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ON EXISTENCE OP THBT WEAK SOLUTION FOR NON-LINEAR PARTIAL 

DIPPERBNTIAL EQUATIONS OP ELLIPTIC TYPE, I I . 

J. KAfiUR, Bratislava 

This paper i s a direct continuation of my paper [13 

concerning the existence of a weak solution of boundary va~ 

lue problems for non-linear e l l i p t i c equations of the form 

S (~4)M$l
a. <*,])+*,) - f 

in Orlicz-Sobolev spaces. Therefore, to follows this paper, 

we have to make use of [ 1 ] • The used notation i s in accor

dance with [1] and the numbering of paragraphs, theorems: and 

relations i s being continued as well. The used fundamental 

notions are defined in Cl] . The main aim of our paper i s to 

prove the fact that i t i s sufficient to assume the algebraic 

condition (2.16), i . e . , 

4?M **"*<*'-*> * c« £m k 9»-"f*> - H 

to guarantee the coercivity (2.7), i.e., 

&r»> H^H"1 . f 2. TFM,a*(*9T>*(u>0+«*))** m °° > 

where A/U^ €. W~± • 

In the paper Til we proved (2.7) assuming (2.16) and the 

rather limited assumption (1.9) which includes the following 

AMS, Primary: 35J60 Ref. Z. 7.956 
Secondary: 47H15, 46E30 
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condition: 

For a l l <L e JA there exist JC. > A, *>. > 4 with 

0 «s K*j - />• <i A so that 
& * ff, * 

C ^ .4*, J * & U,Qq (W) & Cal \M,\ * 

for a l l U l 2 ^ , > 0 . where a , . Cu. ^t • are the 

suitable constants. 

In many cases, the condition (2.16) can yet be weakened. 

In this connection a theorem about the equivalence of norms 

i s proved (Theorem 10), which i t s e l f is also interesting. As 

a consequence of these results we obtain existence theorems 

for the weak solution with hypotheses that can be easily ve

rif ied in concrete problems. 

In the next remark we cal l the attention t o the fact that 

the c lass 1U by means of which the non-linear members are 
9 

described is essent ial ly larger than the set of polynomials? 

Ul* . 
Remark. If <y (.AJU) e ffl t then Assertion 1, § 1 gua

rantees the existence of /p, > A % a > A such that C l . l ) , 

i . e . , 

C^ , \ 44, r * **<*>)* l% U l * for a l l U l * C 

holds, where c . , C* , C are the suitable constants. 

On the contrary, for a l l Jfi f q^ with q^ > <fi > 4 , there 

exists q, CAI>) e 771- such that ( l . l ) holds, while 

the relation ( l . l ) does not take place for any jpff q^ with 

4*- < 4*' •* <£ * % • 
We shall denote positive constants by c with or with-
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out subscripts and the dependence of c on the parameter 

£ will be denoted by c C B ) « 

§ 5. 

Let ^ («x) be a function in IV-̂  CSX.) *• < 4^0(x) 

represents the stable boundary values - see p. 153.) 

Our main result is 

Theorem 7. If the conditions (2.2) and (2.16) are ful

filled, then (2.7) holds. 

Eroof. Prom (2.16) we obtain 

Ĵ  |LMD^a4(x,P*(A^-t- u))dLx m 

-4 ̂ MD^^^^(^ + .^))cix * 
(5.1) 5L c4 ^ M SAT>*<">* + ">) <K (T(u0 + u))d* ~ 

- e a * a„ ^ M JL fifc CJ)+Cu0 + u))d* -

- 4 § M -D*** <H c*> £* <*o* ̂ ) } * * - H ' 
In the last inequality,we have used the evident estimation 

- <H -H <*<^ ( ^ > * G N ( ^ ) - 6 ^ g - C t f , ) - * C^ 

for a l l ,a , since jp, • ̂ t , GN (<tt>) « .44* <j^ (*fc ) - see § 1* 

Now , with the help of the Young's inequality and using ths 

convexity of K -functions P^ ( . v ) we estimate 

*-fc 4 ^ •**<*.-*VA),ť í* 
C5.2) « A í *(-*•)-« • 

+ X / A Pi C 6 O;Cx, P--Ci-в * * Л » d * ^ 
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C^Uв, £)+€.£ £ % <«ч (*,T>*U0 + *u->» d * 

the ^ -condition and (2 .2 i , we successively obtain 

where £ e. (09 A ) * Again by the convexity, together with 

undition and (2 .2 i , we . 

P+<*+<«• ?*» * 
f 5 , 3 ) .g 1 ,ZMPiC*.c/«wt<ri9:JC^)l,l9?C^)n+iJe.e)^ 

-sc^. gMP iC-n^Cl9. iCf^)l,l<^Cf /)l)) + cs , 

where 3d » cased M «f 4 . 

In § 2 (proof of -Lemma 1) the inequality 

/m<*vC left, Co , ) ! , \<*±CAJL)\) & 2 ^CG?C G^CM,))) 

i s proved for each \ *JU\ &> c£ 9 i , ^ f i i i . ( (5̂  C<t) i s the 

inverse function to Gj Cu>) for AJL 25 0 . ) From this 

inequality and owing to (1 .4 ) , i . e . , 

% C<^ Cw)) & \CJUL) for each \w\ & C#, i c M , 

we deduce, using the A^ -condition 

(5.4) ?iCmim,C\toCfy)l,\<tyCfy)\»4cC2)fyCfy) + C$ . 

Prom the inequalities (5.3) and (5*4) we conclude 

4?M L?ii*ic«f&<<h+»Wd* * 
(5.5) M 

16 c5 i l n 4 5 * OPCM^ + AS,)) d# + e^ * 

In the relation (5 .2 ) , we choose e m (094) such that 

C , . e c a « c , > 0 . Then, from ( 5 . l ) , ( 5 . 2 ) and (5.5) w« 
f $ '7'f 

have 
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.*?„ L **« a* <*> ->* Uo + "»** * 
C5.6) . • 

*°<M i^M X * ^ C5*C4*,+ Afc>) - t* -C a C-A # , »> • 

Finally, i t follows from Theorem 1, § 1 

A+J"**"'1'** • Jt f.«<** «*-*,•--•»*« - o°. 
i f C 0, .... , 0) fl M , In the case (.0,..., 0) 4 -Ml 9 w e consi-

der .44- ff WL» C JQL > « Then, using the Young's inequality 

and applying Lemma 4, § 1 we estimate 

£1-1,1 d.x * ^f i -CUDd* + c,a * c„- £<?; CJVJct* + C ^ 

for aome i e H from which i t follows that the foregoing 

assertion i s true and hence owing to (5»6) the proof of the 

theorem i s complete* 

In the following we establish some assertions in which 

the condition (2.16) wi l l be weakened by means of assumptions 

of mo not oni city and equivalence of norms. Now, l e t K, L , J A , 

.ML and JA1 from § 2 denote the sets of indices defined in 

§ 2 (p.151 and p. 1555)• For the multiindices i m Ci^f..*^ iH), 

4-sz($if"><>&H) we denote i 2s £ , i f f i^ Si £t for a l l 

JL m 4 , 2 , , , , , K . 

We shall weaken the condition (2.16) in the following 

waт? 

(5.7) ^ 

In the case of non-Dirichlet problem we suppose that 
CO,.,,, 0) « -M,, 
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Moreover, we assume 

For each 4/ e M^ there; exist* i* e tt^ such'that 
(5-8) 

I'& *v and Gj <4d,) * G.JAA,) for eaeh 1.44,1 2r C . 

Theorem 8. Let the conditions (2 .2) , (5 .7) and (5«8) be 

f u l f i l l e d . Then, the relation (2.7) holds under the assump

tion 44, c W£ C i l ) -

Proof. Similarly as in the proof of Theorem 7 f we ob

tain 

S J^J)i4A,a,i<x,T)*<*L0+ *u)) dx * 

(5.9) * S £ * &^C])*C^*^))<i* -

- ̂  JPAJ>*--» -U <*, ->*<«» + ">» d*~ *+ ' 
In § 1 (proof of Lemma 4) the estimation 

IS CM. (» » d* * i5 Jt G (-j£) c<« • ce 

O ju 

is proved for 44, e V ^ and <i m 49 lr„9 N , where Gfa) 

is the # -function satisfying the A % -condition. By ite

ration of the last inequality and with the help of (5*8) 

we obtain for each -L e L 
* , *, 

fGiCV','M,)dx*f<34, CD*^)dx + c¥^ c0 j^C?.,CD'V)tiJc.».c9 . 

Hence, due to the convexity and the A. -condit ion, we have 

f ^CT>l<u.0 + ̂ ))d» *S %fAG4C2T)l4'j*).d* + 

* cn L 3*'c-°* C*, + ««•)) et * + c,,, • 
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In view of these estimations the relation (5.9) implies 

Prom the last inequality the assertion of the theorem f o l 

lows by the same argument as in the proof of Theorem 7» 

In the following theorem we shall suppose that 

In the case of the non-Dirichlet problem we suppose, in 

addition, that ( 0, ... f 0) € JA^ . 

(5.11) , 2 C f i - V [ a 4 C * ' V - ^ V 3 * °' 

(5.12) 21 l&*u%r * cJS.u &!>*.«, IL 

for M, « W£ C i l > . 

Theorem 9. Let the conditions (2.2),(5.10),(5.11) and 

(5.12} be satisfied. Further, let 0-4 Cx, £^ ) for i c -M̂  

be independent on 5 • , 5. € M £ . Then (2.7) holds* 

Proof. Prom the condition (5.10) it follows 

fa faT>l«, *.(*M< ** + *»** * c3 .S^ Ĵ  GtO>V^»^-

- ^ ^ 4 ^ ^ cuiUiD+Cut + u.*))** + 

*.5L. f TPAJL, &iix,J)*(av + "')) <** . 
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Similarly as in the proof of Theorem 7, by the estima

t ion of the second member on the R.H.S. we obtain 

. 2 . LWAA,*,! Cx,$*(u,e+4A,))d* fe 
-v m M *° * ° 

C5.13) fcC^Ce).^ /AC^J*C^*^))<** + 

Using the Holder's inequality we estimate 

and hence with respect to (5.11) , i t follows from (5.13) 

. ZM / A D V <** Coc, P^U e + ^ » d* z 

- c U ( ) .5-M B D*^ )L. - c. Ce) . 

If & is sufficiently small, then e Ce) -* 0 . From 

(5.12) we deduce 

C5.15) » ^ ^ ^ "<? 

• £ * ? * . , ^ < * * < * * « • 4* ) ) < t * - oo , 

i f C 0 i .0*9 0) € M^ - see Theorem- 1, § 1. In case 

CO, . . . , 0 ) 4 Mv| we consider 44. £ W Ĵ: (in the Dirich-

let problem). Then, similarly as in the proof of Theorem 7 

we estimate 

fjuCx )\dx ** C$ f^Gj, C$lAA.)d* + c ¥ *k 

* cs J a ^ C J ) <«>0 + «'')')d-x + ĉ  , 
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where i e JA* • Due to this estimation, (5.15) is true even 

in the case (Q9 •*. 0) 4* -A-L - Finally, the assertion of 

the theorem follows from (5.15) and (5.14). 

Remark. If AA,Q(9() 2 0 , then (2.7) follows from the 

conditions (2.2),(5.7), and (5.12). The assertion is obvious. 

In the following we establish a theorem in which we study 

the connection between the compactness of the imbedding and 
fu 

the equivalence of norms of the space "WL̂ , ( £L) . 

We shall suppose the condition (2.9). Theorems of imbed-

ding and compactness of imbedding of the space W ^ are 

studied in t3l. (There Vfi-> is considered, where 

GJL(4A,)m fyju,) for all -t,^ with U I , l£! * Jt «) 

Theorem 10. If (2.9) i s sat i s f ied , then 

. 2E. ||3>*^c IL + f 4*1, ,,*. i s an equivalent norm in 
*> CM,, ®i L^CXl) 

the space VfJl (SI) , i . e . , 

c,Luv8w£ *^W^hS^K^' *!*«>*«£ • 
Eroof. It i s sufficient to prove the f i r s t inequality. 

We prove i t by contradiction. Thus, there exists a sequence 

KAJU^ } from W** such that 

(5.-6) £l-Ow£ * *f* / -A-J^ * K ^ c w ' 

We can suppose that V-Uta, ly,.k •• 4 • From the sequence 
"tv nџ/ì 

f/U^J we can select a weakly convergent subsequence which 

we denote again by { - t ^ J , M*^ —* u> c TV-*. 

The relation (5.16) implies H-D^O-^II^ —V 0 with 
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n, —> QQ for a l l •£ m .M„, , and hence in view of (2.9) 

i t follows A4,M —¥ AJU with /tt —y oo in the norm of 

the space w£ CXL) . 

Now, i t follows from (5.16) that J,a- 1. m 0 and hen

ce II w $WM m 0 0 On the other hand, 

which yields a contradiction and the theorem i s proved. 

§ 6 . 

The definition of a weak solution of a boundary value 

problem is given by the relation (2.3) in § 2 (p. 153). 

Now, we present a modification of Theorem 3, § 2f assu

ming the simplified hypotheses. 

Theorem 11. Let (2.2) be satisfied. Let us consider the 

following conditions: 

I. The conditions (2.16) and (2.8) are fulfilled. 

II. The conditions (2.16),(2.30) and (2.9) are fulfilled. 

III. The conditions (5.10),(5.11),(2.9) and (2.10) are ful

filled and â . (#, f • ) for i m JML i* independent on 

fc , * e A* . 
If one of the conditions I , I I , III holds, then there 

exists a solution of the problem (2 .3 ) . 

Theorem 12. Let (2.2) be sat i s f ied . Let us consider the 

following conditions: 

IV. The conditions (5 .7 ) , (5 .8) and (2.8) &re f u l f i l l e d . 

V. The conditions (5 .7 ) , (5 .8 ) , (2 .9 ) and (2.10) are f u l f i l l e d . 

If one of the conditions IV, V i a sat i s f ied , then there 
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exis t s a solut ion of the Dirichlet problem (2 .3)• 

For the uniqueness of the solut ion of the problem (2.3) 

i t suffices to assume (2.8a) in Theorem 11 and Theorem 12. 

Proof of Theorem 11 and Theorem 12. The proof of these 

theorems i s the same as that of Theorem 3, § 2 . I t i s s u f f i 

cient to show that the hypotheses of the theorem 3 , § 2 are 

f u l f i l l e d . Due to the r e su l t s from § 5, (2.7) holds in each 

of the cases I , I I , IV and V. In the case I I I the condition 

C2.9) implies (5.12) and hence (2.7) holds. F ina l ly , i t i s 

neces3ary to show that in the cases I I , I I I and V i t holds 

(2.11a) , i . e . , 

uniformly for ££ 9 £ e Jld - L in a bounded set and X m i l . 

In the case I I I the condition (5.10) implies (2 .11a) . 

In the cases I I and V le t us subs t i tu te the vectors 

£ s ( f^ Cf* ) where oo e Jil^ and /3 e Jit^ with the vec

to r s ' 3L ) , ji € M * in a bounded set i^to the r e l a t i o n 

(2.16) or (5 .7 ) , respect ive ly . Then we deduce 

* c t t?H %i^iC^ ~ cz 
*f 

and with respect to (2.2) we estimate 

I 

for each £ 

=Ł-чf*,Ç«,, V Á ft»м+^ '9г<fc>п 

From these inequalities we conclude easily that (2.11a) 
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i s s a t i s f i e d . The res t of the proof is the same as that of 

Theorem 3, § 2 . 

§ 7. 

Applying the methods of the calculus of variation we 

obtain a theorem guaranteeing the existence of a weak solu

tion for the problem (2.3) by weaker assumptions about the 

coercivity as in Theorem 11 and Theorem 12. A similar idea 

was used in my paper t2]. 

With regard to (2.2) and (2.4) we construct the functio

nal (2.5), i.e., 

i 

A* B m o JX T 

A •* Jit. 

teaux s d i f fe ren t i a l at every point JU, C W ,̂ - see Lemma 

2, § 2 and C4J. 

Theorem 13. Let the conditions (2 .2) , (2 .4) , (2 .9) , (2.10) 

and (5.7) be f u l f i l l e d . Then there exis ts a solut ion of the 

problem (2 .3 ) . 

.Proof. Let us look for the minimum of the functional 

(2.5) on the convex closed set AL, «*- V& • F i r s t we prove 

the coercivi ty and the weak lower-semicontinuity of the func

t iona l (2 .5 ) . From (5 .7) , (2 .9) and due to Theorem 10 we ob

t a i n ^ 
m JUftm II AA, lllfc J l .2%. y * <*>JL ( * . 'ti*'**' ) d* tx CD 

which i s continuous in the space W£ (SI) and has the Ga-

Җj*-M$ £&***«*f*.; 
and hence similarly as in Theorem 2, § 2 - see also [4 3 - it 

can be proved 
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C7.1) „ J&m, 6C.it) m oo . 

Now, we prove the weak lower-semicontinuity of <£C.«,) . Sup

pose that nfo —-** <v with m, —• oo Cweak convergence) 

in the space TYL* 

<f>K,)~ <p(<v)~$<p(ir9 %u- w) ~ 

mp>^(nr+t(nr^nr), i&-<rr)dt~ J>4> («r, nr^- or) ** 

D V + t J ^ C ^ - z i r O - a ^ C ^ + 

- a,-(x,T)*<ir, J)<V)3 d* +f§**JL&g§**' (*>„-*>) . 

. ta^Coe, J ) V +tJ)^Ctr^- 4r)) -

- a ^ C * , }+<ir)ldLx m A^ + B^ + 3^ . 

Since 4 ^ —** <v with /tt —¥ 4X> , i t holds 

MjYfi J)d> C/ir, /iri, - or ) *» 0 • -^-e *° t n e assumption (2.10) 
<n>-*rao 1 m* 

i t i s A/-,, ** ^ • W i t h r^ sP e c t t 0 ^2.9), we deduce that 

D^cvL—• J ) V with <n- —> ao in the norm of the space 

L2 C i l ) for a l l i « i l ^ . In view of the fact 

l/ir^"wA - C3 > w e ° b t a i n 

lo,jiCx9T)*nr+ tT)*(<ir^~ *»>))§% £ c^ for each t € < 0 , O 

and i € M * - see Lemma 1' § 2. Hence, using the Holder's 

inequality, we conclude jty?L> /̂n, m ^ * 
/ l ^T OP 
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Prom (2.9) we deduce 

«*i ̂ , J * ^ J ) V + t J ) * ^ - nr )) -+ o^ C*, J)V, J)V ) 

with rti —* co , in the norm of the space Lp# C i l ) , uni

formly with respect to t e < 0 , 4 > for a l l I € M 

see Lemma 1, § 2. Thus, we conclude „£(% An. *' ^ an<3 

hence the lower-semicontinuity of (2.5) with respect to weak 

convergence i s proved. 

If fa-Hn,! € AJU0 + Vg+ i s a minimizing sequence, 

then l-U^l^fc -*•» C in view of (7 -1) . Since ¥Jt i s 

9 ref lexive space there e x i s t s a subsequence f-ttj- J from 

•f^A^f so that M,^ —•* AA, m ¥ z j with Jh ~> a> . 

The set *tt̂  •*• V~* i s weakly closed and hence AA, m AI% + 

+ VW • Due to the weak lower-semicontinuity of the funct io

nal (2.5) we conclude that $ (nr) attains i t s minimum on 

the set AA*0 -f Vm+ at the point .a, e AA0 + V-+ . If or c 

€ Tk* , then D $ C a , / v ) «• 0 (Gateaux'd ifferential at the 

point AA, i for a l l AT C Vg* # Thus, /O, i s a solution of 

the problem ( 2 . 3 ) . 
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