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ON REPRESENTATIONS OF MONOIDS' AS MONOIDS OF POLYNOMIALS

P. KRIVKA, Praha

Introduction. The problem of representations of mo-
noids (or groups) as monoids (or groups) of structure
preserving mappings (in particular, homomorphisms of al=-
gebras) was dealt with in a number of papers(e.g. Frucht
(1], de Groot (2], Hedrlfn and Pultr [3], Sabidussd [4],
etc.). In the present paper, a different approach of re-
presenting monoids by means of algebras is studied. Gi~-
ven an algebra the family of all its mapping into it-
self given by polynomials in one variable obviously
forms a monoid under composition.

The aim of this paper is to prove: first, that eve-
ry abstract finite or ecountable group can be obtained
this way using an algebra with one binary operation (see
§ 2), further, we show that in general finite monoids
are not always representable this way (see § 3). Also,
we show that finite transformation groups are not always
representable in their concrete form (see § 2).

To the first of the mentioned results let us point
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out that the representability of groups is understood
here in the stronger of the possible senses, namely, as
a monoid of all polynomials in the given operation (not
as the group of a priori invertible ones).

§ 1. Preligiparies

An glgebralc monold is a set with a binmary operation
which is associative and has a unity element. & transfor-
pation monoid is a pair (X, M) , where X 1is a set
end M 18 a set of mappings F: X — X which
contains the identity mapping and is closed under compo-
sition. It is called a goncrete representationp of an al-
gebraic monoid M it M is isomorphic to M .

Two transformation monoids (X , M ) and (Y, N)
are said to be jigomorphie if there exists a 1-1 mapping
F: X—> Y such that the mapping #F: M —> N defi-
ned by F(£)(F(x)) = F(£(x)) 4s an algebraic
isomorphism of the monoids M and N .

A left translatiop of am algebraic monoid M is
amapping L, :M — T given by L, (x) = ax
with o € 7l fixed. With every algebraic monoid M
we can associate the transformation monoid of all its
left translations which is obviously isomorphic te M
(the mapping sending a to L, 1s an isomorphism).

It is called the Cavley representetion of M . A trans-
formation monmoid ( X, M) is said to be pegular if it
is isomorphic with Cayley representation of its algebraic
part.
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The following two statements will be often used:

Lemma 1. Cayley representation of every algebraic
monoid is regular.

Lemma 2. Transformation monoid (X ,M ) is regu-
lar if and only if there exists am x, ¢ X such that

fix,) = x ( x is then said to be an exact

0
source of the regular monoid (X, M ) ).
(To the second one - in case (X ,M ) 1s regular it

suffices toput x, = P (id ) , 4if (X,M) has
an exact source x, it suffices to define an isomorphic
mapping F: X —=> M by FP(x) = £, where fafx,) =
= X ., Such an £, 1is exactly ons.)

Let <« be a binary operation on a set X ; poly-
nomials of onme variasble im (X, ) are defined recur-
sively as follows:

a) the identity mapping is a polynomial,

b) if p,q are polynomials then the functiom

@D (f,q) defined by @ (f2,9)(x) = @ (f2(x), ¢ (x))

is a polynomial, tooe.

The system P(X, @) of all polynomials in (X, @)

is obviously closed under eomposition (do not confuse this
with the, in general non-associative, operation @ above).

Now, let us take a symbol & / #+ ¥/ . ¥ords in &
are defined recursively as follows:

a) the empty set is a word,
b) & 1s a word,

e) ir w,, w, are words, then & (w, w;) 1s a word,
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too (these def:lniti;ms are, of course, only particular
cases of well known definitions of polynomials and words
in general algebra).

The interpretations n, of words w in a binary

algebra ( X, w ) are defined recursively by:
Po = Ad s Do, ugy = B (Puy s fa) -

The degree of 8 word is defined as follows:
a) the degree of the empty word is one,
b) the degree of the word 6 is two,
e) if w, 1s a word degree i , w; 1a a word degree

3 y then 6 (w,, w;) 1s a word degree < + 4 .

The degree of a polynomial 4 is the minimal degree of
awrd w with £, = # .

A transformation momeid (X , M) (an algebraic
monoia M ,resp.) is said to be representable if the-
re is a binary operatiom @ on X with M= P(X, @)
(if there is a set X' with binary operation o’ such
that P (X’, ') 1s isomorphic to M ; the trans-
formatiom monoid (X', P (X’, @’)) 4is then a concrete
representation of M  ,resp.). An algebraic monoid is

sald to be sirongly represepntable, if every its concrete
representation is representable.

§ 2. Groups

Iheorem l. Every finite or countable regular trans-
formation group is representable.
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Proof. Let (X, G) ©be any regular transformation
group, let X be the set {4,2,..., m,... % , let 4
be the exact source. For < e X denote by g; the ele-

ment of G with g, (1) =4i (by the definition of an ex-
act source, g.. is uniquely determined by < ).

For every two x, g e X there is exactly one 4 with
Fi(x) =gy

Really, we have (g/,,_. q,;(d)(.x) = o and
Py - 9,;4 e G and hence it has to be one of the %'a

(which are distinct). If g; (x) =gz (x) = g , we

have q;;' R 9::_. ¥ - Fa and hence

¥ = Y -

Now, we can define an operation & on X putting
Wx,x) = gy (X), @ (R, (X)) = Gy (XD, .0ey @ (X, @a (X)) = oy (), o

(1 X 4s finite, card X = m , then w(xX,gp (x)) =
=g,00 = x, resp.). By this definition we see imme-

diately that every g € G is a polynomial. On the ot-
her hand, let there exist a polynomial n in (X, @)
which is not in G . Take such a 2 with the least

possible degree d . Obviously, d > 2 . Thus, we

have a=D(g;, 94_) for some <,j . There
is a & with o= ¥ - Hence, »p(x)sco(% x) ,
I (X)) = (g . g )(x) sothet p € G ina

contradiction with the assumption, q.e.d.
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Since the Cayley representation of an algebraic mo-
noid is regular, we obtain

Corollary. Every finite or countable algebraic gr-up
is representable.

Theorem 2. Let X be a finite set, caxd X > 2 .
Ir G is the symmetric group on X (i.e. the group of
all permutations), then the transformation group (X s G)

is not representable.
Proof. Suppose (X , G) 1s representable, i.e. there
exists a binary operation on X withP(X,w)=G.
Let X = £4,2,...,. 2% . We shall prove the asser-
tion A = { There exists %, e X  with this characteris~-

tic: there exist <+, 43, m, m e X such that @ (i,4)=

=w(m,m)= ko, and i m, 3 m holds.}
Suppose mon A holds and put

K= £{x € X | there exists at least i different
pairs (i, 3) € X? with @ (i,4)= x}.

Consider any & ¢ K and (4’«1,3’.1) e X% with
Wiy, 3,) = M, . Put
I = ((x,p)eX2 lo(x,g)eh, xui ,p*4¥,
= {(x,q.)exﬂ |w(¥,4‘-)- *’:“*i.y""?".'"

Either I or J is empty. (Really, let both be nom-
empty. Take (iz,j.a) «l, (4’,1',,’) € J . Then

.

G - 4'«1,3'.14-3',1-5.5,,%3* 1',4 hence 1'.24- iy, 4, "'é.‘g
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in a contradiction with mon A .) Let I be the non~
empty one. For another &' #+ # ,4’¢ X I’ 1is again
non-empty (otherwise there would be an (<, 4) in I n

~ J* and therefore w (i,4) = S = &' which is
impossible).

Since card I = fr -1 for every I (for (x,m) +

* (4 ,4,) and (x,4) ¢ IvJ we have

W (x,n) % e ~see mon A ) we have card K = nn .

If we take any stable x & X then, for any

’
y,ze X, olx,g) = @ (x,%) (since (x,q),
(x,2) belong to the same I ). If we put g (x) =
= a(x,x) ,we have the operation < deseribed by

@ (x,q) = g (x) ., But such operation forms a monoid
with one generator g (see Theorem 5, § 4) and as we
suppose g- to be a permutation, this monoid is a cyelie
group and we have a contradiction. Thus A holds. Consi-
der an f e & with f(i)m 4, £(m) = m . By our
assumption there exists a polynomial £’ = £ . If we put
§ = the identity polynomial, then for the polynomial

p=a&l(§,nr) we obtain
p) = @@, FUN = @ (£,1) = Ry, plm)= @(m,{fm))=w@mm)=k,.

Thus gn (<) = fp(m) , which means that pn is not
one-to~-one i.e. n € G in & contradiction with our as-

sumption P (X, w) = G , q.e.d.

Remark. It would be, however, represemntable in the
weaker sense mentioned above, since the monoid of all map—-

pings 1is representable - see Theorem‘ T below.
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§ 3. Momoids

Lempg 3. Let (X, M) be a transformstion monoid,
let X’ c X be such that f(X’') ¢ X’ for every
feM , Denote bty M/ X' the system of all restric-
tions of the elements of M on X’ . If (X, M) is
representable, them (X’ , M/ X’) is representable,
too.

Proof. Let @0 be an operation on X with
PX,w)= M and define an operstion @’ on X’ by
this way:

o'(x,4) = w(x,y) if w(x,y)e X’ , otherwise,
@' (x,y) may be any element of X’ .

Now, the following assertion will be proved:

If p,, 1s the interpretation of a word w in (X’, @’)

and g is the interpretation of w in (X, @) , then
fay = A4, /X’ holds ( 4, /X’ 1is the restriction of

ft OB X' ) which means n, € M/ X’ for every
wW o
Let there exist a word o such that f, + /X' .

Take such & ar with the least possible degree 4 . Ob-

viously, d > 2 . Thus we have w = 6 (w, ,, ) ,
deqg wy , deguwy < d . For the interpretations we ob-
tain p), =& (41;,1 ,.4,',2). G (g, /X'y oy /X)) = 1 /X
which is a contradiction.

On the other hand, consider any £' € M/ X' . There ex—
ists at least one f ¢ M with £'= £ /X’ . Since
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M=P(X, w) , ‘there exists at least one word w-

such that f = 4, . By the first part of our proof,
p;-pw/x’-f/X’g f" q.e.d.
Corollary. If (X, M) 1is a transformation monoid

and M/ X’ is the symmetric group on X’ for an -
X’c X, then (X, M) 1s not representable.

Lemmg 4. Let (X, M) be a representable transfor-
mation monoid, M = P(X,w) . If a polynomial p e M
is an imterpretation of a word in (X, @) , then for
the interpretation .n' of w 1im (M,d)  (see the
definition of polynomial) holds ' (£f) = p o £ .

Proof. Let there exist a word w~ sueh that
ry C£) 4, £, forsome f, « M . Take such a u

with the least possible degree d . Obviously, d > 2 .
Thus, we have w = 6 (w;,w,), deg v, , deg o, < o .
For the interpretations we obtain

’ == -—
Ly (£)) = w(qpfv_‘,p;,’)(fo) = Dy » £, oy * £, -
Thus we have for every x € X
Py (£,)(x) = B gy, * £, gy * £)(x) = @ Uy, (65 (%)),

oy (o N = By 1) (£ XD = Mg (8 () = (i o £,) ()

so that ) (f) = p, £ in a contradiction with
the assumption, q.e.d.

Theorem 3. An algebraie monoid M is representable
if and only if its Cayley representation is repreaentabie.



Proof. Let (X M) be a concrete representation of
M such that there exists an operation o on X with
P(X,w) =« § , Let (M, Ly,) be the Cayley re-

presentation of M + Consider a polynomial
p' € P(M,@T) ., There exists a word & with ' = g, .

¥ p,eM =PX,w) is the interpretation of
w in (X, @), then, by Lemma 4, 4!, (f)=p, f =

=L, (). Thus, P(N,&)c Ly .

To prove that LM c P(M,T) consider any L' € I.M
Then f e M = P(X,w) and hence there exists a word
w with p, = f , Hemce L_(g) = L, (@)= f,°¢=
= £,,(9) (again by Lemma 4) for every g e M . As 41.;’5
€ P(M,&), we have LM = P(M, &) . On the other

hand, if Cayley representation is representable, M is
representable by the definition, g.e.d.

Theorem 4. The set M = {4,2,3,....,.21 (m > %)
with the binary operation of minimum is a nonrepresentable
algebraic monoid. '

Proof. Let M be representable. By Theorem 3 the Cay-
ley representation (M , LM ) is representable, too. Let

') be an operation on M with LM = P(M,w) .

€' € P(M,®) . defined by £2(x)ma(x,x) 1s equal

to L, if we defime L (4) = min (4,4) . Really, if

§2 = Ly, i =2, them §(2) = w(2,2)mmim (§,2)= 2
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and thus we have for every n e P(M,w) that
n(2) = 2 while L1<2)=4 . Let

@(§2 §)r=L;, F(g,§) = L; (evidently L, =
=id = § ),

Now, we shall prove that any s € P(M, w) must be

one of L, , L

S Li y Ln - We can suppose that no two

of them coincide. Further, we can see that

G(L,Ly)=L;,&,,L)=1;, &(L,, L,)=1, hoid .

Moreover, for every
LeLM, L4=L1-L,L-L,,,'L, L.1L = L .
Suppose there exists a @eP(M,w) s ok L

X =4,4,4,m . Take such a sz with the least possible
degree d . Obviously, d = 3 . Thus, we have 2 =

='<3(4L4,41,1)’ deg My , deg o, < d . Let

2, = L,, , fy = Ly hold: Then we have

pX) = @p, (x),p,(x) = @ (L, (x), L (X)) = @ (L4(L,L(x)),
Lo(L;(x)) = a?(L,, Lp)(L; (x)) =L, (L; (x)) = L; (x)

for every x e M - a contradiction. Suppose n, =L;

ad p, = L1 ¢ We have again

plx) = @ (L;(x), L(x) = @ (L,, L) (L (x)=(L;-L)x).
Thus if 4 < 3 , then p(x)m (L;- L.)(x) = L; (x)

holds, if { > 4 , then n = L’-' holds - a contradiction.
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By the same procedure we obtain a comtradiction in the ce-
ses n, =1L , pn, =1L aMd p, = L;, f2 = L.
Purther, let p, = L;, p, = L; (we suppose <, j
+= 1 ):

Them £ (2) = w (L;(2),L;(2))= @ (2,2)=f%2)=1,(2)=1 ,thus

ft,= L, holds - again a comtradiction.
Ve obtain the same result in the cases n, = L; ,

"’2-1'1'.;4"1-42-!‘1: and 411= 4‘2‘1’?.'.
For f, = n, = L, we have fp(x) = w (L, (x) ,
Ly(x)) = §2(L (x)= L (L (x) =L, (x) - a comtradiction.

Further, let ny = Lm' ) My = L; . Ve have
0(2) = @(L,(2),L;(2) = w(2,2) = L (2) =1,
thus fn = L1 . We obtain the same result in the remaining

cases:

fy=L; , =L s p=L;,ny=L,; py=Lp, ny=L; .
Thus, we have proved that P(M,cw)={L,,L,, L, Ly¥+

» L M Hence, the Cayley representation of M is not

representable and, by Theorem 3, M is not representable
at all.

§ 4. Remarks

In this paragraph we give some special cases and com

ecrete supplements as illustratioms to general theorems from
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the preceding two paragraphs.

Theorem 5. An algebraic monoid with one generatc;r is
strongly representable.

Proof. Let M be an algebraic monoid with one gene-
rator and (X , M) any concrete representatiom of M .
Let g be a generator of M . Define an operation
on X by w(x,gq) = ¢(g) . In particular,

w(x,x) =6 (x) , i.e. we have §’ =g .

a) Teke an £ ¢ M . There is a % with £ = ¢™

and hence f = qﬁ"‘ =0,°8,°..." 8, where G

=§'eP(X,®). Tus M c P(X, @) .

b) Let there exist 8 f € P( X, @) which is not
in M . Take such a fr  with the least possible degree
d o Obviously, 4 > 2 ., Thus, we have gz (x) =

= @ (£,,£)x) = o (£x), £, (x)=q(f,(x) = (g£,)(x)
by the definition of @ o Thus p = ¢ - f, , i.e,
P(x,w)CM 9 q.e.da

Theorem 6. Every cyclic group 1s strongly representab-
le by means of an operation depending on both arguments.

Proof. Let (X, G) be any concrete remesentation
of a cyclic group, i.e. if ¢ 1is a generator, then
- -1 o0
G = 4.0y g™, ey 3, G 3@seers @, e b

Define an operation @ on X by: @(x, f(.x)) =

-qf'”(x) (1 G 4s finite, caxd G = m + 1 , then

m(x,q,""(.x)) = X resp.) and for x 4 € X such

’
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that there exists no ¢* & G with ¢ (=g (o,

can be any element from X » For every two x, 4 e X
o (x,q) is defined uniquely. Really, if 9_‘: (x) =
=g’ (x) = 4 , we have

@ (x, g (x)) = g(gFx)) = ggf(x)) = w(ix, 9 (x)) .

By this definition we see immediately that every f e G

is a polynomial. On the other hand, let there exist a poly~
nomial 4o which is not in G . Take such a s with the
least possible degree d . Obviously, & > 2 ., Thus, we

we have n = cT.\(f,',fz),f,‘,fzeG . There exists an

4 such that f‘g_ - 9"' . f4 and hence f (x) = a:({, (x),

£,(x0) = @ (£, (x), gH(£,(x0) = g *U(f, (x )= (g.+5,)(x) holds for
every x € X . Thus M =P(X,w) , q.e.d.

Theorem 7. Let M  be the monoid of all mappings of a
set X into itself ( X finite or countable). Then (X, M)
is representable and the binary operation can be chosen com—
mutative.

Proof. Let X = {1,2,....m,... 3 . (If card X = m,
the addition below is understood mod m .) By a well=-
known theorem monoid M can be generated by mappings
9, ¢, t , given by: 9 (X)=x+4; (1) = c(2) =14 and
c(x)= x for other x & X; t(M) =2, t+(2) = 1 and
t(x) = x for other x € X .

If caxd X = 4 , define a commutative operation @ on X

by:
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W(x,x) = g(x) =x+1,

Wik, x+ M) = o(x+1, x) = c(x),

WX, x+2)m W(x+2,x)m t(x)

and on the rest of X arbitrarily. Evidently,"
P(X,w)ec M .

On the other hand, it is easy to see that every f e
e M 1is a polynomial. For cand X = 3
tive operation w

take the commuta-
given by @ (x,x) & g(x) = x+1,

D(x, x4+ 1= w(x+1,x)= t(x), for cand X = 2
the w

take
given by @ (x,x) = g (x) = x+1, w(4,2) =

= w(2,1) = 4 (or @ (1,2) = 0 (2,1) = 2 )e

We check easily that these operations have the required pro-
perties, q.e.d.

I should like to thank most eincerely to A. Pultr for

his kind advices and valuable help during the writing of
this paper.
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