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Commentationea Mathematicae Univer8itatia Carolinae 

12,4 (1971) 

ON CERTAIN SUM IN NUMBER THEORY 

Bfetialav NOViK, Praha 

Let n, be a natural number and let cc,, oĉ ,.,,, oi„ 

be given real numbera, JM-, .ML , , . . , , JH^ poaitive inte-

gera. For a real t denote by <t > the di8tance of t 

from the neareat integer, i.e. < t > -=* rmbru \ t - 4v I 

anjl, for a poaitive integer Jk> , let 

In the papers C2J - £7J there it is shown that 0 -es

timates in the theory of lattice points in ellip8oids with 

weight can, in an important special case, be reduced to 0 -

estimates of the function 

(1) TU > - V U; ^ ш ^ Л « ^ c a , - ) 

( (p and p> are non-negative real numbera, X is a real 

number s£ 0 j for B » 0 we put mwtv (Af -±r) ~ A ). 

In C31 , for example, it is proved that for ac^ * oc* ** 

m ... m OĈ  m OC, pmOr/Sat-£-4p M, & 6 i t holds 

for every & > 0 

AMS, Primary 10H25 Ref. 2. 1.945, 1.947 
Secondary 10K20 
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where y is the least upper bound of all the numbers 

rf satisfying the inequality 

<oc Jk,> & to"*' 

for infinitely many natural M, . 

The aim of the present paper is the study of the 

function (1). namely the investigation of their 0 - and 

il -estimates, especially in dependence on the character 

of the system oc , cc-,,.,,, oe^ . (Although the direct ap

plications in the theory of lattice points have the 0 -

estimates of the function (1), it is evidently worth whi

le also to study its H -estimates and other asymptotic 

properties.) Special cases of particular theorems or 

proofs (for q> » 0 ) can be found in the papers £2J - £ 5J i 

where they are not, of course, stated explicitely. 

In the sequel, let the letter c denote (in gene

ral, different) positive constants depending only on cc* 

and MJ , 5.*- 4,2,.*., /6 , <p and /$ . We write shortly 

A « £ instead of IA I tk cB 5 if, in addition, it 

is £ <:< A , we write A X B . The symbols 0, <r and 

il have their usual meaning and refer to the limiting 

process x —> + 00 $ the constants involved in their 

definitions are of the "type c w with one exception: 

0 -relations (as well as cr and It relations) in

volving a positive parameter e can have constants still 

depending on this £• . Mv and- rrv denote always positi

ve integers, AJL, and nr non-negative integers. Let the 

number x be big enough> i.e. x ->• c . Instead of the 

function (1) we write more exactly R - Coi • -%£ * MJ ) 
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or F Cx> oc^, oo2,,,#, oo^) etc. 

For completeness sake, let us bring the following 

two simple statements. 

Theorem 1. It is always 

jC* « F(x) « x for p < /3 - 4 , 

x^ « F(x) << x JLg,x for p ** ft - 4 , 

x®*~ « F(x)<< x**& for JD ;> /3 - 4 . 

Proof. It is E << 4, Jk, & fx , therefore 

FCx) * 2^ A f » JC*^ 

But clearly, it is also 

hi?* 9 

whence the assertion follows easily. 

The upper estimates generally cannot be improved, as 

it is shown by the next theorem. 

Theorem 2. Let the numbers ot,. ac^,,,,, o c be ra-

tional and let H be the least common denominator of the 

numbers oc^M^, "C^-M^, *",» ^ - M ^ • 3&ea it is 

J*!% <*> 4 j»vf 
F ^ > - p ? Sf^JFr -r-OCx*) for p < / 3 ~ l , 

v^-i * <g±f 
F(x>* Jiffy* + 0 ( " x > for p - / , - - ! , 

PC*)- K x ^ + O f x ^ + O t * * * . . for 9 > ( l - 4 

with a suitable positive constant X •» c . 

Proof. If A s ̂  (mod H ) , then 
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\ " \ C^«4f2f...,H),PH« 0,7^^0 t&~4f2,...,H~4). 

Thua it is sufficient (for £ » 4, 2,.,.,H ) to consider 

the sums 

For 3- ** H we get 

MI* * 7T 

which can, for <p -« /3 - 4 or £> =- /3 ~ 4 or <p ;>- /$- 4 ? 

be brought to 

<*l.of 

0Г 

0Г 

x H r C% ң--ł-c + OC-^-)) 

j»-/3 + 4 ' 

respectively. But for $• - A} -,..., H-4 we get 

.§T »-»?*-- *"'- o t T,fi..&ie * " 4*f»S? **-»»< C * . , B ; 

Jta^CmertH) *>mj.(mactH> Jk. m j.(mwd.H) 

which, for fi 2* <p + 4 , ahall be trivially estimated by 

whereas for fi -e jo 4- <f we ahall use the obvious exprea-

8 i o n 8 pfM ft* 
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From the relatione brought above the assertion of the theo

rem immediately follows. 

But if we diacard the cases covered by this theorem, 

then for p -c ft - 4 the upper eatimate of Theorem 1 

can be improved, but, in general, only to & (x z ) . 

Theorem 3* Let ô < ft - \ and let $ Cx ) ** 

ss §(x * pc^ \ frj.*****00*, ) be a positive function of 

fc 4* _4 variahlea in. the domain oc > 0 , I ec^, oc^,..., cc^e 

M.7/C.m< ' 

waya hold 

M W ** < 0 , — )x<Q,Tr.)x...*<Q9 4r•> auch that i t a l -

0 £ ..$ tXj-oCg.) « F £ x > oc^) 

Then the next i s true: 

1) If at least one of the numbers. oc t , ac%fm0^7 eCK 

i s irrational, then i t ia ' 
0/± 

$(*; oc^, €C%,..., oo^) .m 0>(X ) , 

2) Let the function § (xyoc^jOC^,..^, ac^) f or e-

very x > 0 be ccuatinuaua in 931 .Let there exist a 

set % c TtL denae in. W anil aiich, that fox each .At -

tuple C oc^, oc£, , • , , oc^ 3 * #£_ i t . i s 

Xtmv /te^fv ^(xioc^yOC^,,^, oc^)x" > 0 . 

Then for every positive non-increasing function <p6<)> 

jtgZ^fCx) •«• -0 there ejdjtdta ŝ̂  aett .HLe # 1 of tae 

f i r s t category ia . # 1 such, that for each A, ftapla 

- «Cv,f oc2, „ , , , ac^ 3 e Ot - .ttt-p i t i a 

f"f*i a t , , *^ . . . , * * > - <r(*\ $(*y^9*„...9oc^*SX(*%(x')) 
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In particular, it can be put $(x) *• FCx) . 

Rroof. For the proof of the firat part of thia theo

rem note that P^ 4» 0 for all Jk> , and* for each oc.> c, 

determine a natural number y (x) so that 

The function y Cx) ia non-decreaaing, & W f foe) » -+ <» 

therefore 

P C * ) * 51 " i J - ^ ^ Z A T * - crCocM> . 

To prove the aecond part of the asaertion, we ahall 

U8e the method of categories, the usefulness of which in 

the number theory haa been brought to attention by V. Jar-

nik (cf. ita analogoua application in £2], pp.447-449). 

From the firat part of the theorem it followa that if 

are rational. Let 1t^ be the'set of all C oc^, acXf... 

*"fac^^m m witn <*-.-/, * l f»"; <*>(, rational. 

For each av let 771^ be the set of all those 

^$<\i$i.t"0f fitp^ m i#& ffi t for nhicb there exists 

X m * (*n>9fifffiiL9„,fflM)>jn, such that 
ML 

*<*$ fyf ftX9...y fij > * ?.(*>./a . 

For a fixed * f the function #(*$^f,eC,-t»''*»
cc>fc^ (aa 

a function of variablea oc^f ec^,,,., oc^ ) is continuous 

in Vt , hence the aets W i ^ ' are open. If we chooae 

Cec^f &zf...f °ĉ  1 m $t f then, by assumption, it is 
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for arMtiury lar§e ^.So,for a given m. , there surely ex

i s t s x > m- such that 

$tx>,<x^<K,± oc^) e 

x^yCoO 9>Cx) 

Thus i t i s ft c SPt^ for a l l m, . The sets #£ 
•71- # tftr 

are open and dense in WL f and therefore the sets 

Vt - Wl^ (and clearly also the sets W/t — Wt ) are 

nowhere dense in [9t ; 7t ' is of the first category in 

Wt . Since VI is a complete space» for 

(the set X& is therefore of the first category in 

Wl ), we have: 

a) for each m, there exists x > m . such that 

i.e. 

b) *<*> ft,, (^-^/V- <rCx**) 
(since Cfy, /S1,.*., /J^)e St-ft,, ). 

Since the function F(x> oĉ ôc ##., oc^) is obvious* 

ly continuous in 9?t for each fixed x , it follows 

from the theorem 2 that in the second part of the theorem 

there can be put $ (oO m P(«x) • 

Remark 1. Since 

we can write for 0 6 t 4 /mt*.. Cj>, /3) 
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Hence for a> *k /S it can be put t = $> and thus it 

suffices to find the estimates for the case g> -» 0 only. 

The generally valid estimate F(x)» x » (see 

Theorem 1), cannot, in general, be much improved even 

in the case p -c (h - 4 . Namely, it holds 

Theorem 4. Let 4 < /S-p ^ K - 4 . Then for almost 

all the Systems C oĉ , <aca,*##, oĉ  1 (in the sense of the 

Lebesgue measure in E ^ ) it is 

FCx) « jc**"^** , 

where t? m 3rt - 4 for /3-p < Atv-'f, tr » 3/& -J- 2 for 

(b - q> m n - 4 . 

Proof. From the assumptions, the inequality H, & 2 

follows and since for almost all I oĉ , o&A t,.-, oc^ 3 it 

is ]R 4» 0 for every to , it is sufficient, by Remark 

1, to prove for almost all Coc f̂ ota.,.-.., oc^3 the estima

te 

It*!? J*, 

This estimate is stated, for /i**/t — 4 + f>$ in C4J> 

p.619; using the inequality fi - p < ft — 4 in the final 

part of the proof, we shall also obtain the above sharpen 

ning for these (pairs) /3 and ft . 

In the following two theorems , we shall bring an 

improvement of both 0 - and JQ. -estimates for certain 

special systems [*1t *zx ,.*•*, **K. •* * 

Theorem 5. .Let j5</3-4, fl* >* 0 and let the 

inequality 
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be fulfilled for infinitely many M, * Then 
&W+P 

FCx) m £l(x i%r4<f> ) . 

Proof. Let M,^ f it #-, be an increasing sequence 

of positive integers such that IL « Jfê  , m, — 4,2.,... . 
, . . acr*'') . * j — 
Let o ^ m Ms^ y i.e. it^*- vx^ , and therefore 

q . e . d . 

Theorem б . Let p ^ ß- Ą f <y *» 0 and l e t the 

inequa l i ty 

ғн » AГГ 

hold for all it . Then 

TCx) m 0C***l$*% ) . 

Proof. Let oc - — < — . Clearly, it is 

ru>« * jJ* v & n ? < ^ - ! ^ A - ^ 
q.e.d. 

Remark 2. It can be easily seen that the simplifi

cation of the remark 1 gives no better results in Theo

rem 6* 

Remark 3. Let p *z (h — A and let f m 

* gr iToc^, <£2,-.., ° ^ ̂  De "the I®*8* upper bound of all 

the numbers <v, tr >- 0 f for which the inequality 

.5, -c-c A"* 
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has infinitely many solutions. From the preceding two 

theorems it follows that for every e -> 0 the estima

tes 

FCrt-OCx1**** ), Fr*)« Jl(*"*^~s) 

hold (for f m + oo we define the value of both frac

tions to be &/z ) f i-e. it holds 

fir+P ^ w x^Pfa) + *r+f+* m 
2(<r+D *-+-*.«> ig,* zcr+D 

So for f m + oo we get the final result 

Aim, M4JUfU — * - m — 
**+ + co t<}>* * 

Remark 4. Let us list some properties of continuous 

fractions to be used in the sequel without mentioning. Let 

co be an irrational number and 

oc - Co,0; Q^, txx,... ) 

its (regular) continued fraction expansion. If / { ^ 

denotes the m, -convergent of oc , then £ » G, a m 0 , 

m,* 4,2.,.., ,In this notation, it holds (cf. e.g.ClJ), pp. 

240-242, C3], pp.380-382): 

a) If AI> & nr «£ 0 , then i t i s 

b) Let ^ ^ - ^ 2 ^ - h / i r < o ^ ^ , ^ - < ? ^ .Then 

(2) <<**.> X ^ ~ — ( * . - AL^ *c t^ ) ; 

(3) < « , * > x ^ ^ < * - * « U + « « ~ i < W -
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If none of the above cases has place, then there exists a 

natural number £ (3. & /& -* oacn tnat 

(4) <oc*.>x |^ C*-^£*+^«^^+°/^-*>-

The number 3. can be chosen so that it depends only on 

if 9 tn> and oc (but is independent on M, ), and, con

versely, to each positive integer £ ( £ 6 ^"/l )• w« 

can find for every JUU & ^m.** a* moB* *wo values *v so 

that (4) holds. 

Remark 5. Let Tfc4, T--» C .Using Theorem 1, we can 

easily see that 

From this we easily obtain 

FCx) & FCTx) « FCx) . 

Let oc ~ ec^ •»•<•. «• oc^ » oc . If mv is a positive 

integer, then </moc> .i. /m, <oc> , therefore Ftf Cx> « 

« FCtf ) , where I£ (x) denotes the function TCx) 

for m,- M a - ... - JJ* - ̂  '. Let T - ^ f t f ? . , ^ * 

Then (using the preceding remark) 

and, on the whole, we get in this case 

F C * ) x F,Cx) . 

The following and the main theorem of the whole pre

sent paper improve the 0 -estimate of Theorem 6. 

Theorem 7. Let g> «c ft- A , ot̂  ~ o^ m ... m oc^ - oc , 

¥ > 0 ,' and let for all natural Jk> be 
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(5) <<x>Jh> » MTr 

Then 

ßf+9, 

F C л ) « : x a c ** v * for p < / 3 - 2 , 

FCx) « * ^ ł л ^ " l # > x for ÿ > s / 3 - 2 , 

FCx) « x " ^ * + әc ^ foг P > / 3 - 2 . 
Proof* Prom the assumption i t follows that qf & A 

and the number oc i s irrational. By Remark 5> we can as

sume Jd » .M^»... •» .M^«» 1 • By Remark 1, we could accomp

l ish the proof of the theorem only for <p =* 0 f but we 

would practically reach neither a simplification nor any 

better results this way* From (5) and (2) (for JK « g ^ ) 

i t follows 

(6) %<*+< <<: «1 • 
Determine positive integers R and K ao that 

, ' i r - , St**** 

(7) *N * A < s t ^ , %n^ 4 * < *R . 

Then by (6) i t i s 

(8) ô R <-< x <: Ux 

Let 

1 ^ - * , *m*v C — , ^ ~ > ) • 

Hence i t i s 
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anđ 

<% _ <p-Л 

(9) !«. ś x Л P ' > 

(10) 
Ь* 

**• Ú <ccЛ->л 

Clearly, the estimate (9) suits the case < ot 4 0 _fe 

A. 

t4 -̂ *-
 f
 and, the estimate (10) will be used in the re

maining cases* 

For R .6 m. A H let 

5 ^ - 5 . 1 * , , 
where we are summing up over a l l to/jk)/5i, 5<n, -* ^ < $.114.4 -
Let the members with Jk, of the form (2) or (3) be com
prised into -S * s l l others into 3^ . In fiL i t i s 
F /it 7 /H,

 w /rtf 

to/ S -u-g^ ' hence 

(11) 
% M #»-0 

.51 « .ЗE -7 ľте ^ ^ * íl 

To each JJt in S^ a positive integer & & ^"V* 

can be assigned (see Remark 4) so that (4) holds* If 

£>m y~ . f we shal l uaa. (9) f otherwise (10)* Since 

It-c Ut-t- 4)^U, , «* **t> by Remark 4 

«-~ £'%.V'4''J*>4^<*>**'," 

*-5^*"sC-*^--^8J:*f#>* , ,>« 

- 681 -



where the summation runs over all positive integers AJL , 

44, * 1 »"»»1
 # H e a c e i t i 8 

Я ҐЃІ. 

(***\j'^X *°* 9* ft-z , 

( 1 2 ) ^ / ^ 4 - ^ ^ *>r *-.*-l , 

U^««<^"'
,
*
a
(2^,\/o< ) for

 ?
>.^-2 . 

By (11) and (7) we have 

(13) i ^ « - i-A-a- << */VR-'»« x ^ ^ . 
«.R * A-R a £ " * * 

By (12) and (8) i t i s 

(14) i£^J*Zj++^J%*-fi+*^J%&» 

for Jt> -S /S - 2. , 

a 5 )^ 5 -< < :« «£*-» £r ^ « ^«-*%« 
for p m f&~Z f and, finally, 

d6) i & * < * . « * i , ^ n w ^ > < < * * • « * * » ^ 

for jp >• /3 - .2 * 

Since by (3),(10),(7) and (8) it ia 

(17) ^^fttfftt^*** 5 , 

it remains to estimate 
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Z .L 

In this sum, we can use the relation (4) (for m, «-» X. ). 

1ST <Lm 
p o r - S - -4 -sja- w e ahall use (9) , otherwise (10). So we 

have (with obvious summation domains) 

S. L « ^ 2 * ^ + Z ^ C ^ ) ^ -

In the first sum there is M* > -%— , in the second 

i-VS 
fc-< — ,therefore, with the aid of (8) we have 

2 ^ A f ĵ .z-̂ +eJ:#,<-̂ >-Jr « 

The relations (13) - (17) together with the estimate just 

proved give the assertion. 

Theorem 5 and 7 enable us, together with Theorem 1, 

to summarize the result on one theorem only. 

Theorem 8. Let p < ft - 4, «,.-» oc^»... •» et^ » «o , and 

let y be the last upper bound of all the numbers tr , 

is -> 0 f f or which the inequality 

< * At > <-c Jit," 

has infinitely many solutions. Then 

683 -



ßV+Ф Ą 
tor<f> 

Mm, AyuMs — — s=-
*-•+<» *o.iX p + 4 A 

— z — for ar & 

(for r̂ » 4- oo the fraction equals to ^2 )• 

Proof is easily obtained from Theorems 1,5 and 7 and 
from Remark 5. 

Remark 6. In the papers C2J and [33 , actually the 
function 

P C * ) - ^^Jlq,2Jknn<m,*(~t,4- > 

is used. The results stated in the theorems 1 - 8 for the 

function F ( x ) can be transferred accordingly also to 

the function T^ Cx) . Essentially, only the member 

Ley x will occur everywhere (with the exception of the 

0 -estimate for fi > A , and, in the same case, of the 

main member in the theorem 2). The theorem 7 can be trans

ferred most conveniently with the aid of the estimate 

Jo^ IJk, <«< Jtô  x . 

Remark 7. The application of the results of this pa

per in the theory of lattice points in ellipsoids with 

weight will be presented in the papers -6J and L71 • 
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