Commentationes Mathematicae Universitatis Caroline

Jozef Kačur

On existence of the weak solution for non-linear partial differential equations of elliptic type. II.

Commentationes Mathematicae Universitatis Carolinae, Vol. 13 (1972), No. 2, 211--225
Persistent URL: http://dml.cz/dmlcz/105411

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1972
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae:

$$
13,2(1972)
$$

ON EXISTENCE OF THE WEAK SOLUTION FOR NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ELLIPTIC TYPE, II.

> J. KAČUR, Bratislava

This paper is a direct continuation of my paper [1] concerning the existence of a weak solution of boundary vaIue problems for non-linear elliptic equations of the form

$$
\sum_{i \in M}(-1)^{|i|} D^{i} a_{i}\left(x, D^{j} \mu\right)=f
$$

in Orlicz-Sobolev spaces. Therefore, to follows this paper, we have to make use of [1]. The used notation is in accordance with [1] and the numbering of paragraphs, theorems and relations is being continued as well. The used fundamental notions are defined in [1]. The main aim of our paper is to prove the fact that it is sufficient to assume the algebraic condition (2.16), i.e.,

$$
\sum_{i \in M} \xi_{i} a_{i}\left(x, \xi_{j}\right) \geq c_{1} \sum_{i \in M} \xi_{i} g_{i}\left(\xi_{i}\right)-c_{2}
$$

to guarantee the coercivity (2.7), i.e.,

In the paper [1] we proved (2.7) assuming (2.16) and the rather limited assumption (1.9) which includes the following
condition:
For all $i \in M$ there exist $x_{i}>1, o_{i}>1$ with $0<M_{i}-o_{i}<1$ so that
$c_{1 i}|\mu|^{D_{i}} \leqslant \mu g_{i}(\mu) \leq c_{2 i}|\mu|^{n_{i}}$
for all $|\mu| \geq \mu_{i}>0$, where $c_{1 i}, c_{2 i}, \mu_{i}$ are the suitable constants.

In many cases, the condition (2.16) can yet be weakened. In this connection a theorem about the equivalence of norms is proved (Theorem 10), which itself is also interesting. As a consequence of these results we obtain existence theorems for the weak solution with hypotheses that can be easily velrified in concrete problems.

In the next remark we call the attention to the fact that the class M_{3} by means of which the non-linear members are described is essentially larger than the set of polynomials: $|\mu|^{n}$.

Remark. If $g(\mu) \in M_{3}$, then Assertion $1, \S 1$ guarranters the existence of $p>1, q>1$ such that (1.1), ie.,

$$
c_{1}|\mu|^{n} \leq \mu g(\mu) \leq c_{2}|\mu|^{a} \quad \text { for all }|\mu| \geq c
$$ holds, where $c_{1}, c_{2}, c \quad$ are the suitable constants. On the contrary, for all n, q with $q>p>1$, there exists $g_{n, q}(\mu) \in M_{3}$ such that (liI) holds, while the relation (1.1) does not take place for any p^{\prime}, q^{\prime} with $p<p^{\prime}<q^{\prime}<q \quad$.

We shall denote positive constants by $c \quad$ with or with-
out subscripts and the dependence of C on the parameter ε will be denoted by $c(\varepsilon)$.
§ 5.
Let $\mu_{0}(x)$ be a function in $W_{\underset{G}{k}}^{k}(\Omega)$. ($\mu_{0}(x)$ represents the stable boundary values - see p. 153.)

Our main result is
Theorem 7. If the conditions (2.2) and (2.16) are fulfilled, then (2.7) holds.

Proof. From (2.16) we obtain

$$
\begin{align*}
& \int_{\Omega} \sum_{i=M} D^{i} \mu a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x= \\
& \quad=\int_{\Omega} \sum_{i \in M} D^{i}\left(\mu_{0}+\mu\right) a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x- \\
& -\int_{\Omega} \sum_{i \in M} D^{i} \mu_{0} a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x \geqslant \\
& \geq c_{1} \sum_{i \in M} \int_{\Omega} D^{i}\left(\mu_{0}+\mu\right) g_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x- \tag{5.1}\\
& -\int_{\Omega} \sum_{i \in M} D^{i} \mu_{0} a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x- \\
& \quad-c_{2} \geq c_{1} \sum_{i \in M} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x- \\
& -\int_{\Omega} \sum_{i \in M} D^{i} \mu_{0} a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x-c_{3} .
\end{align*}
$$

In the last inequality, we have used the evident estimation

$$
-c_{i}+\mu g_{i}(\mu) \leqslant G_{i}(\mu) \leqslant \mu g_{i}(\mu)+c_{i}^{\prime}
$$

for all μ, since \nprec.ね. $G_{i}(\mu)=\mu g_{i}(\mu)-$ see § 1 . Now, with the help of the Young's inequality and using the convexity of N-functions $P_{i}(v)$ we estimate

$$
\sum_{i \in M} \int_{\Omega} \frac{D^{i} \mu_{Q}}{\varepsilon} \varepsilon a_{i}\left(x, D^{i}\left(u_{0}+\mu\right)\right) d x \leqslant
$$

$$
\leqslant \sum_{i \in M} \int_{\Omega} G_{i}\left(\frac{D^{i} \mu_{0}}{\varepsilon}\right) d x+
$$

$$
+\sum_{i \in M} \int_{\Omega} P_{i}\left(\varepsilon a_{i}\left(x, D^{\dot{j}}\left(\mu_{0}+\mu\right)\right)\right) d x \leqslant
$$

$\leq c_{1}\left(\mu_{0}, \varepsilon\right)+\varepsilon \sum_{i<M} \int_{\Omega} P_{i}\left(a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right)\right) d x$
where $\varepsilon \in(0,1)$. Again by the convexity, together with the Δ_{2}-condition and (2.2), we successively obtain
(5.3)

$$
\begin{aligned}
& P_{i}\left(a_{i}\left(x, \xi_{j}\right)\right) \leqslant \\
\leqslant & \frac{1}{x} \sum_{j \in M} P_{i}\left(x . c \min \left(\left|q_{i}\left(\xi_{j}\right)\right|,\left|q_{j}\left(\xi_{j}\right)\right|\right)+x, c\right) \leqslant \\
\leqslant & c_{4} \sum_{j \in M} P_{i}\left(\min \left(\left|g_{i}\left(\xi_{j}\right)\right|,\left|q_{j}\left(\xi_{j}\right)\right|\right)\right)+c_{5},
\end{aligned}
$$

where $x=$ card $M+1$.
In § 2 (proof of Lemma 1) the inequality

$$
\min \left(\left|g_{i}(\mu)\right|,\left|q_{j}(\mu)\right|\right) \leq 2 q_{i}\left(G_{i}^{-1}\left(G_{j}(\mu)\right)\right)
$$

is proved for each $|\mu| \geq c_{6}, i, j \in M \cdot\left(G_{i}^{-1}(\mu)\right.$ is the inverse function to $G_{i}(\mu)$ for $\mu \geq 0$.) From this inequality and owing to (1.4), ie.,

$$
P_{i}\left(q_{i}(\mu)\right) \leqslant G_{i}(\mu) \text { for each }|\mu| \geq c_{\neq}, i \in M,
$$

we deduce, using the Δ_{2}-condition

$$
\text { (5.4) } P_{i}\left(\min \left(\lg _{i}\left(\xi_{j}\right)\left|,\left|g_{j}\left(\xi_{j}\right)\right|\right)\right) \leqslant c(2) G_{j}\left(\xi_{j}\right)+c_{8} .\right.
$$

From the inequalities (5.3) and (5.4) we conclude
(5.5) $i \sum_{\in M} \int_{\Omega} P_{i}\left(a_{i}\left(\alpha, D^{j}\left(\mu_{0}+\mu\right)\right)\right) d x \leqslant$

$$
\leqslant c_{9} \sum_{i=M} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x+c_{10}
$$

In the relation (5.2), we choose $\varepsilon \in(0,1)$ such that
$c_{1}-\varepsilon c_{g}=c_{11}>0$. Then, from (5.1), (5.2) and (5.5) we have

$$
\sum_{i \in M} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x \geq
$$

$$
\begin{equation*}
z c_{11} \sum_{i \in M} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x-c_{2}\left(\mu_{0}, e\right) . \tag{5.6}
\end{equation*}
$$

Finally, it follows from Theorem 1, § 1
 if $(0, \ldots, 0) \subset M$. In the case $(0, \ldots, 0) \notin M$, we consder $\mu \in \underset{\vec{b}}{\dot{\sim}}(\Omega)$. Then, using the Young's inequality and applying Lemma 4, § 1 we estimate

$$
\int_{\Omega}|u| d x \leq \int_{\Omega} G_{i}(|u|) d x+c_{12} \leqslant c_{13} \int_{\Omega} G_{i}\left(D^{i} u\right) d x+c_{14}
$$

for some $i \in \mathbb{M}$ from which it follows that the foregoing assertion is true and hence owing to (5.6) the proof of the theorem is complete.

In the following we establish some assertions in which the condition (2.16) will be weakened by means of assumptions of monotonicity and equivalence of norms. Now, let K, L, M, M_{1} and M_{2} from $\& 2$ denote the sets of indices defined in § $2(\mathrm{p} .151$ and p .155$)$. For the multindices $i \equiv\left(i_{1}, \ldots, i_{N}\right)$, $j \equiv\left(j_{1}, \ldots, j_{N}\right)$ we denote $i \geq j$, ff $i_{l} \geq j_{l}$ for all $\ell=1,2, \ldots, N$.

We shall weaken the condition (2.16) in the following way:
$\sum_{i \in M} \xi_{i} a_{i}\left(x, \xi_{j}\right) \geq c_{1} \sum_{i \in M_{1}} \xi_{i} q_{i}\left(\xi_{i}\right)-c_{2}$.
In the case of non-Dirichlet problem we suppose that $(0, \ldots, 0) \in M_{1}$

Moreover, we assume
For each $i \in M_{2}$ there exist $i^{\prime} \in M_{1}$ such that (5.8)
$i^{\prime} \geq i$ and $G_{i}(\mu) \leqslant G_{i},(\mu)$ for each $|\mu| \geq c$.
Theorem 8, Let the conditions (2.2), (5.7) and (5.8) be fulfilled. Then, the relation (2.7) holds under the assumpion $\mu \in \stackrel{\circ}{\dot{W}}_{\dot{G}}^{\boldsymbol{n}}(\Omega)$.
proof. Similarly as in the proof of Theorem 7, we obtain

$$
\sum_{i \in M} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{i}\left(\mu_{0}+\mu\right)\right) d x \geq
$$

$$
\begin{array}{r}
\geq c_{3} \sum_{i=M_{1}} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x- \tag{5.9}\\
-\sum_{i \in M} \int_{\Omega} D^{i} \mu_{0} a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x-c_{4} .
\end{array}
$$

In § 1 (proof of Lemma 4) the estimation

$$
\int_{\Omega} G(u(x)) d x \leq c_{5} \int_{\Omega} G\left(\frac{\partial u}{\partial x_{i}}\right) d x+c_{6}
$$

is proved for $\mu \in{\underset{W}{c}}_{\dot{f}}^{h}$ and $i=1,2, \ldots, N$, where $G(\mu)$ is the N-function satisfying the Δ_{2}-condition. By itration of the last inequality and with the help of (5.8) we obtain for each $i \in M_{2}$ $\int_{\Omega} G_{i}\left(D_{\mu}^{i}\right) d x \leqslant \int_{\Omega} G_{i}\left(D^{i} \mu\right) d x+c_{\beta} \leqslant c_{B} \int_{\Omega} G_{i}\left(D^{i} \mu\right) d x+c_{g}$. Hence, due to the convexity and the Δ_{2}-condition, we have

$$
\begin{aligned}
\int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x & \leq \frac{1}{2} \int_{\Omega} G_{i}\left(2 D^{i} \mu\right) d x+ \\
& +\frac{1}{2} \int_{\Omega} G_{i}\left(2 D^{i} \mu_{0}\right) d x \leq c_{10} \int_{\Omega} G_{i}\left(D^{i} \mu\right) d x+c_{11} \leq \\
& \leq c_{12} \int_{\Omega} G_{i}\left(D^{i^{\prime}}\left(\mu_{0}+\mu\right)\right) d x+c_{13} .
\end{aligned}
$$

In view of these estimations the relation (5.9) implies $\sum_{i \in M} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x \geq c_{14} \sum_{i \in M} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x-$ $-\sum_{i \in M} \int_{\Omega} D^{i} \mu_{0} a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x-c_{15}$.

From the last inequality the assertion of the theorem follaws by the same argument as in the proof of Theorem 7.

In the following theorem we shall suppose that
(5.10) $\sum_{i} M_{1} \xi_{i} a_{i}\left(x, \xi_{j}\right) \geq c_{1} \sum_{i \in M_{1}} \xi_{i} q_{i}\left(\xi_{i}\right)-c_{2}$.

In the case of the non-Dirichlet problem we suppose, in addition, that $(0, \ldots, 0) \in M_{1}$.

$$
\begin{equation*}
\sum_{i} M_{2}\left(\xi_{i}-\tau_{i}\right)\left[a_{i}\left(x, \xi_{j}\right)-a_{i}\left(x, \tau_{j}\right)\right] \geq 0 \text {. } \tag{5.11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i \in M_{2}}\left\|D^{i} \mu\right\|_{G_{i}} \leqslant c \sum_{i \in M_{1}}\left\|D^{i} \mu\right\|_{G_{i}} \tag{5.12}
\end{equation*}
$$

$$
\text { for } \mu \in W_{G}^{k}(\Omega) \text {. }
$$

Theorem 2. Let the conditions (2.2),(5.10), (5.11) and (5.12) be satisfied. Further, let $a_{i}\left(x, \xi_{j}\right)$ for $i \in M_{1}$ be independent on $\xi_{j}, j \in \mathbb{M}_{2}$. Then (2.7) holds.

Proof. From the condition (5.10) it follows

$$
\sum_{i=M} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{i}\left(\mu_{0}+\mu\right)\right) d x \geq c_{3} \sum_{i \in M_{1}} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x-
$$

$$
-\sum_{i} \int_{M_{1}} \int_{\Omega} D^{i} \mu_{0} a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x+
$$

$$
+\sum_{i=M_{2}} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{j}\left(u_{0}+\mu\right)\right) d x
$$

Similarly as in the proof of Theorem 7, by the estimatin of the second member on the R.H.S. we obtain

$$
\begin{align*}
& \sum_{\in M} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x \geq \\
& \geq c_{1}(\varepsilon) \cdot \sum_{i} \sum_{M_{1}} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x+ \tag{5.13}\\
& +\sum_{i} M_{M_{2}} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{j}\left(\mu_{0}+\mu\right)\right) d x-c_{2}(\varepsilon)
\end{align*}
$$

Using the Holder's inequality we estimate
$\sum_{i \in M_{2}} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{j} \mu_{0}\right) d x \leqslant \sum_{i \in M_{2}}\left\|D^{i} \mu\right\|_{Q_{i}} \cdot \| a_{i}\left(x, D^{j} \mu_{0} \|_{p_{i}} \leqslant\right.$ $\leqslant c\left(\mu_{0}\right) \sum_{i \in M_{2}}\left\|D^{i} \mu\right\|_{\sigma_{i}}$
and hence with respect to (5.11), it follows from (5.13)

$$
\sum_{i} \int_{\Omega} D^{i} \mu a_{i}\left(x, D^{j}\left(u_{0}+\mu\right)\right) d x \geq
$$

$$
\begin{align*}
& \geq c_{1}(\varepsilon) \sum_{i \in M_{1}} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x- \tag{5.14}\\
& -c\left(\mu_{0}\right) \sum_{i=M_{2}}\left\|D^{i} \mu\right\|_{G_{i}}-c_{2}(\varepsilon) .
\end{align*}
$$

If ε is sufficiently small, then $c_{1}(\varepsilon)>0$. From (5.12) we deduce

$$
\begin{align*}
& \lim _{\mu} i_{W, m} \rightarrow \infty \tag{5.15}\\
& \cdot \int_{\Omega} \mu_{i}+\mu \|_{W_{G}}^{-1} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x=\infty,
\end{align*}
$$

if $(0, \ldots, 0) \in M_{1}$ - see Theorem $1, \S 1$. In case $(0, \ldots, 0) \notin M_{1}$ we consider $\mu \in \underset{W_{6}^{\prime}}{\stackrel{k}{4}}$ (in the Dirichlet problem). Then, similarly as in the proof of Theorem 7 we estimate

$$
\begin{aligned}
& \int_{\Omega}|\mu(x)| d x \leq c_{3} \int_{\Omega} G_{i}\left(D^{i} \mu\right) d x+c_{4} \leq \\
& \quad \leq c_{5} \int_{\Omega} G_{i}\left(D^{i}\left(\mu_{0}+\mu\right)\right) d x+c_{6},
\end{aligned}
$$

where $i \in M_{1}$. Due to this estimation, (5.15) is true even in the case ($0, \ldots 0$) $\notin M_{1}$. Finally, the assertion of the theorem follows from (5.15) and (5.14).

Remark. If $\mu_{0}(x) \equiv 0$, then (2.7) follows from the conditions (2.2), (5.7), and (5.12). The assertion is obvious.

In the following we establish a theorem in which we study the connection between the compactness of the imbedding and the equivalence of norms of the space $W_{G^{\prime}}^{\text {h }}(\Omega)$.

We shall suppose the condition (2.9). Theorems of imbedding and compactness of imbedding of the space W_{G}^{l} are studied in [3]. (There $\underset{\underset{G}{*}}{\underset{G}{h}}$ is considered, where $G_{i}(u) \equiv G_{j}(\mu)$ for all i, j with $|i|,|j| \leqslant$. .

Theorem 10. If (2.9) is satisfied, then

$$
\sum_{i \in M_{1}}\left\|D^{i} \mu\right\|_{G_{i}}+\|\mu\|_{L_{1}(\Omega)} \text { is an equivalent norm in }
$$ the space $W_{\vec{G}}^{k}(\Omega)$, i.e.,

$$
c_{1}\|\mu\|_{W_{G} \hat{G}_{j}} \leq \sum_{i \in M_{1}}\left\|D^{i} \mu\right\|_{G_{i}}+\|\mu\|_{L_{1}(\Omega)} \leqslant c_{2}\|\mu\|_{W_{\mathcal{R}}}
$$

Proof. It is sufficient to prove the first inequality. We prove it by contradiction. Thus, there exists a sequence $\left\{\mu_{m}\right\}$ from $W_{\underset{G}{k}}^{\substack{\text { b }}}$ such that
(5.16) $\frac{1}{n}\left\|\mu_{n}\right\|_{W_{F}} \geq \sum_{i} \sum_{M_{1}}\left\|D^{i} \mu_{n}\right\|_{G_{i}}+\left\|\mu_{n}\right\|_{L_{1}(\Omega)}$

We can suppose that $\left\|\mu_{n}\right\|_{w_{6}}=1$. From the sequence $\left\{\mu_{m}\right\}$ we can select a weakly convergent subsequence which we denote again by $\left\{\mu_{m}\right\}, \mu_{m} \rightarrow \mu \in W_{g}^{k}$.
The relation (5.16) implies $\left\|D^{i} \mu_{n}\right\|_{\sigma_{i}} \rightarrow 0 \quad$ with
$n \rightarrow \infty$, for all $i \in M_{1}$, and hence in view of (2.9) it follows $\mu_{n} \rightarrow \mu \quad$ with $n \rightarrow \infty$ in the norm of the space ${\underset{c}{h}}_{\underset{G}{n}(\Omega) \text {. }}^{(\Omega)}$

Now, it follows from (5.16) that $\|\mu\|_{L_{1}(\Omega)}=0$ and hence. $\|\mu\|_{W_{\frac{10}{3}}}=0$. On the other hand,

$$
\|u\|_{W_{G}^{k}}=\lim _{m \rightarrow \infty}\left\|\mu_{m}\right\|_{W_{G}}=1
$$

which yields a contradiction and the theorem is proved.

§ 6.

The definition of a weak solution of a boundary value problem is given by the relation (2.3) in § 2 (p. 153).

Now, we present a modification of Theorem 3, § 2, assuming the simplified hypotheses.

Theorem 11. Let (2.2) be satisfied. Let us consider the following conditions:
I. The conditions (2.16) and (2.8) are fulfilled. II. The conditions (2.16), (2.10) and (2.9) are fulfilled. III. The conditions (5.10),(5.11),(2.9) and (2.10) are fullfilled and $a_{i}\left(x, \xi_{j}\right)$ for $i \in M_{1}$ is independent on $\xi_{j}, j \in M_{2}$.

If one of the conditions I, II, III holds, then there exists a solution of the problem (2.3).

Theorem 12. Let (2.2) be satisfied. Let us consider the following conditions:
IV. The conditions (5.7), (5.8) and (2.8) are fulfilled. V. The conditions (5.7), (5.8), (2.9) and (2.10) are fulfilled. If one of the conditions IV, V is satisfied, then there
exists a solution of the Dirichlet problem (2.3).
For the uniqueness of the solution of the problem (2.3) it suffices to assume (2.8a) in Theorem 11 and Theorem 12 .

Proof of Theorem 11 and Theorem 12. The proof of these theorems is the same as that of Theorem 3, § 2. It is suficlient to show that the hypotheses of the theorem 3, § 2 are fulfilled. Due to the results from §5, (2.7) holds in each of the cases $I, I I, ~ I V ~ a n d ~ V$. In the case III the condition (2.9) implies (5.12) and hence (2.7) holds. Finally, it is necessary to show that in the cases II, III and V it holds (2.11a), ie.,

$$
\lim _{i} \sum_{i L}\left|\xi_{i}\right| \rightarrow \infty=\infty
$$

uniformly for $\quad \xi_{\ell}, \quad \ell \in \mathbb{M}-L \quad$ in a bounded set and $x \in \Omega$. In the case III the condition (5.10) implies (2.1la). In the cases II and V let us substitute the vectors $\xi^{\prime} \equiv\left(\xi_{\infty} \Psi_{\beta}\right)$ where $\alpha \in M_{1}$ and $\beta \in M_{2}$ with the vectors $\left(I_{\beta}\right), \beta \in M_{2}$ in a bounded set into the relation (2.16) or (5.7), respectively. Then we deduce

$$
\begin{aligned}
& \sum_{i \in M_{1}} \xi_{i} a_{i}\left(x, \xi_{\infty}, Y_{\beta}\right)+\sum_{i} Y_{2} Y_{i}\left(x, \xi_{\infty}, Y_{\beta}\right) \geq \\
& \geq c_{1} \sum_{i \in M_{1}} \xi_{i} g_{i}\left(\xi_{i}\right)-c_{2}
\end{aligned}
$$

and with respect to (2.2) we estimate
$\left|J_{i} a_{i}\left(\alpha, \xi_{\infty}, \mathcal{I}_{\beta}\right)\right| \leqslant c_{3}\left(1+\sum_{i \in M_{1}} \lg _{i}\left(\xi_{i}\right) \mid\right)$ for each $i \in M_{2}$.

From these inequalities we conclude easily that (2.11a)
is satisfied. The rest of the proof is the same as that of Theorem 3, §2.

§ 7.

Applying the methods of the calculus of variation we obtain a theorem guaranteeing the existence of a weak solution for the problem (2.3) by weaker assumptions about the coercivity as in Theorem 11 and Theorem 12. A similar idea was used in my paper [2].

With regard to (2.2) and (2.4) we construct the functional (2.5), i.e.,
$\phi(\mu)=\sum_{i \in M} \int_{0}^{1} d t \int_{\Omega} D^{i} \mu a_{i}\left(x, t D^{j} \mu\right) d x-(\mu, f)_{\Omega}-(\mu, g)_{\partial \Omega}$
which is continuous in the space $W_{G}^{h}(\Omega)$ and has the Gateâux's differential at every point $u \in W_{\vec{G}}^{k}$ - see Lemma 2 , § 2 and [4].

Theorem 13. Let the conditions (2.2),(2.4),(2.9),(2.10) and (5.7) be fulfilled. Then there exists a solution of the problem (2.3).

Proof. Let us look for the minimum of the functional (2.5) on the convex closed set $\mu_{0}+V_{\vec{G}}$. First we prove the coercivity and the weak lower-semicontinuity of the functional (2.5). From (5.7), (2.9) and due to Theorem 10 we obtain

$$
\lim _{\mu}\left\|_{W \in \infty}\right\| \mu \|_{W_{\mathcal{F}}}^{-1} \int_{\Omega} \sum_{i \in M} D^{i} \mu a_{i}\left(x, D^{j} \mu\right) d x=\infty
$$

and hence similarly as in Theorem 2, § 2 - see also [4] - it can be proved
(7.1)

Now, we prove the weak lower-semicontinuity of $\phi(\mu)$. Suppose that $v_{n} \rightarrow v$ with $n \rightarrow \infty$ (weak convergence) in the space $\underset{\vec{G}}{W_{\vec{H}}^{k}}$.

$$
\begin{aligned}
& \quad \phi\left(v_{n}\right)-\phi(v)-D \phi\left(v, v_{n}-v\right)= \\
& -\int_{0}^{1} D \phi\left(v+t\left(v_{n}-v\right), v_{n}-v\right) d t-D \phi\left(v, v_{n}-v\right)= \\
& =\int_{0}^{1} d t \int_{\Omega} \sum_{i \in M_{1}} D^{i}\left(v_{n}-v\right)\left[a _ { i } \left(x, D^{\alpha} v+t D^{\alpha}\left(v_{n}-v\right),\right.\right. \\
& \left.D^{\beta} v+t D^{\beta}\left(v_{n}-v\right)-a_{i}\left(x, D^{\alpha} v, D^{\beta} v+t D^{\beta}\left(v_{n}-v\right)\right)\right] d x+ \\
& +\int_{0}^{1} d t \int_{\Omega} \sum_{i \in M_{1}} D^{i}\left(v_{n}-v\right)\left[a_{i}\left(x, D^{\alpha} v, D_{v}^{\beta}+t D^{\beta}\left(v_{n}-v\right)\right)-\right. \\
& \left.-a_{i}\left(x, D^{\alpha} v, D^{\beta} v\right)\right] d x+\int_{0}^{1} d t \int_{\Omega} \sum_{i \in M_{2}} D^{i}\left(v_{n}-v\right) . \\
& \cdot\left[a_{i}\left(x, D^{j} v+t D^{j}\left(v_{n}-v\right)\right)-\right. \\
& \left.-a_{i}\left(x, D^{j} v\right)\right] d x \equiv A_{n}+B_{n}+D_{n} .
\end{aligned}
$$

$$
\text { Since } v_{m} \rightarrow v \text { with } n \rightarrow \infty \text {, it holds }
$$

$$
\lim _{n \rightarrow \infty} D \phi\left(v, v_{n}-v\right)=0 \text {. Due to the assumption (2.10) }
$$

$$
\text { it is } A_{n} \geq 0 \text {. With respect to (2.9), we deduce that }
$$

$$
D^{i} v_{n} \rightarrow D^{i} v \quad \text { with } n \rightarrow \infty \text { in the norm of the space }
$$

$$
L_{\sigma_{i}}^{*}(\Omega) \text { for all } i \in M_{2} \text {. In view of the fact }
$$

$$
\left\|v_{n}\right\|_{W \neq \frac{d}{c}} \leq c_{3}, \quad \text { we obtain }
$$

$$
\left\|a_{i}\left(x, D^{j} v+t D^{j}\left(v_{n}-v\right)\right)\right\|_{p_{i}} \leqslant c_{4} \text { for each } t \in\langle 0,1\rangle
$$

$$
\text { and } i \in \mathbb{M}_{2} \text { - see Lemma 1, §2. Hence, using the Hölder's }
$$

$$
\text { inequality, we conclude } \lim _{n \rightarrow \infty} D_{n}=0
$$

From (2.9) we deduce

$$
a_{i}\left(x, D^{\alpha} v, D^{\beta} v+t D^{\beta}\left(v_{n}-v\right)\right) \rightarrow a_{i}\left(x, D^{\alpha} v, D^{\beta} v\right)
$$

with $n \rightarrow \infty$, in the norm of the space $L_{p_{i}}^{*}(\Omega)$, uniformly with respect to $t \in\langle 0,1\rangle$ for all $i \in M$ see Lemma 1, § 2. Thus, we conclude $\lim _{n \rightarrow \infty} B_{n}=0$ and hence the lower-semicontinuity of (2.5) with respect to weak convergence is proved.

If $\left\{\mu_{n}\right\} \in \mu_{0}+V_{c}$ is a minimizing sequence, then $\left\|\mu_{n}\right\|_{W_{\delta}} \leq c$ in view of (7.1). Since $W_{G^{+}}^{k}$ is a reflexive space there exists a subsequence $\left\{\mu_{m_{n}}\right\}$ from $\left\{\mu_{n}\right\}$ so that $\mu_{n_{k}} \rightarrow \mu \in W_{\overrightarrow{G^{j}}}^{k} \quad$ with $k \rightarrow \infty$. The set $\mu_{0}+V_{G}$ is weakly closed and hence $\mu \in \mu_{0}+$ $+V_{\vec{G}}$. Due to the weak lower-semicontinuity of the functio nal (2.5) we conclude that $\phi(v)$ attains its minimum on the set $\mu_{0}+V_{\vec{G}}$ at the point $u e \mu_{0}+V_{G}$. If $v e$ $\in V_{\vec{G}+}$, then $D \phi(\mu, v)=0 \quad$ (Gateâux'differential at the point u) for all $v \in V_{\vec{G}}$. Thus, μ is a solution of the problem (2.3).

References

[1] J. KAČUR: On existence of the weak solution for non-linear partial differential equations of elliptic type, Comment.Math.Univ.Carolinae 11(1970),137180.
[2] J. KAČUR: On boundedness of the weak solution for some class of quasilinear partial differential equations, Časopis pro pexst. matematiky, to appear.
[3] T.K. DONALDSON and Neil S. TRUDINGER: Orlicz-Sobolev spaces and imbedding theorems, Macquarie University,
1970.
$[4]$ J. NEČAS: Les équations elliptiques non linéaires, (L'école d'été,Tchécoslovaquie 1967), Czech. Math. Journal 2(1969),252-274.

Vilova 15,
Bratislava,
Ceskoslovensko

(Oblatum 18.10.1971)

