Commentationes Mathematicae Universitatis Caroline

Štefan Schwabik
On Fredholm-Stieltjes integral equations (Preliminary communication)

Commentationes Mathematicae Universitatis Carolinae, Vol. 12 (1971), No. 4, 845--849

Persistent URL: http: //dml.cz/dmlcz/105388

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
12,4 \text { (1971) }
$$

ON FREDHOLM - STIELTJES INTEGRAL EQUATIONS
(Preliminary communication)
Stefan SCHWABIK, Praha

For a real $k \times \ell-$ matrix $A=\left(a_{i j}\right), i=1, \ldots, k, j=1, \ldots, l$, we denote by A^{\prime} its transpose. Let $\| A\left|=\max _{i=1, \cdots, k_{k},} \sum_{j=1}^{n}\right| a_{i j} \mid$. Let R^{n} be the space of all $m \times 1$-matrices $x, x^{\prime}=$ $=\left(x_{1}, x_{2}, \ldots, x_{n}\right),\|x\|$ - for $x \in \mathbb{R}^{n}$ is a norm in R^{n}. By $\mathscr{L}\left(R^{n} \rightarrow R^{n}\right)$ the space of all $n \times m$-matrices is denoted, $\|A\|$ for $A \in \mathscr{L}\left(R^{n} \rightarrow R^{n}\right)$ is the corresponding operator norm.

For a given bounded closed interval $\langle a, b\rangle \subset \mathbb{B}$, $a<b r$ we denote

$$
V_{n}=\left\{x:\langle a, b\rangle \rightarrow R^{n} ; \operatorname{var}_{a}^{b} x<+\infty\right\}
$$

The (total) variation var $\frac{b}{a} x$ on $\langle a, b\rangle$ for $x:\langle a, b\rangle \longrightarrow R^{n}$ is defined, as usual, by sup $\sum_{i}\left\|x\left(t_{i}\right)-x\left(t_{i-1}\right)\right\|$, where the supremum is taken over all finite decompositions of $\langle a, b\rangle$ (similarly for $\operatorname{var}_{a}^{b} A$ if $A:\langle a, b\rangle \rightarrow \mathscr{L}\left(R^{n} \rightarrow R^{n}\right)$. V_{n} forms a Banach space with the norm $\|x\|_{V_{m}}=$ $=\|x(a)\|+\operatorname{var}_{a}^{b} x$.

[^0]Let $K(s, t):\langle a, b\rangle \times\langle a, b\rangle=y \rightarrow \mathscr{L}\left(R^{n} \rightarrow R^{n}\right)$
be given. For $y=\langle\alpha, \beta\rangle \times\langle\gamma, \sigma\rangle \subset J$ we set
$m_{K}(y)=K\left(\beta, \sigma^{\prime}\right)-K(\beta, \gamma)-K\left(\alpha, \sigma^{\prime}\right)+K(\alpha, \gamma) \in \mathscr{L}\left(R^{m} \rightarrow \mathbb{R}^{n}\right)$
and define

$$
v_{y}(K)=\operatorname{sen} \sum_{i}\left\|m_{K}\left(y_{i}\right)\right\|,
$$

where the supremum is taken over all finite systems of subintervals $y_{i} \subset y$ such that $y_{i}^{0} \cap y_{j}^{0}=\varnothing$ when $i \neq j$ (y_{i}^{0} is the interior of y_{i}). The number $v_{y}(K)$ is a kind of a twodimensional variation of the matrix function $K(s, t)$ in the interval I. This notion of the variation is considered e.g. in the book [l] of T.H. Hildebrandt (for $n=1$).

We consider the operator $K: V_{m} \longrightarrow V_{n}$ which is for $x \in V_{n}$ defined by the relation

$$
\begin{equation*}
K x=y \text {, } \tag{1}
\end{equation*}
$$

where
(2)
$y(s)=\int_{a}^{b} d_{t}[K(s, t)] x(t)=$
$=\left(\sum_{j=1}^{n} \int_{a}^{b} x_{j}(t) d_{t}\left[k_{1 j}(s, t)\right], \ldots, \sum_{j=1}^{n} \int_{a}^{b} x_{j}(t) d_{t}\left[k_{m j}(s, t)\right]\right)$.
All integrals used in this communication are the Perron-Stieltjes integrals. The following theorem holds:

Theorem 1. If $K(s, t): \mathcal{I} \rightarrow \mathscr{L}\left(R^{n} \rightarrow R^{n}\right)$ satisfies
(3)

$$
v_{y}(K)<+\infty
$$

and

$$
\begin{equation*}
\operatorname{var}_{a}^{b} K(a, \cdot)<+\infty, \tag{4}
\end{equation*}
$$

then $K: V_{n} \longrightarrow V_{n}$ from (1) is a completely continuous
operator.
Remark. In (4) $\operatorname{var}_{a}^{f} K(a, \cdot)$ means the variation of $K(s, t)$ in the second variable for fixed $t=a$. Since we have

$$
\operatorname{var}_{a}^{b} K(b, \cdot) \leqslant v_{y}(K)+\operatorname{war}_{a}^{b} K(a, \cdot)
$$

for any $s \in\langle a, b\rangle$, the integral $\int_{a}^{b} d_{t}[K(b, t)] x(t)$ exists for all $s \in\langle a, b\rangle$ and any $x \in V_{m}$. Further it is

$$
\|K \times\|_{v_{m}} \leqslant\left(v_{g}(K)+\operatorname{war}_{a}^{b} X(a, \cdot)\right)\|\times\|_{v_{m}}
$$

Theorem 1 yields immediately a Fredholm type theorem for the Fredholm-Stieltjes integral equation (F.-S.i.e.) (5) $\quad x(s)-\int_{a}^{b} d_{t}[K(s, t)] x(t)=\tilde{x}(s), \tilde{x} \in V_{n}$ in the terms of the adjoint operator $X^{*}: V_{m}^{\prime} \longrightarrow V_{m}^{\prime}$, Unfortunately, we have no satisfactory description of the dual V_{m}^{\prime} to V_{n} which would make it possible to derive the analytic form of X^{*}. Nevertheless a Fredholm type theorem for Eq. (5) can be proved, where the usual adjoint equation is substituted by an other one whose analytic form is known. This is based on the following

Proposition. Let X, Y.be normed apaces with duals $X^{\prime}, Y^{\prime} \quad$ reapectively, and let $K: X \rightarrow X, L: Y \rightarrow Y$ be the completely continuous operators. Let $\langle x, y\rangle$ be a bilinear form on $X \times Y$ which separates the points of X and Y such that for $x \in X, y \in Y$ the inequality

$$
|\langle x, y\rangle| \leqslant c \cdot\|x\|_{x}\left\|_{y}\right\|_{y} \quad(c=\text { const })
$$

holds and let

$$
\langle K x, y\rangle=\langle x, L y\rangle
$$

for any $x \in X, y \in Y$. Then we have
$\operatorname{dim} T^{-1}(0)=\operatorname{dim} T^{*-1}(0)=\operatorname{dim} S^{-1}(0)=\operatorname{dim} S^{*-1}(0)=n$
and

$$
T^{*-1}(0) \in[Y] \in X^{\prime}, S^{*-1}(0) \subset[X] \subset Y^{\prime}
$$

where n is a nonnegative integer, $T=I_{x}-K$, $S=I_{y}-L, T^{*}=I_{x^{\prime}}-K^{*}, S^{*}=I_{y^{\prime}}-I^{*}, K^{*}, L^{*}$ are the adjoints to K, L respectively, I_{X} is the identity operator in X (aimilarly I_{y}, I_{x}, I_{y}, , $T^{-1}(0)$ is the null-space of T and $[X]$ is the immersion of X into Y^{\prime} given by the bilinear form $\langle x, y\rangle$ (similarly for [Y]).

This proposition is used to derive the following
Theorem. Let $K(s, t): \mathcal{J} \rightarrow \mathscr{L}\left(R^{n} \rightarrow R^{n}\right), v_{y}(K)<$ $<+\infty, \operatorname{var}_{a}^{b} K(a, \cdot)<+\infty, \operatorname{var}_{a} K(\cdot, a)<+\infty$. Then either the F.-S.i.e. (5) admits a unique solution for any $\tilde{X} \in V_{n}$ or the homogeneous F.-S.i.e.

$$
\begin{equation*}
x(s)-\int_{a}^{b} d_{t}[K(s, t)] x(t)=0 \tag{6}
\end{equation*}
$$

admite π linearly independent solutions x_{1}, x_{2}, \ldots $\cdots, x_{n} \in V_{n}$.

In the first case, the equation

$$
\begin{equation*}
\varphi(t)-\int_{a}^{0} X^{\prime}(s, t) d \varphi(s)=\tilde{\varphi}(t), \tilde{\varphi} \in V_{m} \tag{7}
\end{equation*}
$$

has a solution for any $\mathscr{P} \in V_{n}$ (not necessarily unique). In the second case, Eq. (5) has a solution in V_{m} iff

$$
\int_{a}^{b} \tilde{x}^{\prime}(t) d \varphi(t)=\sum_{j=1}^{n} \int_{a}^{b} \tilde{x}_{j}(t) d \varphi_{j}(t)=0
$$

for any solution $\varphi \in V_{n}$ of the equation

$$
\varphi(t)-\int_{a}^{b^{\prime}} K^{\prime}(s, t) d \varphi(s)=0
$$

and symmetrically Eq. (7) has a solution iff

$$
\int_{a}^{b} x^{\prime}(t) d \tilde{\varphi}(t)=0
$$

for any solution $x \in V_{n}$ of Eq. (6).
Note that Eq. (7) is not the adjoint equation to (5).
The complete version of this work will appear in Casopis pro pěstovani matematiky, 1972.

References
[1] T.H. HILDEBRANDT: Introduction to the Theory of Integration. Academic Press,New York,London,1963.
[2] A.P. ROBERTSON, W. ROBERTSON: Topological Vector Spaces. Cambridge University Press,1964.

Matematický ustav CSAV
Žitná 25
Praha 1
Ceskoslovensko
(Oblatum 5.7.1971)

[^0]: AMS, Primary 45BO5
 Secondary 47B05

