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Commentstiones Mathematicae Universitatis Carolinae

13,2 (1972)

ON THE CANONICAL SUBDIRECT DECOMPOSITION OF A JOIN SEMI-

LATTICE
]

Juhani NIEMINEN, Tempere

1. Introduction. By a subdireet union of the algebras
A@ (pe P) & subalgebra R  of the direect union

TT(A“-, n eP) fa meant, having the property that £1,L(R)=
= An for every decomposition homomorphism £4, of

M(A,; peP) . It is sald that the algebra A ecan be
represented as the subdireet union of the algebras .A.f,, ir
A is isomorphic to a subdireet union of the A,‘,, 3 this
subdirect union is called the subdirect decomposition of A
with factors _Aﬂ ., An algebra is called subdirectly decom-
posable or subdirectly reducible if A has a subdirect
decomposition, no decomposition homomorphism of which is an
isomorphism. Further let A be an algebra and P a set
of indices. The algebra A can be represented as a subdi-
rect union of some algebras A, , n € P, if and only if

A has congruence relations C9,ﬂ ; neP) such that

N( 9?; fr € P) =0, the equality relation (see e.g. [1,
Cor. 1, p. 140]).

Let the algebra A be a lattice I, or a join semi-
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lattice L, , am O (A) the lattice or all congruen-
ce relations on A , For any element O € 6 (A) there ex~
iste in O (A) and element O* called the pseudocomple~
ment of © , The correspondence 6 —> 0**  is a elosu-
re operation on O(A) and the clese elements 8** = 8
form a complete boolean algebra 6, (A) ' on which the join
operation is givenby O v § = (Qu §)** (when A=1,,
see [4, Thm.4]).

Let {6, ; neP ! be asubset of B, (A) such that
e;-n(eg;%¢r,g*@) far all i 6 P, then
N6 n c?)-eﬂr\e: = 0 and thus the set
{94,',41 e P? generates a subdirect decompeaition of A . Sueh
& decomposition is called canonical by F. Maeda [31. In order
that the set {8, ; h 6 P} generates a canonical subdi~

rect decomposition of an algebra A , it is necessary and
sufficient that eﬂ € O, (A) forevery nef?,

MOy ;neP) =0, amd Byv 6, = 1(pn % g) , The proef
for A =L, 4is obvious aeccording to the proof of F. Maeda
in the case A = 1L (see [3, Thm. 2.1]),

As pointed out by T. Tenaka [5, Remark 1], if 6} =

=MN(8;q€P,q%p)=0,then 8, = 6* = 1  and the

factor corresponding to 6y can be omitted.

2. On_the canonical subdirect decomposition of a semi~
lattice with finite number of factors. In the following we
shall consider the structure of a semilattice L, having
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a canonical subdirect decomposition with finite number of
simple factors L, , i.es, every O (L, ) contains

exactly two elements. Thus every factar L@ v correa~

ponds to a maximal congruence relation 9‘; on L

According to D. Papert [4, Thm. 1], every maximal con—
gruence relation §° on L, 1s given by an ideal I of

L, such that 89;4’.
vl

The notation @ — &,a,& € L, , means that if the~
re is an element c¢c ¢ L,

if and only if x, 4 € I , ar x,

such that ¢ > a and ¢ 1is
comparable with & ,then ¢ 2 ¢ . One calls £ an immedia-
te successor of o . We denote by b (a)

diate successors of a

the set of imme~

. 14 (a)l implies the number of
the elements in the set 4in(a) .

Lemma 1. If a semilattice L, is finite ana C a
set of elements of L, having the property ¢ € C ,

lis(e)l =41 , then every maximal congruence relation 9‘:‘” .

aeC,on L, has a complement (9?41 Y im 6 (L),
where (a ] is & principal ideal of L , generated by a .

Proof. Let 49 and 0, be the greatest and the least

element of the lattice 6 (L) , respectively. We shall

show that (9‘:&])'- n(efc, scel,csa), whereaseC.
At first we show that n<e‘;c3 ; ceC) =0, The

relation before is valid if (1) for every & « L

’

r+4el,, elc] forsome c e C , ana (2) if for
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every two disjoimt elements B, , &, € L, &, &, &1, the-
re is an element ¢ ¢ C such thet 2, e (c]l amd

%, ¢ (c] . The conaition (1) follows immediately from
the fact that for every element % e L ,fe—~< 1,1 (R)l=1.

(2) & ama &, can be (1) ecomparable, or (ii) non-
comparable. (1) If &, and ’b'z are comparable, then we can
assume without any loss of generality, ,0:‘ < % . Aecording
to the finity of 1, , there is in L , a finite chain

By =X~ X, <X x,~ ...~<x, = & , If for some x; ,

év-o,lna,ﬂl—'{’ ’“(xa’_)‘ = 4 ) the“aertion

is immediately valid. If 14» (x3)| = 2 , we can choose

an immediate successor 4, % X, for &, = x, , and if

14» (4 )1 = 4, the assertion followa. If (in (g )' Z 2,
then, after a finite number of similar steps, we can reach

an element ¢ € C for which the assertion is valid, since

1L, 1is finite. In the case (ii), where %, and %, arenot

comparable, &, v &; > Ay, &, . Then according to (i) abo-

ve we £ind an element ¢ € C  such that say b oe(cl amd

Ay v k4 (c] . But then & ¢ (cl , since if & @ (c1,
so & v 4 «(c] , which is a contradiction.
Trivially, 4 & C . Then obviously a (N (65 ;
¢ € C,chadd vhere d = #(a) and thus 6% ; v
uN(OYg;ceC,ca) =14, , Hence

(0%9) = N8y ;ceC,c*a) .

Theorem l. Every finite semilattice L. has a canonieal
subdirect decomposition with simple factors.
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The proof follows directly from Lemma 1 and its proefe.

Theorem 1 shows that a canonical subdirect decomposition
of a semilattice L, with finite number of simple factors
does not imply any structural properties for L, different
from the case of lattices (see Dilworth [2, Thm. 3.31).

3. An infinjte constrmction. In the following, we consi~-
der a class of infinite semilattices which has a canonieal
subdirect decomposition with simple factors. We shall call a
semilattice L , for whiech O(L_) is distributive, a
quasidistributive semilattice. D. Papert has proved [4 , Thm.
7] that a semilattice L 1s quasidistributive if and only
if any two noncomparable elements o L., have no lower bound
in L, .

Lemmg 2, Let L, be a semilattice, a,&7€L_,a* &,

and @_,, a binary relation on L, such that x6,, 3 if
and only if (1), or (1i) end (iii) are valid, where (i) x =
=4 , {1) av¥Fux=auvluxvy =avluvuy ;
(111) oUuXx=x or LuUux=X and avug=y or Fuys=4y,
Then 6,4 1is a minimal congruence relation on L eollap-
sing the elements a and & of L, -

The proof is obviouse.

Following J. Varlet [6] we define a part of a semilsttice
Ly .let a,##ely, , @ & ., The part <a, &) of
L,_, is a set-theoretical union of the elements of L, eon~
tained by the closed intervals [a,a v &] and
f&,a vl oo L, .
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We shall say that a congruence class ( module © 1ia
trivial if for any two elements x, 4 &€ C, x w1y .

Lemma J. A semilattice L, 1s quasidistributive if and
only if the only nontrivial congruence class of the congruen—
ce relation 6, , 1is the part <a, &> of L, -

Broaf. 1° Let L, be a quasidistributive semilattice
and ¢ 9 d,c,d g <a,&), a s b and ¢ $ d , and
a,,c,d € L, . According to the definition of 6, 5
only three cases arise: (1) cuds>av & , (1) evd«<

<aud, and (1i1) cud and a U £ are noncomparable.
(1) cBpd mp cBpp cvd and df,g cud ,Thus

avevd wecvdemueud ., But if ¢ (or d ) 18
noncomparable with a v &, then a vec % ¢ and Lruc e
(avd &d and rud . d ), since av & amd ¢ (d)
have not a common lower bound in L (see [4, Thm. 71).

If for ¢ (ord )y, e>a v, then cvav& favlbueud
lor dvav¥ pavtrvecud ), since d # ¢ . Hence
[ ﬁaz’ d .

(11) If cvd <a v, then auc ke and culrs
$ C ,since if cua =¢ or cu & =c¢ ,then c6<a,d>,
which 1s a contradiction.

(111) ave=c, & uvec % ¢ , since the noncomparab-
le elements have not a eommon lower bound in L -

2° Let the only nontrivial congruence class module 6, 4
be the part (a,&> of L, for every two elements a |,
e Lu . Assume that two noncomparable elements ¢ and d

of L, have a common lower bound 4% in L, (see [4, Thm.
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71), and consider the congruence relation e ¢ d.qu,_ cud,
since hudwd,cvduc =cuvd , amd dv ek uve =
=dvcuduve ., But d § < h,c> =[h,c]l , sinced
and ¢ are noncomparable; and duv ec ¢ [R,c] , since
c< duec, Thus d.e,wc vd implies a contradiction.

Now we can prove a theorem concerning the complement
of 6,9 in 6CL,) .

Lemma 4. If L, 1is a quasidistributive semilattice,
then for any two elements a,& el _,,a # &, 6,5 has a

complement 9;_” in 6(L,) .

Proof. Consider the congruence relation“g 9%“] =X,
where A = (a,& > - a u & . The congruence relation
exists, since 6 (L) is the complete lattice. If

2(8p AX)u , where v % 4, z,4 €« L, , then 26, pu
and according to Lemma 3, 2, « € {a, &) ., This implies

92,,‘3 €167,y : xeAl for which ”ﬁ?z] z 0w
which is a contradiction. Hence 6,5 n X = 04

Conaider 6, , v X . Let x 4 4« be two elements of
Ly . Weshowthat w(fpuvX)2u aw which implies
0o v X = 15 . The proof contains three cases: (1) w =
zaukl ,(i1) 4 and @ v & are noncomparable, and (iii)
w<auvuld .

(1) If w Za v &, then L vz Zauvld and

w8y %Y for every X € A .

(11) If « and @ v & are noncomparable, then z U u &

£audr, since & &k au & , and thus z U« ¢ <a,&) .
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Then u 63,7% v for every x ¢ A .

(111) I u < au & ,then (1) wu e <(a,& > or (2) uc
<a (or “ua <& ),or (3) u<avsr and « 1is noncompa-
rable with @ and & . (1) If wu, zvu € {a,tr> ,
then w65 x v and if x v« € <a,&> then =~ U u>

> a v & , since two noncomparable elements have not a com

mon lower bound in L , and thus wByp avh and a v
ube:“, xuu forevery x € A, (2) If w <a ,then

u.e;’“a. for every X € A , for . € (x] if and only
if a € (x] , since two noneomparable elements of L, have
not a common lower bound in L .The last part of the proc
is similar to that of (1)e (3) w <a vt and 4 is noncom-
parable with @ and & , then & & <a,%&)> . Thus « 63 4 v

v or uefx] 4 v a for every x € A and further
wukrfpavt (or wmuvabyyauvd ). After this we can

continue as in the case (1), Hence X is the complement of
8oz in 6CL,) .

Theorem 2. Let L, be a quasidistributive semilattice,
where for every element a € L, , a#4 , there exists an
element & € iv(a) . Then L has a canonical subdirect
decomposition with simple factors if and only if 1 e L .

Proof. 1° Let 4@ L, . Clearly N(80;;x€C) =0y,

where C = L, -1 ., It follows from the quasidistributivity
of L, that forevery a1, 1&(a)l =4 . Thus the
assumption of the theorem well defines the set 4b(a) . But
then a(N(B(,y;xeC, xdad) = &»la) which
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implies G%aluf\(ezxjgxec,x¢a)=4e ,, and

the theorem follows.

29, Let the set 467 € P? generate a canonieal
In ? r

subdirect decomposition of L with simple factors. Accord-
ing to Remark 1 of T. Tanake [5] L, ¢ 4I,;neP}, ana
thus the set D={d:d ¢ 1, for any neP,del ¥ 18
nonempty. If |D| = 2 , then nce{ﬁ.,,pep).y 0p , which

is a contradiction. Hence D= {d3} , If 1,, conteins an ele-
ment @, @ >cd or a is noncomparable with d , then d €
€1, forsome peP, since a €I, , amd avdel,,
n,pn €P , acontradiction . Thus d = a for every a &

€L, ,whence 1 elL, .

Lemmas 2, 3 and 4 form a part of the work (71 .
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