1..#t,Tl ) are all mappings f : JC —• Y such that 

f (U). e H^ for every 4- » 4,-««-9 /rv and U e P^ , 

a composition of morphisms is a composition of map

pings. 

S0e(4) (the category of societies) will be deno

ted by Soe , 

Lemma 1.Given a natural m ,there exists a full em

bedding Sec (m>) — • Boa • 

Proof. It is proved in £21 that there is a connec

ted rigid 2-society CZi&) li.>e* if x , ^ are points 

of Z then there is a sequence Kg,***, && of ele

ments of & such that x € VLQ , y c U^ and H^ n 

A tt^ 4c 0 for i 9 4t...9 M j only compatible 
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mapping of (Z,£) into itaelf ia the identity; ele-

menta of £ are two-point aeta) auch that Z ha a at 

leaat 3 m, pointa. We can auppoae without lose of gene

rality that Z « i 4,2,3, ..,,/m,} , where mv & 3m . 

A full embedding F i Soc(m) — > Sac is defined 

aa follows: 

F((X^,„,,^)) m (X*Z,A0uA^u... u A^) , 

where LI m A 0 if and only if there ia x e X and 

V e - 3 auch that li -» < # J x V , 

LL e A» if and only if there ia V e P. auch 

that lt« V x <3i-2, 31-1, $1 I for 
*£ *s 4,,,,, /n, , 

FCf) *> f * idw . 

It ia evident that F ia a one-to-one functor from 

Soc Cm,) into Soc , We shall prove that F mapa Sot Cm,) 

onto a full aubcategory of Son : 

Let M « CX,F^ f,,,, F^ ) and Jf- Cy,^,,,,, Jl^ ) 

be objecta of ScnCirv) and 4 be a compatible mapping 

from FCM) m (X x Z , A0u ... u A^) into FCN) « 

-w c y x Z , 3^ u ... u J^ ) . 

Elements of A 0 have two points, elements of 

BL, ••*, JL, have at leaat three pointa* Therefore f 

mapa elements of AQ onto element* of 3 0 . 

If i e 2 tnen 4,*£ are connected by a chain of 

elemanta of S , Therefore if x e X then C«x9A), Cx,4/) 

are connected by a chain of elements of AQ , which im

plies that tCCx,4 )) , f C C x , ^ ) ^ are connected by 

a chain of elements of 30 

According to a definition of 30 , the firet coor-
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dinatea of both f CC X, 1 )) and f C C x, I)) are 

the aame. Hence there are mappinga <%, * X —• Y and 

4v̂  : Z —* Z , x * X aueh that *CCx,4» *r (Q,CX) , 

li^ CO) for every # a X , 4 «r 4, ,.,f /m *• 

Let x be an element of X , Than Jĥ : £ —* £ is a 

compatible mapping from CZ,S) into itself, because 

if U c & than 

€*$x U e A 0 , * « * ! * l i ) « ^ U ) U Jfc^Cli)* 30 , 

which implies 4vM CU) € 5 . 

Aa CZ,£) ia a rigid aociety, all Jh>x are the 

identities, whieh implies that f m q, * 4a£ . 

If 4 ia a natural number leas than m and lie?. 

then It x < 34 ~ 2, 34 - 4, 343 e A ^ , Therefora 

ICItx C34-.2, 34-*, 341)«frCU)x 434-2,34-*,34f e B^ , 

whieh iapliea ^Clt) a £^ . 

Hence a mapping ^ ia a compatible mapping from JM 

into H and f m TCq,) . 

Thus, we have proved that F ia a full embedding* 

The next lemma enablea us to simplify the proofs of 

the theorems 2,4* 

Lemma 2* There exists a full embedding of 5*c 

into it8elf such that for every different objects M, H 

of fioc the underlying, aata of F CM ) and TiH) 

are diajoint and do not contain 0 aa an element* 

Proof* A full embedding 2 t 60c — * &o& la 

defined aa follower 

If timLXrT) ia a aoclaty than. 

EiJl) m LX ** IM1 , V ) , where U « F f if and 

only if there la Ye P aueh that U - V x < M f > 
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if f is a compatible mapping from M into H than 

FCf) CC*,M> - CfCx>,N) , 

The details are left to the reader. 

5 2. Theorem 3. There ia a full embedding of the 

category of all eete and identities into Sac • 

Proof. It follows from the axiom of choice and the 

lemma 1 that it is sufficient to construct a full embed

ding F from the category of all ordinals greater than 

4 and identities on them into Soc C3) . 

A set of ordinals less than m, will he denoted by 

*<m • 

A fu l l embedding F i s defined by 
FC*,) • Ct^^Cm,), { L ^ f , <L% * *, * m, 1 ) , 

where lCm,) i s a family of a l l two-point sets of car

dinals l e s s than /it , FCid^) » <***•?(„,,) ' • 

It i s evident that F i s s one-to-one functor. 

Let mt,/rv be ordinals and f be a compatible map

ping from F Cm,) into F Cm, > . 

f i s a one-to-one mapping> because i f & *q,< tm, 

then {_t t ,q , t« 20m,), iCi^,0)m ICmJ) , which im

pl ies f C^t) 4- f C$,> . 

f maps L ^ onto L^ , since Lm* tlmt , which 

implies f C L ^ ) € < L ^ l f f C L ^ ) . L^ . 

f i s monotone* because i f 4* -< % *e m, and 

f(g,^af fCf*.) then there i s n,<*m, such that L*, -» 

• +t ;t^> (see L^ m <%t *** «V m% 1 ) . Therefore 

fCfc) • fCL ) and there ia -6 < £ such that f Cg,)-

-B f C/>) , which i s a contradiction. 
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Aa f is a monotone-1-1 mapping of the well-ordered 

aet L ^ onto the well-ordered aat L ^ , it ia tm, m m, 

and f ia the identity* 

Thus, we have proved that F ia a full embedding* 

§ 3* Theorem 4. There exists a full embedding of 

the dual of the category of all aeta and incluaiona in

to Son , 

Proof* Let F be a full embedding of the catego

ry of aeta and identitiea into So-e (Theorem 3). 

Denote T CX ) by CSX , KK ) . According to the 

lemma 2, we can suppose that 0 4- Bx, Sx n Sy = 0 

for every different aeta X , Y , 

It ia sufficient to construct a full embedding <J 

from the dual of the category of acta and incluaiona in

to BOG O ) t 

GCA) - C<0iuUA6x, 

U011, H0i u S„, *»A3 u «.0H , 

G (A a B)(4t) - iî  if there ia x « 3 such that 

\ 
44 * 5^ , 

0 if .a- a -f* for no x € £ . 

• • ? ( A 3 l ) iaa compatible napping from 

F ( A ) into P C 3 ) , because i(0) ~0, f maps 6M , 

x 6 A either identically onto ^ ox onto 0 and 

aaps the underlying aet of O K A ) onto the underlying 

•et of <* ( 3) . 
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Thus, 0 ia a one-to-one functor* 

Let A t 3 be aata and f be a compatible napping 

from G C A ) into 6(3) -

It ia obvioua that 4(0) m 0 . It x, m A then 

<0i u3z*H0iuSX9xmAiu i<0ii . 

Hence either 4C<0iu 3%) m <0iu S^ f mr m 3 or 

4 C<0i u S^) m <0$ . In the f irat caae, a reatric-

tion of f to &x i a a compatible mapping from 

C 5 f t t KA > into C &w f X # > and from the properties 

of P i t follows that % m mr 9 the restriction of f 

to <$g ia the identity* 

If 4i,m£Z9xmA~3 then JU, ia not an e le

ment of an underlying set of G C3) . Therefore i t 

muat be T CAJU) ** 0 . 

It ia obvioua that f ia onto i0iu L/ £„ . Hen-

ce i f .u. « 4^ , x m 3 then there ia nr e <0*U£*A &* 

auch that f Oir) « 44- . It ia obvioua that JU, m nr . Hence 

i t i s l C u J * ~ u , , z m A . 

We have proved that A o 3 and^» <»(A a 3 ) . 

§ 4. Proof of the theorem 2« Lat <? be a fu l l em-

bedding of the dual of the category of aeta and inclu-

eiona into 3oc (Theorem 4)* 

Denote C(A)m CTAHTA) .f G U s J ) - ^ • 

According to the lemma 2, we can auppoae that TA n T§ » 

at 0 for every different aata A93 « 

I t ia eufficient to conatruct a fu l l embedding H 

from Luc into Soc C21 % 
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HCf)C.a,) m q,A (u,) for u, m TA, . 

We can aee that H i t a one-to-one functor. 

Let C Ai , £ e I ) « Ad and H - C 3^ , i e 3 ) be objecta 

of j/n-e and 9.* be a compatible mapping from K CM) 

into HCH) . 

It ia TA * C X s X c TA 9<i> e I | , which impliea 

fCTA ) e l X i X c t . i ^ J I . Therefore thepe ia 

a mapping f: I —* J auch that Cf. maps 1̂  into 

T for Jkt c I . 
B4ca>) 

Evidently» a restriction of a, to 1\ ia a com-
)• patible mapping from C TA , E ) into CT. .p.. 

c%) 

Thepefope A. D 1>M,*S and a Co,) • &A _ C*,) for 
*- fc*,) » ^/V»ft#cai) 

-a e T. , M, € I . 
le have proved that H ia a full embedding of Imc 

into 60c CD , 

§ 5. A concrete category ia a couple C X , F ) , whe

re X ia a category and F ia a faithful functor from 

X into the category of aeta and mappings. 

A concrete category (X7 F) ia called univeraal 

if fOP every concrete category ( I, f (3 ) there exists 

a full embedding H : t . -• X with, <* » Ftf . 

Define a concrete category ( U , £ ) aa follows: 

objecta of It are couple* C X, CAR , R c X * X >) , 
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where Am are eociet iee { 

aorphiame of M from (X$CA^9 R e X x X)) into 

CX, <3B9 d c YM. Y)) are a l l mappinga it X-+Y 

auch that i f X ia a binary relation on X and & « 

«* {Cf C K > , * C ^ » * (*f <p)m X f ia a relation on y 

then there ia a compatible mapping from AR into $>5 9 

a eompoaition of morphiama ia a composition of the 

correeponding mappinga, 

an underlying aet of <X, <A%f Kc X M X )) ia X , 

an underlying mapping of a morphiam f ia f i t s e l f . 

Aa a corollary of the theorem 1 we have the next 

theorem: 

Theorem 5. The concrete category CUfE) ia uni-

veraal. 

The proof of the theorem 5 can be obtained from the 

proof of the Theorem of [31 i f we replace binary algeb

ra a by aocietiea and homomorphiama by compatible map

pinga. Inatead of Theorem 1 of [1] we muat uae Theorem 

1 of the preeent paper. 
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