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Commentationes Mathematicae Universitatis Carolinae 

12,3 (1971) 

CONSTRUCTION OF QUASIGROUPS HAVING A LARGE NUMBER OF 

ORTHOGONAL MATES 

Charles C. LINDNER, Auburn 

*• Introduction. The object of this paper i3 to gi~ 

ve a construction which produces a quasigroup having a 

large number of orthogonal mates, any two of which dif

fer by more than a permutation. By a pair of quasigroups 

differing by more than a permutation we mean that neither 

of the associated latin squares can be obtained from the 

other by a renaming of the symbols on which they are ba

sed. In particular we prove the following theorem. 

Theorem. If there are /o mutually orthogonal quasi-

groups of order nr9t mutually orthogonal quasigroups of 

order <£ containing t mutually orthogonal subquasigroups 

of order jfi. , and A, mutually orthogonal quasigroups of or

der <£ - <ft> , then there is a quasigroup of order ar(%-jv) + fi> 

having at least C* - 2) Ci - /f)4rC/t-yf)',r " ̂  orthogonal ma

tes any two of which differ by more than a permutation. 

If /fz, m 0 we obtain a quasigroup of order 4r*£ having at 
2 

least (A> - 2) (i - 4)"r orthogonal mates. 

The proof ©f this theorem is based on a generaliza

tion of A. Sade's singular direct product. In particu-
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lar , a combination of the generalized singular direct 

products defined by the author in £11 and [23. 

2» Definitions. Let CVf 0 ) be an idempotent qua-

sigroup and ft a se t . For each or in V* l e t or (nr) be 

a binary operation on ft so that (&,a(nr)) i s a qua-

sigroup. Further suppose that P £, ft i s such that a l l 

of the operations agree on P and such that (T7 ar(nr)) 

i s a subquasigroup of (0>}<r(/ir)) . For each (or, mr) nr 4* atr 

in V l e t <B (ar9atr) be a binary operation on P'=: ft\p 

so that (f9, <g* (or, atr )) i s a quasigroup. We remark here 

that the IVI2- IVI operations ®(ar,a*r) are not ne

cessarily related to each other; the IVI operations 

a (nr) are not necessarily related to each other; and 

f inal ly that none of the I V I* - IVI operations 

<&(nr, n*r) are necessarily related to any of the IVI 

operations or (nr) . We now define a generalized singu-

lay direct product denoted by 1^ x ft (<r (or) , 

P, P* 0 (nr, /ur))t to be the quasigroup © defined 

on the set P U C P U V ) as follows: 

(1) ^^^%^^A^(^)^^^cr<mr)^%^ ^,^€.X\ 

(2) p9(*>\*r)m (jfV(r(ar)^W) if i^e ?, tf e ? ' , are V $ 

(3) (p!,nr)®4X*(1%'cr(*r)<p>,'*r) if f * e P , ^ F ' , <re Y j 

(4) (^vnr)e(^nr) * ^ c r W ^ if ^<r(^1^\ e P 

m (^<r(nr)^v^r) if l£<r(nr)Pi « T' ', 

(5) (^ir)*(ti%^)*(^%W%mr)Q!x, #<*.**) i f 

nr $ <ur . 
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tVe remark that if we take <r(ar) » <r(atr) for all ar,mr 

in V* we have the generalized singular direct product 

defined in [1], whereas if we take <8>(nr, OAT) m <3(ar',air') 

for all (ar9mr), (<tr'fair*) we have the generalized singu

lar direct product defined in 12]. If we take both of 

these restrictions we have A. Sade's singular direct pro

duct [3). Finally if we take p =• 0 and <r(nr) «• <r(mr) & 

~ ® (<v9 air) for all ar9 air in V we have the ordinary 

direct product. 

If in the generalized singular direct product 

V@ x (k(<r(nr)9?9 P* ® (ar9mr)) all of the operations 

<r(ar) =* <r we will replace <r(nr) by <r . Similarly 

if all ®(arfatr) » ® . we will replace <2Kir, <ur) by 

0 . 

3. Proof of the theorem. Let (V,©^ ) , (V,02), ... 

...^(7,0-^.) be ̂ -'f mutually orthogonal idempotent 

quasigroups, and (<il,c* ), (<SJ,ô  >, ..., (Q,<^ ) t mu

tually orthogonal quasigroups containing t subs.uasi-

groups (̂ ,ô  ), (?9<rz), ..., (T, <rt) so that o^ =-

=*<^«,.,., • <^ on P . Let P'*r a \ P andCP', * , ) , 

( P*, ® z >,,..,( P', ® ^ ) be >t mutually orthogonal 

quasigroups. Let M » 1^ x fl(o^ , P, ?' <8)^ ) be the 

singular direct product formed frem (V, 0^ ) , (ft,<^) 

and < P*, <9̂  ) . M of course has order or (q,~ /tv) + 41 . 

Now let At denote the set of all generalized singular 

direct products of the form V&. x Q(<r(nr)f P, P'® (ar9mr)) 

where 0^ €<®z,%,"*, %^^ * t <r (<v) e i^, <r3,..., <rt 1 
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and 0 (nr9 my) e i ®±, 0% -•••, <&& ? - Clearly^ 

contains (*~2Kf--'f>'r(*,-'J ) " * " " distinct qua-

sigroups. The proof will be complete if we can show that 

(i) each member of Ji< is orthogonal to M . and (ii) 

no member of M can be obtained from any other member 

of M by a permutation. 

(i) Let A e M * Without loss in generality we 

can take A • V0% x (cr (or) , V, V* 0 (nrf<ur>) . 

Now if <y(ar) is the same operation for all <v in V 

and &(*rfmr) is the same operation for all AT 4> <ur 

in V" we have the ordinary singular direct product which 

A. Sade has shown is orthogonal to H f 13J• Suppose we 

take A* - Vm± * fl (<yz , ?, P' <&% ) . New for each 

<\r in V the copy of (Q,f <y ) in J\l and the copy of 

( 0, <rz ) in A' are both based on P U ( F x inr } ) . Sin

ce (Q>7 <r ) and (Q>, oi) are orthogonal so are their co

pies in M and A* . Hence, if we superimpose the latin 

squares associated with their copies in id and A' we 

obtain < P U ( Pf x <nri)} x i? U ( ?> x inr $ ) } . Now if 

for any nr in V we replace ( Q,, <rx> by (Q>9 <r (nr» , 

& (or) e i cr%f <y^9 ..., cr^. \ f in the construction of A' 

the copy of (0>f<y(w)) is still based on P U i P ' x W J ) . 

Since (0>f<y) and (Q f<y(ar)) BLTB orthogonal, superimpo

sing the latin squares associated with their copies still 

gives i? U C£9 x iar})l x <C P U < P> x W 5 M . 

Since all copies of the ( ft f or (or)) agree on P we can 

replace oi by <y (nr) in the construction of A 1 with 

the result that the singular direct product 
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A" s VQ x fli((r («r),?, ?' <&% ) is still orthogonal 

to M . 

Now let ir+ ntr e V . The latin squares associated 

with ( ?*, <& ) in M is based on ?9 x inr 0^ <ur ? and 

the latin square associated with C ?9
7 ®2 ) in A" is ba

sed on ?f K i nr 0Z <ur } . Since C ?9, <SL ) and 

C ?9
} <&1) are orthogonal if we superimpose their asso

ciated latin squares in M and AM we obtain 

i ?f K K nr 01 air } x i?9 x K nr ®- ntr } } • As above if in 

the construction of A " we replace C P % ® 2 ) by 

(?9, <& (nr7mr )) , 0 (nr,ntr) e < <&2, ®^ , . . . , 0 ^ 3 , 

the latin square associated with ( ?9
9@ (nr,atr)) is still 

based on ?' x < nr ®2 ntr J . Since ( ?', ® (nr, ntr )) is 

orthogonal to CPJ
; <8) ) if we superimpose their associa

ted latin squares in M and A" we still obtain 

iP* x 4/ircŜ /ttrH x i ?9 x { nr ®2 mr!? .It follows that 

we can replace <$, by 0 Cir, tir ) in the construction 

of A" and the resulting quasigroups A « "V£>3 x Q (c C#v) , 

P, P* ® (rtr, ntr)) are still orthogonal to M 

(ii) Now let M^ » VJ>. xa(o-Gtr), P, P'<$ Cir, *r)) 

and Mi«14,. x fl(cr(/v),P, P' <g> (/ir, /nr)) belong to JL . 

One of two things is true: either cr (nr) is the same 

in the construction of both M ^ and M J for each w 

in V" or the centrary. If <r(nr) is the same for all nr 

e V" , since each of (V, ©^ ) and (V, 0*) is idempo-

tent the latin squares associated with the CO^crCtr)) , 

nr e V , in M* and M • are identical and in the same 

relative position. Hence, any permutation, other than the 
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identity, applied to one of .M^, M^ cannot give the 

other. On the other hand if <y(nr) is different for so

me /ire f , then the subquasigroup of M± baaed on 

P U (f x < ay 1 ) is orthogonal to the subquasigroup 

of Mj, baaed on P U (P' * i or 1 ) . Again it fol

lows that no permutation will transform one of M^ 9 JVt • 

into the other. 

This completes the proof of the theorem. 

4- Examples, (i) Since 17 = 4(5-1) * 1 and the

re are 3 mutually orthogonal quasigroups of order 4 and 

4 mutually orthogonal quasigroups of order 5 containing 

4 mutually orthogonal quasigroups of order 1, there is 

a quasigroups of order 17 having at least 331, 776 ortho

gonal mates, any two differing by more than a permutation, 

(ii) Since 22 = 7(4-1) + 1 , similar remarks produce a 

quasigroup of order 22 having at least 512 orthogonal ma

tes, no one of which can be obtained from the other by a 

permutation. 
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