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A NOTE ON THE RIEMANK CURVATURE TENSOR
0ld¥ich KOWALSKI, Praha

In Paper [2] the problem was discussed whether, and
how, a Riemann metric can be derived from a "generalized"
curvature tensor, under a natural assumption of regularity.
The purpose of this Note is to extend our results to a wi-

der class of curvature tensors.

We shall start with some preparatory lemmas.

Lemmg 1. Let V be a real vector space with a positi-
ve scalar product @ . Let G c 0(V) be a connected Lie
group of orthogonal transformations of V and 4 c 2~ (V)
its Lie algebra. Then for any symmetric bilinear form A
on ¥V the following is true:

Jo is invariant with respect to G if and only if
for eny A € 4 and X, YeV

(1) M (AX,Y) + A(X,AY) =0 .

Proof. See [1], Chapter I.
Lemmg 2. (See [11, Appendix 5.) Let G be a subgroup
of 0(m) which acts irreducibly on the m -dimensional

coordinate space R™ « Then any symmetric bilinear form
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on R™ which is invariant by G is a multiple of the

standard scalar product
S i
(X, l*) = 4«%’ X 4
Let & be a set of linear endomorphisms of a vector

space V , Put

(2) B(L) = {h e SV | M (AX,Y)+ M (X,AY) = 0; X,Ye V, AL}
where 82 (vY) denotes the space of all symmetric bili-

near forms on V .

We say that & generates a Lie algebra 4 < 4L(V)

if 4% is the least Lie subalgebra of 4£ (V) containing
£ . Finally, G (&) will denote the connected subgroup
of GLCY) whose Lie algebra is generated by & .

Propogition 1. Let V be a vector space with a (posi-
tive) scalar product @ and G < O(V) an irreduecible Lie
group of orthogonal transformations of V , let & c « (V)
be a set of linear endomorphisms generating the Lie algebra

4 of G , Then
(1) dim B(L) = 4 , i.e., () = (g) .

(11) If X6V and AX =0 for any Ae & , then X=0.

Proof. ad (i). If & = 4 , the assertion is nothing
else than an infinitesimal version of Lemma 2 (cf. Lemma 1).
In a general case we have O(g) c 6(¥) . pPut &L’ =
w {Acy |O(L)cO({A})} . Because O(L') = NE{AI)
(Acd), we get B(L’) 2 O(L) .

It suffices to show that &’ = 4 . Clearly, if
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A.Bed , then A+ B e & . Now, for any XeV,
neBCEL), A,BeL, n (LA BIX,X)= h(ABX,X) -
- h(BAX,X)= -h(BX,AX) + W (AX,BX) = 0 , and hence
[A,Ble & .

ad (ii). Let first & = 4 . Then if a non-zero X €
eV exists with AX = 0 for any A € 4 , the correspon-
ding group G pointwise preserves the vector subspace (X)¢&
cY and hence G is not irreducible - a contradiction.

Now, let $ < 4 be general, and let X & ¥  be such
that AX =0 for any A € & . Then the same is true for any
B € 4 . This completes the proof.

Let B be a tensor of type (1,3) on a vector space
V, i.e., a bilinear map of V x V into 4 £ (V) . Then
N = 4BX,MNIX,YeVH} is a subset of 44 (V)
and we shall put

G(B) == G(B), 6¢B) 2L g

Following [2], a linear map B: VAV — 4L (V)
is called pegular if the endomorphism B (X A Y) is non-
trivial for any X AY & 0 . (We can write also B(X,Y)
instead of B(X AY) as B corresponds to a unique anti-
symmetric bilinear map of ¥ x Y into 4£ (V) 2

Further, suppose that a scalar product g on Y exists
satisfying g (BC(U,TVY,X) = -g (B(U,T)X,Y) ,
g (B(U,T)X,Y) = g(B(X,Y)U,T), for any U, T,X,Y eV .
Then B is called g_curvature sfructu;-e with respect to ¢ .

Now, we have
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Proposition 2. Let ¥V be a vector space provided with
a scalar product ¢ and let B: VAV — 42 (V) bea
regular curvature structure with respect to (-2 Then the
group G (3B) is an irreducible subgroup of O0(V) .

Proof. The inclusion G(B) c 0(Y) is obvious be-
cause B c « (V) . We show that G (B) is irreducib-
le. According to [2], Lemma 1, for any two vectors X L ¥
of V there are transformations B(U_. A Ti)

*
(U,,T,&V,4=4,..., %) such that S BUATIX=Y.

If the group G (B) were reducible, the corresponding Lie
algebra generated by {B(UAT)IU,Te ¥} would pos-
sess a proper invariant subspace VeV ;) @ contradiction.

Let (M,g) be a Riemann manifold of class C®  he-
ving the curvature tensor R . Following C. Teleman [4],
the space (M, 9.) is called non-divisible if, at each
point x e M , the group G(]{“) is irreducible. It is
obvious that each non-divisible Riemann manifold is irredu-
cible (see [1], Ch.III.,IV.).

More generally, we shall call a tensor field B of ty—
pe (1,3) on (M,g) non-divisible if the group GC.B“)
is irreducible for each x e M .

Further, the tensor field B is called a _curvature
structure with respect to g (or on (M, @) ) if so is each
algebraic tensor B’ (x €« M) . For example, the Riemann
curvature tensor § of (M, g) and the corresponding Weyl

tensor of conformal curvature C sare curvature structures
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on (M,q).

According to Froposition 2, any regular curvature struc-
ture on (M, ¢ ) is non-divisible. (Here "regular" means
"regular at each point x e M ".)

One can re-write Proposition 1 as follows:

Proposition 3. Let (M, g,) be a Riemann space (of
class C® ) and B a non-divisible curvature structure

on (M,g;).Then

(1) dim (By) = 1 for each .xeM , i.e., O(B) =
=UGCB“)(.X €M) is a line bundle; and g 1is a section
of 8(B)

(11) If B(X,Y)EZ = 0 for any vector fields X,Y on
M then Z is a null field.
Now, we can see easily that Theorem 2 and all the parg-—
graphs 3 = 7 of [2] remain true if we replace the word "regu-

lar" by the word "non-divisible" everywhere. Particularly, we

get the following theorems (the reader is referred to the ori-
ginal paper [2] for details).

Theorem 1. (C. Teleman, [4].) Let (M, g ) be a connec-
ted non-divisible Riemann space of dimension m 2 3 , and
let Q be a curvature tensor-preserving diffeomorphism of
(M, q) onto a Riemann space (M';g') . Then $ 1is a
homothety.

Corollary. (See K, Nomizu and K. Yano,[3].) Let
(M, @) be a connected, analytic, irreducible, locally sym-
metric Riemann space of dimension m 2 3 and let § be

a curvature tensor-preserving dif‘feomot'phisxﬁ of (M, 9,)



oito a Riemann space (M‘, ¢’) . Then & is a homothe-
ty.

Proof of the corollary: one can see easily that, for
any point xe M , G (_R“) is the restricted homogene-
ous holonomy group of (M, @) at x ., Thus (M,g)
is non-divisible.

Theorem 2. (Ccf.[2], paragraph 5 for details.) Let B
be a non-divisible tensor field of type (1, 3) on a
C%® -manifold M ,dim M 2 3. Then one can decide whether
or not B is locally a Riemann curvsture tensor only by al-
gebraic operations and differentiations.

Theorem 3. Let M be a C%® -manifold, dim M = 3 .
A local reconstruction of a non-divisible Riemannian metrie
g on M from its curvature tensor R requires only al-
gebraic operatioﬁs, differentiations and the integration of

an exact differential.
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