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Commentationea Mathematicae Universitatis Carolinae 

13,1 (1972) 

SUBJECTIVITY AND FIXED POIHT THEOREMS 
(Preliminary communication) 

Josef DANES, Praha 

Let X be a LCS (Hausdorff locally convex space), C 

a closed convex subset of X , ccfi C the aet of a l l sub

sets of C and A a partially ordered aet such that: 

Ya, f Jr e A B max, ia,tSr} e A . A mapping (4, % 

: exjv C —* A i s said to be a mnc (measure of noneompaet-

ness) on C i f {uCGatl)** (t>CfA) for a l l ill c &cfi, C . 

Consider the following conditions on a mnc (U* on C : 

(1) M S X S C implies <u, CM) * (A, CH) , 

(2) M,N€e*>p ,C implies ^ CM U .W) • mvax -f (U, (M)}(4,C)f)}. 

(3> M e exfu C implies (*> C-M) -» (* CM)(for C symmet

r ic) ; (4) M c ee/j. C implies (* C* 0} U M ) m p, CH) 

(for C containing 0 ) ; (5) # « C and M c e c ^ C 

together imply (U> CM -f M ) •• (U,CM) (for C a cone). 

On any HLS (normed linear space) X there are two na

tural mne's %,% and oc% defined by %^hk)~ in£ 4 e >Q: 

i H ean be covered by a f in i te number of £, -bal ls J , 

oojfM)« imM K e > 0 J A has a f in i te & -covering I (here 

A » CO, *a>J ) . 

Let F ; C —-> X be a continuous napping and p, a 
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mnc on G& ( C U F ( C ) ) . We shall write F c 2)(f^)m 

m !D( p., C) i f M C C and (u, CFCM >) * *> CJ4) 

together imply that id i s relatively compact. 

Theorem 1. Let X be a LCS, 0 e C an open subset 

of X , F t C" —*• X a mapping such that F c 5b C<o-, ZT) 

where (i, i s a mnc on c F C C U F C O ) satisfying Con

ditions (1) and (4) . If F«x + t * for al l x c d C ( » 

the boundary of C ) and a l l t > -f , then F has a fixed 

point in C • 

Theorem 2. Let X be a NLS, QC a mnc defined on bounr 

ded subsets of X and satisfying Conditions (2) ,(3) and (5) . 

Let fC^iJZsj be a sequence of open, symmetric, s tr i c t ly 

starshaped ( i . e . , t 0 , 4 ) * S C^ for each # e ^ C ^ ) 

aubsets of X such that <££*t CO, 9CM) —• eo . Let 

F t X —* X be a mapping such that F c 2) C$*), |$C«x)| —• oo 

as I x l —• oo , »x c L / " „ 0 Cm . Suppose that # C ~ * ) 4 . 

* t§(x) for a l l «* c U°° ^ 3C^ and a l l t > 0 . 

(Here $ •» X - F •) ^ben I - F ia surjective. 

Corollary 1. Let X be a 3SLS and C, F, <*> aa in 

Theorem 1. Suppose that for each * c S C there la a 

function 9>x t tQf + ool —a* CO,+ «jj such that a., ^ ^ 

2* 0 implies g ^ f o + ir) >• g^ Ca) + g^ C*; . If 

$k CtF* l ) a* 9^ CI*I) + q?„ CI*~F,xl) for each * c 

e <? C , than F has a fixed point in C . 
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Corollary 2- Let J , C, F , #, be as in Theorem 1. 

Suppose that 0 s C a**3 that C is s t r i c t ly staraha-

ped. If ? (BC) S. T , t h e n F has a fixed point 

in (T . 

Corollary 3» Let X be a NLS, p, a mnc on bounded sub

sets of X satisfying Conditions (1),(4) and ( 5 ) , F ; X - * X 

a mapping such that F e i ( ^ ) , Let iC^ i£9i be a 

sequence of open subsets of X containing 0 and ' f ^ l ^ ^ 

a positive sequence tending to +• co as /n* —**• -*-a? , such 

that l?x\\ & {1*1 - **, f o r e a c h * « 3 C ^ C/n- ffe 4) . 

Then 1 - F i s surjective. 

Corollary 4. Let X be a NLS, p, a mnc as in Theorem 2, 

p , X —»» JC a mapping with F € 3) (p>) . Suppoae that 

F has an asymptotic derivative ?' (co) such that 

I - F'(co) i s an (topological) isomorphism of X . Then 

I - F i s surjective. 

Sfimaxkf. 1. Analogous results hold for mappings of the 

form T - 5 . 

2. Some results of [3] and [4] (and [1]) can (and wil l) 

be proved for mappings of this type* 

3 . For some mnc's p, 9 i f F* X —* X ( X a NLS) i s 

in a certain subclass of S>(^) and has an asymptotic de

rivative ?'(*>) , then ?'(oo) m 3 < &) . 

4. Some mnc s induce, in a natural way, the mnc's on 

factor spaces. 

5. If Jf i s a NLS and <T% (& ) « A*ufr {l^^l t 
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then i - <*x * %K * <%C1) . 0^ * cox . 

k detailed study of these problems including complete 

references and applications to nonlinear integral and diffe

rential equations wil l be given in subsequent papers* 
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