Commentationes Mathematicae Universitatis Caroline

Pavel Křivka
 On representations of monoids as monoids of polynomials

Commentationes Mathematicae Universitatis Carolinae, Vol. 13 (1972), No. 1, 121--136

Persistent URL: http://dml.cz/dmlcz/105400

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
13,1 \text { (1972) }
$$

ON REPRESENTATIONS OF MONOIDS: AS MONOIDS OF FOLYNOMIALS

> P. KRIWKA, Praha

Introduction. The problem of representations of monoids (or groups) as monoids (or groups) of structure preserving mappings (in particular, homomorphisms of algebras) was dealt with in a number of papers (e.g. Frucht [1], de Groot [2], Hedrlin and Pultr [3], Sabidusei [4], etc.). In the present paper, a different approach of representing monoids by means of algebras is studied. Given an algebra the family of all its mapping into itself given by polynomials in one variable obviously forms a monoid under composition.

The aim of this paper is to prove: first, that every abstract finite or countable group can be obtained this way using an algebra with one binary operation (see § 2), further, we show that in general finite monoids are not always representable this way (see § 3). Also, we show that finite transformation groups are not always representable in their concrete form (see § 2).

To the first of the mentioned results let us point

AMS, Primary 08A05
Ref. Z. 2.726.3
out that the representability of groups is understood here in the stronger of the possible senses, namely, as a monoid of all polynomials in the given operation (not as the group of a priori invertible ones).

81 . Preliminarien

An algebraic monoid is a set with a binary operation which is associative and has a unity element. A trangionmation monoid is a pair (X, M), where X is a set and M is a set of mappings $F: X \rightarrow X$ which contains the identity mapping and is closed under composition. It is called a concrete representation of an algebraic monoid M if M is isomorphic to M.

Two transformation monoids (X, M) and (Y, N) are said to be isomorphic if there exiats a l-l mapping $F: X \rightarrow Y$ such that the mapping $\mathscr{T}: M \rightarrow N$ defined by $\mathcal{F}(f)(F(x))=F(f(x))$ is an algebraie isomorphism of the monoids M and N -

A left translation of an algebraic monoid m is a mapping $L_{a}: M \rightarrow M$ given by $L_{a}(x)=a x$ with a $\in \mathbb{M}$ fixed. With every algebraic monoid m we can associate the transformation monoid of all its left translations which is obviously isomorphic to M (the mapping sending a to L_{a} is an isomorphism). It is called the Cayley representetion of m. A transformation monoid (X, M) is said to be ceqular if it is isomorphic with Cayley representation of its algebraic part.

The following two statements will be often used:
Lemma 1. Cayley representation of every algebraic monoid is regular.

Lemma 2. Transformation monoid (X,M) is regular if and only if there existo an $x_{0} \in X$ auch that $f\left(x_{0}\right)=x \quad\left(x_{0}\right.$ is then said to be an exact source of the regular monoid (X, M)). (To the second one - in case (X, M) is regular it suffices to put $x_{0}=F^{-1}$ (id), if (X,M) has an exact source x_{0} it suffices to define an isomorphic mapping $F: X \rightarrow M$ by $F(x)=f_{x}$ where $f_{x}\left(x_{0}\right)=$ $=x$. Such an f_{x} is exactly one.)

Let ω be a binary operation on a set X; poly nomials of one variable in (X, ω) are defined recursively as follows:
a) the identity mapping is a polynomial,
b) if \nVdash, q are polynomials then the function
$\bar{\omega}(\nsim, q)$ defined by $\bar{\omega}(\nmid, q)(x)=\omega(\neq(x), q(x))$
is a polynomial, too.
The system $P(X, \omega)$ of all polynomials in (X, ω) is obviously closed under composition (do not confuse this with the, in general non-associative, operation $\bar{\omega}$ above).

Now, let us take a symbol $\sigma / \neq \theta /$. Vorda in σ are defined recursively as follows:
a) the empty set is a word,
b) 6 is a word,
c) if w_{1}, w_{2} are words, then $\sigma\left(w_{1}, w_{2}\right)$ is a word,
too (these definitions are, of course, only particular cases of well known definitions of polynomials and words in general algebra).

The interpretations η_{w} of words w in a binary algebra (X, ω) are defined recursively by: $p_{\theta}=i d, p_{\sigma\left(w_{1}, w_{2}\right)}=\bar{\omega}\left(\eta_{w_{1}}, \eta_{w_{2}}\right)$.

The degres of a rond is defined as follows:
a) the degree of the empty word is one,
b) the degree of the word σ is two,
c) if w_{1} is a word degree i, w_{2} is a word degree j, then $\sigma\left(w_{1}, v_{2}\right)$ is mord degree $i+j$. The degree of a polynomial p is the minimal degree of a word w with $p_{w}=12$.

A transformation monaid (X, M) (an algebraic monoid m, reap.) is said to be representable if there is a binary operation ω on X with $M=P(X, \omega)$ (if there is a set X^{\prime} with binary operation ω^{\prime} such that $P\left(X^{\prime}, \omega^{\prime}\right)$ is isomorphic to M; the transformation monoid ($X^{\prime}, P\left(X^{\prime}, \omega^{\prime}\right)$) is then concrete representation of M,reap.). An algebraic monoid is said to be atrongly representable, if every its concrete representation is representable.
82. Groupe

Theorem 1. Every Pinite or countable regular transformation group is represent able.

Proof. Let (X, G) be any regular transformation group, let X be the set $\{1,2, \ldots, n, \ldots\}$, let 1 be the exact source. For $i \in X$ denote by g_{i} the element of G with $g_{i}(1)=i$ (by the definition of an exact source, g_{i} is uniquely determined by i). For every two x, $y \in X$ there is exactly one i with $g_{i}(x)=y \quad:$

Really, we have $\left(g_{y} \cdot q_{x}^{-1}\right)(x)=y$ and $q_{y} \cdot g_{x}^{-1} \in G$ and hence it has to be one of the g_{i}^{\prime} s (which are distinct). If $g_{i}(x)=g_{j}(x)=y$, we have $g_{y}^{-1} \cdot g_{i} \cdot g_{x}=g_{y}^{-1} \cdot g_{j} \cdot g_{x}$ and hence $g_{i}=g_{j}$.

Now, we can define an operation ω on X putting $\omega(x, x)=g_{2}(x), \omega\left(x, g_{2}(x)\right)=g_{3}(x), \ldots, \omega\left(x, g_{m}(x)\right)=g_{m+1}(x), \ldots$ (if X is finite, card $X=m$, then $\omega\left(x, g_{m}(x)\right)=$ $=g_{1}(x)=x$, resp.). By this definition we see immediately that every $g \in G \quad$ is a polynomial. On the other hand, let there exist a polynomial \uparrow in (X, ω) which is not in G. Take such a \neq with the least possible degree α. Obviously, $d>2$. Thus, we have $\quad k=\bar{\omega}\left(g_{i}, g_{j}\right) \quad$ for some i, j. There is a h with $g_{j}=g_{k} \cdot g_{i}$. Hence, $p(x)=\omega\left(g_{i}(x)\right.$, $\left.g_{k}\left(g_{i}(x)\right)\right)=\left(g_{k+1} \cdot g_{i}\right)(x)$ so that $\neq \in G$ in a contradiction with the assumption, q.e.d.

Since the Cayley representation of an algebraic monoid is regular, we obtain

Corollary. Every finite or countable algebraic gr sup is representable.

Theorem 2. Let X be finite set, card $X>2$. If G is the symmetric group on X (ie. the group of all permutations), then the transformation group (X, G) is not representable.

Proof. Suppose (X, G) is representable, ice. there exists a binary operation ω on X with $P(X, \omega)=G$.

Let $X=\{1,2, \ldots, p\}$. We shall prove the assertion $A=\left\{\right.$ There exists $h_{0} \in X$ with this characterisetic: there exist $i, j, m, m \in X$ such that $\omega(i, j)=$ $=\omega(m, n)=k_{0}$ and $i \neq m, j \neq m$ holds. $\}$

Suppose mon A holds and put
$K=\{x \in X \mid$ there exists at least $\{$ different
pairs $(i, j) \in X^{2}$ with $\left.\omega(i, j)=x\right\}$.
Consider any $h \in K$ and $\left(i_{1}, j_{1}\right) \in X^{2}$ with
$\omega\left(i_{1}, j_{1}\right)=$ \& . Put

$$
\begin{aligned}
& I=\left\{(x, y) \in x^{2} \mid \omega(x, y)=k, x=i_{1}, y \neq j_{1}\right\} \\
& J=\left\{(x, y) \in X^{2} \mid \omega(x, y)=k, x+i_{1}, y=j_{1}\right\}
\end{aligned}
$$

Either I or J is empty. (Really, let both be nom empty. Take $\left(i_{2}, j_{2}\right) \in I,\left(i_{3}, j_{3}\right) \in J$. Then $i_{2}=i_{1}, j_{2}+j_{1}=j_{3}, i_{3}+i_{1}$ hence $i_{2}+i_{3}, j_{2} \neq j_{3}$
in a contradiction with man A. 2 Let I be the nonempty one. For another $k^{\prime} \neq k, k^{\prime} \in K \quad I^{\prime}$ is again non-empty (otherwise there would be an (i, j) in I n $\cap J$ and therefore $\omega(i, j)=k=k$, which is impossible).
Since card $I=p-1$ for every $I \quad($ for $(x, y) \neq$ $\neq\left(i_{1}, j_{1}\right)$ and $(x, y) \notin I \cup J$ we have $\omega(x, y) \neq$ h - see mon A) we have card $K=k$. If we take any stable $x \in K$, then, for any $y, x \in X, \omega(x, y)=\omega(x, x) \quad$ (since (x, y), (x, x) belong to the same I). If we put $g(x)=$ $=\omega(x, x)$, we have the operation ω described by $\omega(x, y)=g(x)$. But such operation forme monoid with one generator g (see Theorem 5, § 4) and as we suppose g to be a permutation, this monoid is a cyclic group and we have a contradiction. Thus A holds. Consider an $f \in G \quad$ with $f(i)=j, f(m)=m \cdot B y$ our assumption there exists a polynomial $\mathfrak{r}^{\prime \prime}= \pm$. If we put $\xi=$ the identity polynomial, then for the polynomial $\uparrow=\bar{\omega}\left(\xi, \imath^{\prime}\right)$ we obtain
$\nprec(i)=\omega(i, f(i))=\omega(i, j)=k_{0}, \nVdash(m)=\omega(m, f(m))=\omega(m, n)=k_{0}$.
Thus $\nsim(i)=\{(m)$, which means that \uparrow is not one-tomene i.e. $\nless \notin G$ in a contradiction with our assumption $P(X, \omega)=G$, q.e.d.

Remark. It would be, however, representable in the weaker sense mentioned above, since the monoid of all mappings is representable - see Theorem 7 below.

8 3. Monotide

Lemma 3. Let (X, M) be a transformation monoid, let $X^{\prime} \subset X$ be such that $f\left(X^{\prime}\right) \subset X^{\prime}$ for every $f \in M$. Denote by M / X, the system of all restrictions of the elements of M on X^{\prime}. If (X, M) is representable, then ($X^{\prime}, M / X^{\prime}$) is representable, too.

Proof. Let a be an operation on X with $P(X, \omega)=M$ and define an operation ω^{\prime} on X by this way:

$$
\omega^{\prime}(x, y)=\omega(x, y) \text { if } \omega(x, y) \in X^{\prime} \text {, otherwise, }
$$

$$
\omega^{\prime}(x, y) \text { may be any element of } x^{\prime} \text {. }
$$

Now, the following assertion will be proved:
If r_{w}^{\prime} is the interpretation of a word w in ($X^{\prime}, \omega^{\prime}$)
and R_{w} is the interpretation of w in (X, ω), then $r_{w}^{\prime}=n_{w} / X$ ' holds (\hbar_{w} / X ' is the restriction of n_{w} on X^{\prime}) which means $n_{w}^{\prime} \in M / X$, for every w •

Let there exist a word w such that $n_{\text {w }}^{\prime} \neq p_{\text {ar }} / X^{\prime}$. Take such a w with the least possible degree d. Obviously, $d>2$. Thus we have $w=\sigma\left(w_{1}, w_{2}\right)$,
deg w_{1}, deg $w_{2}<d$. For the interpretations we ob$\operatorname{tain} \eta_{w}^{\prime}=\bar{\omega}\left(n_{w_{1}}^{\prime}, k_{w_{2}^{\prime}}^{\prime}\right)=\bar{\omega}\left(n_{w_{1}} / X^{\prime}, n_{w_{2}} / X^{\prime}\right)=n_{w} / X^{\prime}$
which is a contradiction.
On the other hand, consider any f ' $\in M / X^{\prime}$. There existe at least one $f \in M \quad$ with $f^{\prime}=f / X^{\prime}$. Since
$M=P(X, \omega), \quad$ there exists at least one word w such that $f=p_{w}$. By the first part of our proof, $k_{w}^{\prime}=n_{w} / X^{\prime}=f / X^{\prime}=f^{\prime}$, q.e.d.

Corollary. If (X, M) is a transformation monoid and M / X, is the symmetric group on X^{\prime} for an $X^{\prime} \subset X$, then (X, M) is not representable.

Lemma_4. Let (X, M) be a representable transformation monoid, $M=P(X, \omega)$. If a polynomial $p \in M$ is an interpretation of a word w in (x, ω), then for the interpretation p of w in $(M, \bar{\omega})$ (see the definition of polynomial) holds $\mathfrak{R}^{\prime}(f)=\{\cdot f$.

Broof. Let there exist a word wr such that $p_{w}^{\prime}\left(f_{0}\right) \neq p_{w} \cdot f_{0}$ for some $f_{0} \in M$. Take such a w with the least possible degree d. Obviously, $d>2$. Thus, we have $w=\sigma\left(w_{1}, w_{2}\right)$, deg w_{1}, deg $w_{2}<d$. For the interpretations we obtain $p_{w}^{\prime}\left(f_{0}\right)=\overline{\bar{\omega}}\left(\imath_{w_{1}}, \eta_{w_{2}}^{\prime}\right)\left(f_{0}\right)=\bar{\omega}\left(n_{w_{1}} \cdot f_{0}, \imath_{w_{2}} \cdot f_{0}\right)$. Thus we have for every $x \in X$ $p_{w}^{\prime}\left(f_{0}\right)(x)=\bar{\omega}\left(p_{w_{1}} \cdot f_{0}, p_{w_{2}} \cdot f_{0}\right)(x)=\omega\left(p_{w_{1}}\left(f_{0}(x)\right)\right.$, $\left.p_{w_{2}}\left(f_{0}(x)\right)\right)=\omega\left(p_{w_{1}}, n_{w_{2}}\right)\left(f_{0}(x)\right)=n_{w}\left(f_{0}(x)\right)=\left(n_{w} \cdot f_{0}\right)(x)$ so that $p_{w}^{\prime}\left(f_{0}\right)=p_{w} \cdot f_{0} \quad$ in a contradiction with the assumption, q.e.d.

Theorem 3. An algebraic monoid m is representable if and only if its Cayley representation is representable.

Proof. Let (X, M) be a concrete representation of m such that there exiats an operation ω on X with $P(x, \omega)=M$. Let $\left(M, L_{M}\right)$ be the Cayley representation of M. Consider a polynomial $\eta^{\prime} \in P(M, \bar{\omega})$. There exists a word wr with $\mathfrak{R}^{\prime}=p_{u *}^{\prime}$. If rwe $M=P(X, \omega)$ is the interpretation of ωv in (X, ω), then, by Lemma 4, $r_{\omega}^{\prime}(f)=r_{w} \cdot f=$ $=L_{h_{W}}(f)$. Thus, $P(N, \bar{\omega}) \subset L_{M}$.

To prove that $L_{M} \in P(M, \bar{\omega}) \quad$ consider any $L_{f} \in L_{M}$. Then $f \in M=P(x, \omega)$ and hence there exiats a word w^{v} with $n_{w}=f$. Hence $L_{f}(g)=L_{n_{w}}(g)=n_{w} \cdot q=$ $=p_{w}^{\prime}(g)$ (again by Lemma 4) for every $g \in M$. As $p_{w}^{\prime} \in$ $\in P(M, \bar{\alpha})$, we have $I_{M}=P(M, \bar{\omega})$. On the other hand, if Cayley representation is representable, m is representable by the definition, q.e.d.

Theorem 4. The set $M=\{1,2,3, \ldots, n\}(m>4)$ with the binary operation of minimum is a nonrepresentable algebraic monoid.

Proof. Let M be representable. By Theorem 3 the Cayley representation $\left(M, L_{M}\right)$ is representable, too. Let a be an operation on M with $I_{M}=P(M, \omega)$. $\xi^{2} \in P(M, \omega)$ defined by $\xi^{2}(x)=\omega(x, x)$ is equal to L_{1} if we define $I_{i}(j)=\min (i, j)$. Really, if $\xi^{2}=L_{i}, i \geq 2$, then $\xi^{2}(2)=\omega(2,2)=\min (i, 2)=2$
and thus we have for every $\uparrow \in P(M, \omega)$ that $\uparrow(2)=2$ while $L_{1}(2)=1$. Let
$\bar{\omega}\left(\xi^{2}, \xi\right)=L_{i}, \bar{\omega}\left(\xi, \xi^{2}\right)=L_{j}$ (evidently $L_{m}=$ $=i d=\xi$).

Now, we shall prove that any $\{\in P(M, \omega)$ must be one of $L_{1}, L_{i}, L_{j}, I_{n}$. We can suppose that no two of them coincide. Further, we can see that $\bar{\omega}\left(I_{1}, L_{n}\right)=L_{i}, \bar{\omega}\left(I_{m}, L_{1}\right)=I_{j}, \bar{\omega}\left(I_{n}, I_{m}\right)=I_{1}$ hold. Moreover, for every
$L \in I_{M}, I_{1}=L_{1} \cdot L, L=I_{n} \cdot L, L \cdot L=L \cdot$
Suppose there exists a $\uparrow \in P(M, \omega), \uparrow \neq I_{x}$ $x=1, i, j, n$. Take such a \neq with the least possible degree d. Obviously, $d>3$. Thus, we have $k=$ $=\bar{\omega}\left(n_{1}, \eta_{2}\right)$, $\operatorname{deg} n_{1}, \operatorname{deg} n_{2}<d$. Let $p_{1}=L_{1}, p_{2}=L_{i}$ hold: Then we have $R(x)=\omega\left(\eta_{1}(x), \eta_{2}(x)\right)=\omega\left(L_{1}(x), L_{i}(x)\right)=\omega\left(L_{1}\left(L_{i}(x)\right)\right.$, $\left.I_{n}\left(I_{i}(x)\right)\right)=\bar{\omega}\left(I_{1}, I_{m}\right)\left(I_{i}(x)\right)=L_{i}\left(L_{i}(x)\right)=I_{i}(x)$
for every $x \in M$ - a contradiction. Suppose $n_{1}=L_{i}$
and $R_{2}=L_{1} \quad$: We have again
$\nsim(x)=\omega\left(L_{i}(x), I_{1}(x)\right)=\bar{\omega}\left(I_{n}, I_{1}\right)\left(I_{i}(x)\right)=\left(I_{i} \cdot I_{i}\right)(x)$.
Thus if $i<j$, then $p(x)=\left(I_{i} \cdot I_{j}\right)(x)=I_{i}(x)$
holds, if $i>j$, then $12=L_{j}$ holds - a contradiction.

By the same procedure we obtain a contradiction in the car see $1_{1}=L_{1}, p_{2}=L_{j}$ and $p_{1}=L_{j}, p_{2}=L_{1}$. Further, let $\Re_{1}=L_{i}, \Re_{2}=L_{j} \quad$ (we suppose $i, j \neq$ $\neq 1$):

Then $\not\left\{(2)=\omega\left(I_{i}(2), I_{j}(2)\right)=\omega(2,2)=\xi^{2}(2)=I_{1}(2)=1\right.$, thus $\Re_{1}=L_{1}$ holds - again a contradiction. We obtain the same result in the cases $\imath_{1}=L_{j}$, $p_{2}=L_{i} ; p_{1}=p_{2}=L_{i} \quad$ and $\quad p_{1}=p_{2}=L_{j}$. For $\Re_{1}=R_{2}=I_{1}$ we have $\eta(x)=\omega\left(I_{1}(x)\right.$, $\left.L_{1}(x)\right)=\xi^{2}\left(I_{1}(x)\right)=I_{1}\left(I_{1}(x)\right)=I_{1}(x)$ - a contradiction.

Further, let $n_{1}=L_{n}, n_{2}=L_{i}$. We have $p(2)=\omega\left(L_{n}(2), L_{i}(2)\right)=\omega(2,2)=L_{1}(2)=1$, thes $k=I_{1}$, We obtain the same result in the remaining cases:
$\Re_{1}=L_{i}, n_{2}=L ; 1_{1}=L_{j}, \Re_{2}=L_{m} ; \eta_{1}=L_{m}, \eta_{2}=L_{j}$. Thus, we have proved that $P(M, \omega)=\left\{I_{1}, I_{i}, I_{j}, I_{m}\right\} \neq$ * L_{M}. Hence, the Cayley representation of M is not representable and, by Theorem 3, M is not representable at all.

§4. Renarke

In this paragraph we give some special cases and conorete supplemente as illustrations to general theorems from
the preceding two paragraphs.
Theorem 2. An algebraic monoid with one generator is strongly representable.

Proof. Let M be an algebraic monoid with one generator and (X, M) any concrete representation of M. Let g be generator of M. Define an operation ω on X by $\omega(x, y)=g(y)$. In particular,
$\omega(x, x)=g(x)$, i.e. we have $\xi^{2}=g$.
a) Take an $f \in M$. There is a k with $f=g^{k}$ and hence $f=g^{k}=Q_{1} \cdot Q_{2} \cdot \ldots \cdot Q_{k}$ where $Q_{i}=$ $=\xi^{2} \epsilon P(x, \omega)$. Thus $M \subset P(x, \omega)$.
b) Let there exist a $\eta \in P(X, \omega)$ which is not in M. Take such a η with the least possible degree d. Obviously, $d>2$. Thus, we have $\nless(x)=$ $=\bar{\omega}\left(f_{1}, f_{2}\right)(x)=\omega\left(f_{1}(x), f_{2}(x)\right)=g\left(f_{2}(x)\right)=\left(g \cdot f_{2}\right)(x)$ by the definition of ω. Thus $n=g \cdot f_{2}$, i.e. $P(X, \omega) \subset M, \quad$ q.e.d.

Theorem 6. Every cyclic group is strongly representable by means of an operation depending on both arguments.

Proof. Let (X, G) be any concrete representation of a cyclic group, i.e. if g is a generator, then $G=\left\{\ldots, g^{-n}, \ldots, g^{-1}, g^{0}, q, \ldots, g^{n}, \ldots\right\}$. Define an operation ω on X by: $\omega\left(x, g^{i}(x)\right)=$ $=g^{i+1}(x)$ (if G is finite, card $G=m+1$, then $\omega\left(x, g^{m}(x)\right)=x$, resp. $)$ and for x, y $\in X$ such
that there exists no $g^{i} \in G \quad$ with $g^{i}(x)=y \quad \omega(x, y)$ can be any element from X. For every two x, y $\in X$ $\omega(x, y)$ is defined uniquely. Really, if $g^{i}(x)=$ $=g^{j}(x)=y$, we have
$\omega\left(x, g^{i}(x)\right)=g\left(g^{i}(x)\right)=g\left(g^{j}(x)\right)=\omega\left(x, g^{j}(x)\right)$.

By this definition we see immediately that every $f \in G$ is a polynomial. On the other hand, let there exist a polym nomial \nsim which is not in G. Take such a p with the least possible degree d. Obviously; $d>2$. Thus, we we have $\eta=\bar{\omega}\left(f_{1}, f_{2}\right), f_{1}, f_{2} \in G$. There exists an i such that $f_{2}=g^{i} \cdot f_{1}$ and hence $p(x)=\omega\left(f_{1}(x)\right.$, $\left.f_{2}(x)\right)=\omega\left(f_{1}(x), g^{i}\left(f_{1}(x)\right)\right)=g^{i+1}\left(f_{1}(x)\right)=\left(g \cdot f_{2}\right)(x)$ holds for every $x \in X$. Thus $M=P(X, \omega)$, q.e.d.

Theorem 7. Let M be the monoid of all mappings of a set X into itself (X finite or countable). Then (X, M) is representable and the binary operation can be chosen commutative.

Proof. Let $X=\{1,2, \ldots, n, \ldots\}$. (If card $X=m$, the addition below is understood $\bmod n$.) By a wellknown theorem monoid M can be generated by mappings g, c, t, given by: $g(x)=x+1 ; c(1)=c(2)=1$ and $c(x)=x$ for other $x \in X ; t(1)=2, t(2)=1$ and $t(x)=x$ for other $x \in X$.
If card $X \geq 4$, define a commutative operation ω on X by:
$\omega(x, x)=g(x)=x+1$,
$\omega(x, x+1)=\omega(x+1, x)=c(x)$,
$\omega(x, x+2)=\omega(x+2, x)=t(x)$
and on the rest of X arbitrarily. Evidently, $P(X, \omega) \subset M$.

On the other hand, it is easy to see that every $f \in$ $\in M$ is a polynomial. For card $X=3$ take the commutative operation ω given by $\omega(x, x)=g(x)=x+1$, $\omega(x, x+1)=\omega(x+1, x)=t(x)$, for card $x=2$ take the ω given by $\omega(x, x)=g(x)=x+1, \omega(1,2)=$ $=\omega(2,1)=1 \quad(\operatorname{or} \omega(1,2)=\omega(2,1)=2)$.

We cheak easily that these operations have the required properties, q.e.d.

I should like to thank most sincerely to A. Pultr for his kind advices and valuable help during the writing of this paper.

References:

[1] R. FRUCET: Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compos.Math.6(1938),239250.
[2] J. de GROOT: Groups represented by homeomorphisn groups I., Math. Annalen 138(1959),80-102.
[3] Z. HEDRLfN, A. PULTR: Symmetric relations (Undirected graphs) with given semigroups. Wh.für Math. 69(1965),318-322.
[4] G. SABIDUSSI: Graphe with given infinite group, wh.für Math. 64 (1960), 64-67.

Matematicko-fyzikalni fakulta
Karlova universita
Praha 8, Sokoloveḱ́ 83
Ceskoslovensko
(Oblatum 5.10.1971)

- 136 -

