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Commentationes Mathematicae Universitatis Carolinae 

13,1 (1972) 

ON REPRESENTATIONS OF MONOIDS AS MONOIDS OF PQLYTOMIALS 

P. KfilWKA, Praha 

Introduction. The problem of representationa of mo­

noids (or groups) as monoids (or groups) of structure 

preserving mappings ( la particular, homomorphisms of a l ­

gebras) was dealt with in a number of papers(e.g. Frucht 

[ 1 ] , dst Groot [21 , Hedrlin and Pultr [31, Sabidussd [41, 

e t c . ) . In the present paper, a different approach of re­

presenting monoids by means of algebras is studied* Gi­

ven an algebra the family of a l l Its mapping into I t ­

se l f given by polynomials in one variable obviously 

forms a monoid under composition* 

The aim of this paper i s to prove: f i r s t , that eve­

ry abstract f in i te or countable group can be obtained 

this way using an algebra with one binary operation (see 

§ 2 ) , further, we show that in general f in i te monoids 

are not always representable this way (see § 3)* Also, 

we show/ that f in i te transformation groups are not always 

represent able in their concrete form (see § 2)* 

To the f irs t of the mentioned results let us point 
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out that the represent ability of groups Is understood 

here in the stronger of the possible senses, namelyf as 

a monoid of all polynomials in the given operation (not 

as the group of a priori invertible ones). 

An algebraic monoid is a set with a binary operation 

which is associative and has a unity element* A transfor­

mation monoid is a pair C X } .M ) , where X is a set 

and il is a set of mappings F : X — • X which 

contains the Identity mapping and is closed under compo­

sition. It is called a concrete representation of an al­

gebraic monoid Wl if M Is Isomorphic to HI 

Two transformation monoids ( X , M ) and (Y, Jf) 

are said to be Isomorphic if there exists a 1-1 mapping 

F i X — * Y such that the mapping T s .M —*• K defi­

ned by y ( f ) C F C x ) ) - FCfC*)) is an algebraic 

isomorphism of the monoids M and K • 

A left tranalaUQH o f a a algebraic monoid TH. is 

a mapping L ^ : Itl — * HI given by L^Coc) - a,* 

with a 6 HI fixed* With every algebraic monoid 171 

we can associate the transformation monoid of all its 

left translations which is obviously isomorphic to Wl 

(the mapping sending a to L^ Is an isomorphism)* 

It is called the Garvlev representation of % • A trans­

formation monoid ( X , JM ) Is said to be regular If it 

is isomorphic with Cayley representation of its algebraic 

part* 
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The following two statements wil l be often used: 

I-ffmifl 1- Cayley representation of every algebraic 

monoid i s regular* 

LejBffifl_2. Trans format ion monoid ( X , iM ) i s regu­

lar i f and only i f there exis ts an x0 c X such that 

f (x0) « x ( xa i s then said to be an exact 

source of the regular monoid ( X , M ) )• 

(To the second one - in ease ( X • K ) i s regular i t 

suffices to put x0 m T~* (id, ) , i f (X,M ) has 

an exact source x0 i t suffices to define an isomorphic 

•apping P f X —* M by T (x) - fx where, fC*0) * 

* X . Such an f̂  i s exactly one.) 

Let co be a binary operation on a set X » PO1*»-

flpffi-glq of PP.e variable in ( Xya>) are defined recur­

sively as follows: 

a) the identity mapping i s a polynomial, 

b) i f jfi f q^ are polynomials then the function 

3 C>f&, q,) defined by 2?Cfi,£)(«) « O (41 (x), q,(x )) 

i s a polynomial, too* 

The system P ( X , o ) of a l l polynomials la (X 9 o) 

i s obviously closed under composition (do not confuse this 

with the, in general non-associative, operation 55 above). 

Now, let us take a symbol & / *¥ -&•/ . forda in 0 

are defined recursively as follows: 

a) the empty set i s a word, 

b) 6 i s a word* 

c) i f 14̂  , <ur2 are words, then 6"6u ;̂<ur^) i s a word, 
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too (these definitions are, of course, only particular 

eases of well known definitions of polynomials and words 

in general algebra)* 

The Interpretations, &<& ** words <ur in a binary 

algebra ( X, o> ) are defined recursively by: 

fy m Id, 9 fycvr^vrj ** 5J (^ • VvrJ -

Th« degree of a word i s defined as follows: 

a) the degree of the empty word i s one, 

b) the degree of the word 6 i s two, 

c) i f nr i s a word degree + » w^ i s a word degree 

3, i then & (<w^ , nsK, ) i s a word degree I 4- ^ • 

The degree of a polynomial fr i s the minimal degree of 

a word <uf with 41^ » <p, . 

A transformation monoid ( X , M ) (an algebraic 

monoid TH ,resp.) i s said to be representable i f the­

re i s a binary operation co on X with J4 * PCX- co) 

( i f there i s a set Xf with binary operation <*>' such 

that P C X*, 00' ) i s isomorphic to Ifl \ the trans­

formation monoid CX f ,PCX' ,< i> f ) ) ia then a concrete 

representation of Wl >resp.). An algebraic monoid i s 

said to be fftrftUfflrY rtEHTtftStflfrltt ** e*ery i t s concrete 

representation i s representable* 

§ 2* GrjaiEsi 

Theorem l. Every finite or countable regular trans­

formation group la representable* 
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Proof. Let ( X , <3 ) be any regular transformation 

group, let X be the set {. A , 1 , . . , , m, , , . , J , le t A 

be the exact source. For <L e X denote by ^ the e l e ­

ment of G with fy(4) *> i (by the definition of an ex­

act source, q,^ i s uniquely determined by -£ ) . 

For every two ,x, <%• « X there is exactly one <£ with 

fy (x) m ty % 

Really, we have ( 9 ^ . 9* f)(«*) "• ty a n d 

<%> . 9^ « G and hence i t has to be one of the 9^ s 

(which are d i s t inct ) . If %\<x) » 9 * CK) •• /̂ . , we 

have 9v * 9* ' 9-* " *V' *í ' ** and henct 

Now, we can define an operation co on X putting 

&>(x,x) **<?a(x), 6>fo,9^(x)>.» 9^te), .*«9^(^9Hc^^ s9s^fM/« 

( i f X i s f i n i t e , co*-<£ X -** m, , then o> (# , 9 ^ (# )) « 

= 9*4 (*) = * , resp.) . By this definition we see imme­

diately that every ^ e Gf i s a polynomial* On the ot­

her hand, let there exist a polynomial 41, in ( X , o ) 

which i s not in G . Take sueh a jfi with the least 

possible degree oi • Obviously, di > 1 • Thus, we 

have 41 m c3 (q>£ , 9-j ) for some •£ 9 £ . There 

i s a Ik, with 9,. ** q, , q,. , Hence, 41, (#) * & <fy (x) , 

9^(9% (*)» •» ^9%-M • 9fc***J 90 t h a t ^ € & i a • 

contradiction with the assumption, q.e.d. 
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Since the Cayley representation of an algebraic mo­

noid is regular, we obtain 

Corollary. Every finite or countable algebraic gr*'Up 

is representable* 

Theorem 2. Let X be a finite set, COKOL X > 1 * 

It G is the symmetric group on X (i.e. the group of 

all permutations), then the transformation group (X , (?) 

is not representable* 

£cojjf# Suppose ( X t 6 ) is represent able, i.e. there 

exists a binary operation a) on X with P(X,o>) ~ G. 

Let X m i A 9 2,.,,, sfij .We shall prove the asser­

tion A • i There exists Jt- m X with this charaeteris-
o 

t i c : there exist - I , -j,, m>, m, e X such that coUf£)m 

m co C mu, m,) » A/p and * + ,m , ^ 4* ^t holds. } 

Suppose m&nA holds and put 

K *• <C x e X I there exists at least >p, different 

pairs C i , £ ) * X 1 with o ( i , £ ) * x } . 

Consider any i t e K and C ^ ^ . ) e X 1 with 

i -» { ( « , ^ ) i X 2 U Cx ,^) » kf Xmi<fty,+ ^ f , 

3 m ti#,fy) e X5 I o>Cx ,^) «• 4t, * 4-i , , 9 . * &,? * 

Either I or 0 i s empty. (Really, let both be non­

empty. Take U l f ^ ) i l , M , , ^ i 3 .. • » • » 
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in a contradiction with m/yrv A • ) Let I be the non­

empty one. For another V #= *, , V e K I' ia again 

non-empty (otherwise there would be an C* , £ ) in I n 

n J' and therefore o> Ci , .̂ ) » Jfe »* *C which i s 

impossible). 

Since c4wcL I m q, — A for every I (for (x,<y.) 4" 

* C^ , ^ ) and C x , ^ ) e) I u J we have 

co (x,ty) + Jk, - see m-t̂ n* A ) we have cafed- K m -ft- • 

If we take any stable x m X , then, for any 

/^, * * X , «*>Cx,^) m co(x,x>) (since ( x , ^ ) , 

( «x , & ) belong to the same I )# If we put ^ Cx) » 

ar o>CtX,x) ,we have the operation <«> described by 

a> C x , ^ ) t» (^(»x) . But such operation forma a monoid 

with one generator 9* (see Theorem 5f § 4) and as we 

suppose ô  to be a permutation, this monoid i s a cyclic 

group and we have a contradiction. Thus A holds. Consi­

der an f c G with f C4) *» <& , £ Cmt ) ** /rt . EQr our 

assumption there exists a polynomial %S m £ , If we put 

6 m the identity polynomial, then for the polynomial 

jp, « 5J C f , /fi') we obtain 

jp,(i) m. o(l9 fC-i))* <a>Ci,^)-r Ify, ^Cm.)*a>C/t?t,f C/irt))*<i>C/m.̂ <it)«l̂ . 

Thus /(i (I) m 41, Cma) , which means that 4* la not 

one-to-one i . e . 47.- e; 6 in a contradiction with our as­

sumption P C X , o ) m G , q.e.d. 

Remark. It would be, however, represent able in the 

weaker sense mentioned above, since the monoid of a l l map­

pings la representable - see Theorem 7 below* 
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§ 3* Monoida 

i-ejll V Let (X , M ) be a transformation monoid, 

let X9 c X be such that f CX') c X' for every 

f e M , Denote by JK / X ' the system of al l restr ic-

tlona of the elements of M on X* • If C X , M ) i s 

represent able, then ( X9 , M / X' ) i s represent able, 

too* 

££&££• Let o> be an operation on X with 

P ( X , o ) ) m M and define an operation <vr on X' by 

this way: 

o9(x,(^) ** <D(x,ty) i f < i ) ( x , ^ ) f i X , , otherwisa, 

<D'Co<,/^) may be any element of X* • 

Now, the following assertion wil l be proved: 

If ^ i s the interpretation of a word <ur in CX',a>*) 

and AQ,^ i s the interpretation of <ur in C X , <o) , then 

^ " ^V^*' h 0 l d 8 £ / fV /^ f i s t h e r e s t 3 P i ( - t i o a o f 

f̂ eur on Jf' ) which means 41^ c Ji / X * for every 

Let there exist a word ntr such that jp% -f 41, / X ' . 

Take sueh a tir with the least possible degree d. . Ob­

viously, d >> 2 . Thus we have *tr m & («r^ t «r^ ) , 

d e ^ <«fj , dc-9. n/̂  «< oL . For the interpretations we ob­

tain .41?̂  » S C.4î  , 4 ^ ) « S> C ^ /X' , #«£ /X>) » 4*^ / X ' 

which is a contradiction* 

On the other hand, consider any f* c W /X* . There 

iata at least one f e M with f• - f /X* . Since 
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M *• P C X , co ) , there exists at least one word mr 

such that f =- 41^ . By the f irst part of our proof, 

J ^ - 4 ^ / X f - f / X f . ff , q .e .d. 

Corollary. If C X , M ) i s a transformation monoid 

and M / X ' i s the symmetric group on X* for an 

X'c X , then CX, M ) i s not represent able. 

LftUm 4- Let ( X 7 JA ) be a represent able transfor­

mation monoid, M * P C X , 6 > ) . I f a polynomial -ft e M 

i s an interpretation of a word acr in CX, <*>) , then for 

the interpretation 41/ of i*r in C M , 2> ) ( see the 

definition of polynomial) holds 41? C£) «• ^ * f • 

Proof. Let there exist a word icr* such that 

Vnr ^ 0̂ ̂  4» <ft)ir • i0 * 0* some f0 « M . Take such a i*r 

with the least possible degree d . Obviously, d > 2 . 

Thus, we have 4tr « c C<û  , <urz ) , cU^ 1^ , dtf> «rz -c ci . 

For the Interpretations we obtain 

4*V<V-« ^ C f i ^ K ^ V . S ( ^ f - f„, 4 ^ ' f , ) -

Thus we have for every x m. X 

riv<f0K*>~ S C ^ . f 0 , ^ - f ^ X x ) * a > Q ^ Cf„Cx)) , 

^Cf^C*))) * ^ C ^ , ^ ) C f ^ o c ) ) - *>w<i0<*))- C ^ . *,>r*> 

so that 4,'^ Cf0) » y ^ • i0 in a contradiction with 

the assumption, q.e.d. 

Theorem 3« An algebraic monoid IH is representable 

if and only if its Cayley representation is representable* 
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Proof* Let (X ,M ) be a concrete representation of 

Tfl auch that there exists an operation <u on X with 

P ( X , *> ) - A . Let (M , LM ) be the Cayley re­

presentation of M • Consider a polynomial 

Q? € P(M, 5F) . There exists a word ntr with 41* & ^^ . 

1* ^ v * M m p ( X , <u ) i s the interpretation of 

/W in CX, o>) , then, by Lemma 4, ^ ^ (f ) » 41^ • f « 

~ L^ Cf) # Thua, P (M, ^ ) c Lw • 

To prove that LM c P (M , ST ) conaider any L. € Lw . 

Then f e M -=- P ( X, o> ) and hence there exists a word 

*r with 41^ m f , Hence Lf (9.) -= h^^(^) m ^ * 9. * 

« 4*^ (9*) (again by Lemma 4) for every 9, e M • A« ' f^e 

€ P (M, SS ) , we have L^ « P (M, ST ) . On the other 

hand, i f Cayley representation la represent able, HI la 

representable by the definition, q.e.d . 

Theorem 4. The aet M « I 4, 2 ,3 , „ . , m, ! (m. > 4 ) 

with the binary operation of minimum la a nonre present able 

algebraic monoid* 

£££££• Let M be represent able. By Theorem 3 the Cay­

ley representation (M § hu ) i s represent able, too* Let 

cJ be an operation on M with LM - PCM, o> ) . 

fa « P ( M, ea ) defined by fa C*> « <a> Cx, * ) la equal 

to L1 i-P we define L» ( £ ) m mum. C*,-/.) . Kaally, i f 

§* - ^ i > i ^ 2 , then ^ ( 2 ) * <y (2, 2 ) ~ /*w* « , 2) « 2 
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and thus we have for every jp, e P CM , o> ) that 

4* (2) » 2 while L1 ( 2) » 4 . Let 

«>(? , V - ^ , S7Cf , f*) ,. L^ (evidently L ^ . 

»<& ~ f )# 

How, we shall prove that any jv m PCM, CJ ) must be 

one of L1 , L^ , L J , L ^ . We can suppose that no two 

of them coincide* Further, we can see that 

3 <L, , L„) = Li , <S C ^ L , ) - L+, ST CL«, L^ ) - L, hold . 

Moreover, for every 

L e L M , L 1 » L 1 » L , L - L 4 l * L , L * L - L . 

Suppose there exists a f, e PCM,&>) , .ft + L* 

oc » 4,-»>,^, /ri . Take such a ^ with the least possible 

degree d • Obviously, cL ;> 3 . Thus, we have -#. = 

* S> C^1f 4 ^ ) . duy^ , oU^ ^ a -< d . Let 

^ • V f ' i ' L i h 0 l d : T h e n m h a V # 

>ftC.x> m &(fy(*),4i,t(x» * <i> CL1Cx), L^ C*» - a> O^CL^C*)), 

L^CL^C*))) - SJCLpL^CL^CeX))- L^CL^C*)) m Lt U) 

for every x e M - a contradiction* Suppose ^ » \,^ 

and /p,a « L : We have again 

<f*Cx>« tfCL^C*), L 1Cx» » SJCL^, L1)CL^C*»3.CL.j/L,)r*), 

Thus if i < ^ , then >p,C.x)« CL^ • L^)C-x) m hi <x) 

holds, if i > $, , then /jv - L ' holds - a contradiction* 

- 131 -



By the same procedure we obtain a contradiction in the ear 

sea ^ - L̂  , 4&4 « L^ and ^ - L^ , ^ • L̂  . 

Further, let 41̂  - L^ , ^ m L^. (we suppose * , £ 4-

4- < ) : 

Them 4*C2) m a> CL± Cl)9L±C%))** a>(lil)mfc%)^L^C%)^\ ,thua 

^ «• L^ holda - again a contradiction. 

We obtain the same reault in the casea ^ — L^ , 

1-1 - H ; ft, - 4-a - -«* a B a 1*1 • *a L fr 

For >fî  » >jia « L4 we have >ft Cy) m o> CL̂  C*) , 

L^(x)) m f*CL^C*))« L^CL^CxM-L^Cx) - a eoatradictioa. 

Further, let fy m L^ , ^ « Lx • *• -*•*• 

4iC2) m CJCL^CD^^CD) ** CJ C2f2) <* L^Cl) « 4 , 

thus #, m LH • We obtain the same reault in the remaining 

casea: 

^ m Lt , ^ » L ; f-j « L^ , ^ • Lm ; ^ » L^, V>% * L^ -

Thus, we have proved that PCM, <-*>)-* ̂ L^,L*,L^, L^J 4 

4- L*. . Hence, the Cayley representation of M la not 

representable and, by Theorem 39 M la not representable 

at all. 

§ 4* Ramarka 

In this paragraph we give some apeelal cases aad con­

crete supplementa aa illustrations to general theorems from 
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the preceding two paragraphs. 

Theorem 5. An algebraic monoid with one generator i« 

strongly represent able. 

Proof. Let Ai be an algebraic monoid with one gene­

rator and (.X ,M ) any concrete representation of M . 

Let 9. be a generator of M • Define an operation CJ 

on X by a > ( * , ^ ) * 9 - ( ^ ) . In particular, 

co Cx, x ) -» 9* (x ) , i . e . we hat* §2 » 9* • 

a) Take an f e Jd . There i s a itt with £ -= c/^ 

and hence £ =• 9 ^ s ft,, * fl2 • . . . • fl^ wher« fl^ «-

- f * <s P ( X , o> ) . Thus M c P ( X , o> ) . 

b) Let there exist a >ft e P ( X , a>) which i s not 

in M • Take such a Jp, with the least possible degree 

oL . Obviously, ct > 2 . Thus, we have >ft ( # ) -» 

« S ( f i , ^ ) ( * ) - < w ( ^ ( * ) , f a ( o c ) ) - - - » « 2 C « ) ) » r9, .£ a ) ( jc) 

by the definition of 0 . Thus jfh -» 9. • f , i . e . 

P ( X , t v ) c M , q.e.d. 

Theorem 6. Every cyclic group is strongly representab-

le by means of an operation depending on both arguments. 

Proof. Let ( X , G ) be any concrete representation 

of a cyclic group, i . e . i f 9- i s a generator, then 

to -» 1 . . . , 9, , . . , , 9 , , 9 . , 9, , . , . , 9 , , . , . 1 . 

Define an operation a> on X by- o> ( x , 9?" (x )) = 

- $?"H (*) ( i f (5 i s f i n i t e , oxvtxL 6 * m, + 4 , then 

o> ( X y ^ d x ) ) -« * , resp.) and fa* oc, ^ c X such 
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that there exists no <f e (3 with $(x)**(fr a>(x,ofr) 

can be any element from X • For every two x, n& s X 

o (x,<y,) is defined uniquely. Really, if 9/ (x) ** 

ss <£(x) m ty 9 we have 

*» CX, <£(X)) m q>(<£(x)) m ty((f(x)) m CD(x,cf(x)) . 

By this definition we see immediately that every £ c G 

is a polynomial. On the other hand, let there exist a poly­

nomial t̂ which is not in (17 . Take such a jv with the 

least possible degree d . Obviously, <£ >• 2 , Thus, we 

we have 41 « ST C f̂  , f2 ) , f' , f2 e <? . There exists an 

•i such that fA •" 9^ * £4 Qnd hence jp, (x) — o> (f^Cx) t 

fj<*» » caCf^Cx^Vf/*)))- ^ V f ^ W - C ^ . y C x ) holds for 

every x c X . Thus M » P (X, <*> ) , q.e.d. 

Theorem 7. Let M be the monoid of all mappings of a 

set X into itself ( X finite or countable). Then CX,J>!) 

is represent able and the binary operation can be chosen com­

mutative. 

£Cpja£. Let X « i 4, 1,.,., m,,... I . (If co^i X » m., 

the addition below is understood mtoci /rt .) By a well-

known theorem monoid M can be generated by mappings 

9^ c , t , given by: $.(*)& x + 4 >, c(4) ** cC2) ~» 4 and 

c. (x) « x for other x e X $ t(4) ** 2 , i(2) « 4 and 

t Cx) » x for other x « X . 

If cwccL X 25 4 , define a commutative operation £> on X 

by: 
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4> ( * , * ) *-» <&(*) * X + i , 

co CK , .x 4- 4 ) m a>(x+4,x) as e C* ) , 

a> C*, # -t- 2 ) .« a> Cx + 2 , * ) ~ t C x ) 

and on the res t of X a r b i t r a r i l y . Evidently, 

P ( X , < y ) c M . 

On the other hand, i t la easy to see that every f e 

e M la a polynomial. For uvuL X -= 3 take the commuta­

t ive operation o> given by o C x , x ) m 9-C*) » ^ + ^ , 

6> (*,.* + 4) *x a> C*-M,x) .» tC#) , for CAKCL X ** 2 take 

the fc> given by o> C*,*) » ^-C*) *• x -M, co CijH) -* 

. 6> ( 4L,4 ) •* <f ( o r o > ( > f , : 2 ) - » ^ C 2 , < f ) : 5 . 2 . ) . 

We cheek easi ly that these operations have the required pro­

pert ied, q .e .d . 

I should l ike t o thank moat sincerely to A. Pultr for 

his kind advices and valuable help during the writing of 

t h i s paper. 
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