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FRATTINIAN CONSTRUCTIONS

Jarmila LIS, Praha

1. Introduction. In accordance with [1] and [3], we
define the Frattini sublattice of a lattice as the intersec-
ction of all its maximal sublattices and we denote it by
$ (L) ; if there is no maximal sublattice, we define
$(L)=1L (by a maximal sublattice, here a maximal proper
one is meant). So we have the analogue of Frattini ‘s con~
struction, very well known in groups ([2], p.156),

We use these symbols and assumptions:

A (resp. v ) signifies the aymbol for the intersec-
tion (resp. for the union) of sets. Further, [a , #,...]
(resp. {a, &;,... 3 ) denotes the set consisting of a, V...
(resp. the sublattice generated by the set [a , £,...1 ).

We assume that J is a lattice and that the axiom
of choice holds.

We shall often use the following assertions:

Let 1, be a lattice. Then
(1) iJM,(Lﬁl_\ I (L) € (LY € L(VIwWwL(n)

(cf.[3], Lemma 2; T (I,) means the set of all irredu-

-
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cible elements of I , L (u) , Or resp. L{n) , means
the set of all v -reducible, or A -reducible elements
of L ). ’

(11) $(L)=[xl(xeL)&A(YT&L 4T, x} =L =51T} =1)]
(ef.[2], ps156).

2. Direct product

Let L, L, be lattices, L, x L, be their direct
product. Generally, it is not true that $(L, x L2)=§>(L4)xq>(lh).
We shall introduce some conditions which permit to go over
to the decomposition of the Frattini sublattice formed for
the direct product of lattices.

Theorem 1. (a) Let L, L, be lattices and let any
maximal sublattice M of L, x L, be of the form M=
= AxP where A is a sublattice of L1 , B is a sub-
lattice of L, .Then $(L,) = $(L,) = $(L >1,) .

(b) Let for any maximal sublattice M,' of L4 and
for any meximal sublattice M, of L, the lattices .M1 x
xL, and L x M, be maximal sublattices of L xL,.
Then

{:(L,,) = L) 29 (L, x Lz) .

Proof. 1) Let ¢ = (c“cz) € Q(Ld) » $(L,) and
c ¢ (I‘1 > Lz) " By (a) there exists a maximal sub-
lattice M .of L x L,,c¢ M such that M= Ax B .Sin-
ce M is maximel in L = L,»L, ,it nust be either
M=AxL, where A is a maximal sublattice of L

1 9
or M =L, =B,B being a naximal sublattice of Lz .
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Let M = A < L, where A is a maximal sublattice of
L, . Since cgM=AxL,,c,¢A, ¢, € P(L) -a con-
tradiction.

2) Let us suppose (b). If ¢, ¢ § (L,) , then there ex-
ists a maximal sublattice M, of L, such that ¢ ¢ M, -
By assumption, M, x L, is a maximal sublattice of L .
For any element %, of L, we have Cc , &,) & M.4 xL,
and it follows that (c ,%,) ¢ $(L) . Thus (L) &
€ L) =x $(L,) .

Corollary. If the conditions (a) and (b) hold, then

(L) = §(L,) = (L, x L) .

Definition. Let 1, be a lattice. We shall say that 1,
satisfies the X -condition for the element & ,if there
exists a maximal sublattice K of 1, which does not con-
tain £ and which contains some &, &, such that Ig; <
<<t .

1, satisfies the X -condition, if 1 satisfies the

X -condition for any element of L\ & (L) .

Lemma 1. Let L, , L, be lattices, r eL,,L, sa-
tisfying the X -condition for the element £, Then

AL, xLy) sl x (L,N[&]) .

Proof. L, =4 - trivial.

We assume L, # £ ; K, &, , I, are used in the same
sense as in the definition. We shall show that (x,q) €
¢ (L, xL,) whenever (x, ) &L, x (L, N[&1) .
It is sufficient to show that there exists a proper sublat-
tice T of L, » L, having the property {T, (x”y')}L,xng
=L, = L2 . In our case we can take T = L x X (clear-
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1y, L, x X s L,, > L2 )y (x,4)= (a, ) for arbit-
rary element a of L4 . We shall easily verify that
iL,xX,(a, b)}HxL’. =L,xL, : Indeed, let(k,u)e
eL,,x L, be arbitrary. As K is a maximal sublattice of
L, and & ¢ X , then wu = £(x,...,x, ) where f
ie a lattice polynomial in L, and .., X, € K & [&],
Then (%, )=£Cy,,...,qy,) where £ is the same lat-
tice polynomial as £ , but in L, x L, 4y ; = (R, x;),
¢ =4,...,m . If x. % & , then clearly (%,x.)eL xX;
if X, = & , then (4, &) = (M, &)U (a,&Nn (R, b)),
icee Che, &) e {L, xX,(a, ‘2’”1..,"1.,. 5 80 (e, u)e
efL, K, (cp,kr)}t",,“_2 .

Theorem 2, Let L1 ’ L2 be lattices, let I,2 satisfy
the X -condition. Then ¢ (L xL,) L = (L))

Proof follows by Lemma 1.

An immediate consequence of Theorem 2 is the following:

Corollary 1. Let L, be a chain without 0 and 1, L,
being an arbitrary lattice. Then $(L, x1,) = g .

Corollary 2. For an arbitrary lattice L, and any dis-
tributive lattice L, without 0 and 1

d(L, xL,) L,xdL,) .

Proof. We shall show that Lz satisfies the X -con~
dition. Let us suppose that this is not true, i.e., that
there exists an element & e L,N\ $(L,) such that for any
maximal sublattice X of L, which does not contain & , it
is either KX € L,NI[ &), or X € L,\ (&1 . Say that
e.g. K €ELNL®) .

In this case there is clearly an element ,6:, of Lz such
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that & < f; . Since %, & K,{K,,&;}Lz= L, , and hence
Y esX ,b;}l_z . By distributivity of 1, , one of the
following cases is necessarily true:

1)1r=1;,u)k, for some % e X ,

Ad b=k nk for some W & X
3) r=(t, uhk)n for some &, h e X

and it is easy to check that we obtain a contradiction in
each of these cases. ‘

By AxBBxA , it is immediate that the
following assertion holds:

Theorem 2°. Let L, be a lattice satisfying the X -
condition, Lz be an arbitrary lattice. Then

$CL, x L) =&(L)xL, .

It is possible to obtain similar results from Corol-

laries 1 and 2.

3. L -sum

Let L. be a lattice with the partial ordering <,
and lattice operatione u_, N , A € Jue (L) a possibly

empty set, U=[L, laeA]l a family of pairwise disjoint

lattices which are all disjoint with L ; if a € A , the
partial ordering in L, ia denoted by <, , the lattice
operations are denoted by v, , n, .
Denote K =(LNA) w ml%A L, and define a bina-

ry relation = in K :
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fx, 4y eL , then x €, 4 ;

x,ye€l,, a6l xS, y ;
x,yeK,x€ye{ xel,,yely,a,eh,asl,a & &

xel,,y€L\A,ael, a= 4,

xelLNA,gel, ,achA, x2 a .
The relation =. is a partial ordering. X is even
a lattice with operations U, n ; we shall describe

XU, XNy for xllry.:

({“"‘W} %, 46l ;

X O g
X Uy i
xuny {xh: o ele, achy
x,A}eK,xlly,; = J {a,u,_b’} xel,, 9:Lb,aﬂ,¢l’€A,a«$b‘;
Xxn an &

{a,u“/y.} xel,,acA,gel\A
. "/”n.’*

We shall call the lattice K the I, -sum of the fa-
mily 9L and we denote X by = (L la €A) . It repre-
sents a generalization of I, -sum defined in [3].

Now, let L. be a lattice with Jwe (L) # ; we can
ask if (=, (Lylae I (LM =dL)w YU, (L)
(ef.[3], Lemma 2).

As we assume that J ia a lattice, this is not in general

true, whi¢h can be demonstrated by Fig.l.
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Fig. 1

o L

(L) =['OI4:] X isthe L ~sumof L, , Ly ;
d(K)y=g .
However, we can show
Theorem 3. Let L be a lattice, A & Jre (L) and let
Lo, #+ #  be a lattice for all a € A . Then

(= (L laeA) = (L) w‘_ﬂfA pCLy) .

Proof. Denote K = =, (L,laed) .
First we shall describe all maximal sublattices of X .
1) Let M be a maximal sublattice of 1, and A g M . Then
NWa Z (L lael) is a maximal sublattice of X by
the definition of the binary operattions on X .
2) Let N Dbe a maximal sublattice of Lg for some fre A .
Then M = =, (L la € A)  is again a maximal sublat-
tice of X where for any element a € A , @ % £ , there
is I/, = L, and L) = N .
3) The maximal sublattice of a different type does not exist:
If M 1is a maximal sublattice of K , let us denote
L .=MmL, for a €A,
B=MmAmL)wlalacA, L +«0],
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icee, M= Zg(llaeAAB) .
Let x e K\ M be arbitrary, then $M ,x% =X .

a) If x e L , ‘then (.M,xiK=HB,x}L\A)w°_yAnBL;
and this implies B is a maximal sublattice of L  and
forall aeA L,=1, .

b) If x e L, for some & « A , then {M,xj, =

’ 4
=B, &} \A) v, :U(’MB)\NPJL“'“ {L.or"‘}l-g, ,therefore for all

aeA, a % &, vehave L = L,, L is a maximal
sublattice of 1L, and {B, &} = L .

In the case a), the maximal sublattice is of the sa-
me type as in 1), in the case b) it is of the same type as
in 2).

Now we obtain immediately: $ (= (L, laeA))=d(L)w
v Y s, .

Corollagry. Let LL: |i eI] be a family of latti-
ces. Then Q‘Z'glﬁ) =+ 9 (L;) (where + denotea the
ordinal sum).

Proof. The ordinal sum is a special case of the L =~
sum for a chain L , In [3] this corollary follows .immedia-

tely from Lemma 2, but it is true also provided some of the

lattices are empty, for W4 L& = :'z\aL ; Wwhere
J-[aﬁl;’-cl,l,’-_-ﬁ] .
4. ti 1 ome of its properties

Khee-Meng Koh showed in his interesting paper [3] that
for each lattice L , Cand (L) = 4 there exists a
lattice K such that &(X) =1, . Evidently, it is
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true also for the lattice L = §# .

We shall show here a generalization of Khee-Meng Koh’s
construction, which gives some stronger results.

Let I be a lattice with a partial ordering é‘_ ,

lattice operations v, , N, and Caxd (L) = 2 ,

NesDP=I(a,¥)la, bel,a> LI .

We add two new elements a, (&), a,(&) to L for
all (a, %) e ¥L such that if (a, &), (c,d) e U, (a,b)+
% (c,d) , suppoaing a, (&), a, (&), c(d),c,(d) pairwi-
se different. We obtain a set
K=Lwlay ()i =14,2, (a,tr) € €L ] . Let us introduce
two unary operations: For x € X we define X or X in
the following way:

DX=x=x if x el

2)Xma,x=4 if x = a (&) for some (a,&)s U ,
Ai=A1,2 .
Let us define a binary relation £, on X:
x,yeK ,x=2 4y & if x=g or X £ o -
Evidently, <, is a partial ordering in X . K is even
a lattice with lattice operations K s Ny which are de-
fined as follows: If x, 4 € K, x £, 4 , then X Uy 3 =
=4, XNgY = X 4
if xflyg , then X Yy =Xy g, XNy =Xn_2a .
Theorem 4. Let 1. be a lattice with Caxd (L) = 2 .
Then there exists a lattice K which satisfies the follo-
wing claims:

(i) L. is embeddable in X , (ii) L=X(L)wkK(n),
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(iii) (X)) = L .

Eroof can be given by the investigations of the latti-
ce X constructed for Y = [(a, &) (a, &) e D ,
a & (L) el o ¢ $CL)II .
Evidently, the claim (i) is true.
(ii): If x e K\NL , then xe& Jpn (K);if x € e (L),
then x ¢ $ (L), i.e., there exista 4 €1l  such that
either (x, 4)e 9l or (4, ,x)e . In this case x ¢
¢ Jve (K) and (ii) is also true.
(ii1): KNL = I (K) € XN $(X) , iee., dK)s L.
If xeL, x ¢ (X)) , then there is a maximal sublattice
M of X such that x & M , but then x ¢ (L) for
x$MmL andMmLl is a maximal sublattice in L .
By the choice of ¥, x @ {Iwt (K} NJIx (KY€ H(K) - o
contradiction.

Remark, 1) If the following supplement (iv) is added
to the hypothesis of Theorem 4,

(iv) every proper sublattice of X can be extended to
a maximal one,

it is possible to choose ¥ = D (ef.[3], Th. 3).

2) Sometimes it is possible to take U =L (a, &)l a ,
frel,a > &1 (for instance, when for each element
X of L there exists an element 4 with x > 4 or
g >— X e

Defipjtion. Let L, be a lattice. We shall call the
lattice X Frattini <0 =hull (or only Frattini hull)
of L ,iff X is formed from L by the introduced con-

struction for this 9! and the claims (i),(ii),(iii) are
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true in X .

Theorem 5. Let 1. be a lattice with Caxd (L) > 1 ,
let X be its Frattini hull, If I has some of the pro-
perties

(1) the lattice satisfies the D.C.C.;

(2) the lattice satisfies the A.C.C.}

(3) the lattice is finite;

(4) the lattice is complete;

(5) the lattice is complemented,
then X has the same property.

Proof. 1) Let D.C.C. be true in L , let

() 4y > gy > 0o D¢ Yy > e

be a descending chain of elements in X , then

(+*) ?_a ZLhZL 20 aLh ?.L oo 0

is a chain in L ;

%; = 44,4 Lff there exiats an element x of L such
that

(+++) i""‘éc"”iu) for 4 =4 ar 4=2 .

Evidently, there exists a positive integer m such
that the chain (##) has just m different elements; ac-
cording to this and to (+++), the chain (+) does not con-
tain more than 2m elements.

The case (2) can be demonstrated similarly.

3) Let I, be a finite lattice, then &) is also a fini-
te set and hence X ia finite.

(4) Let 1. be complete and let M be a subset of X .
Denote by H the set [x e K | ¥y e M 4 £ x1] .
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I£(a) H mM#+0 , then Card (HAaM) =1, i.e.,
HAM=[h] and % is the supremum of M in X;
it HAM=f, denate N(H AL) by h. We
shall show that % is the supremum of M in X ., Actual-
ly, xeM =¥y el x=4 =
=¥y el XS5y =DTE h =x=h;
further, if z € K, ¥x e M x &y z , then:
YoeM xsyX & 2z =z el = h = 2 = h <2,
(5) Let L be a complemented lattice, x e 1L and let x’
denote a complement of the element X .
For 4 e X we shall distinguish the following cases:
If (i) & %1, then (F)’ is a complement of 4 in K g
if (i1) 4 4 0 ,then ((y,)’ is a complement of 4 in X ;
if (iii) ‘@ =4 and —f!f = 0,i.e. g=1(0) or 1,(0),
then '11 (0) is a complement for '12 (0) in K .

This completes the proof of Theorem 5.

Remark. Let 1, be a lattice with Caxd (L) = &, ,
let K be ite Frattini hull. Then C(axd (L) = Caxd (K).

Lemma 2. Let L be a lattice with Caxd (L) > 2, X,
be its Frattini & -hull, X, be ita Frattini €L -hull
for U + . Then X, is not isomorph to K,_ .

Corollary. For each lattice L , Caxd (L)> 2 , there
exist at least two Frattini hulls which are not isomorph.

Let L, be a lattice with Caxd (L) > 4. Denote L
by (L), , the Frattini hull of L by (L), ((L),_ ) by
(L), for arbitrary positive integer m , supposing all

.Frattini hulls constructed in the same way. It means e.g.
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that (L), is the Frattini ‘d,, -hull of I, for % =
= [(a, &) a, ¥eL, ¥—~, a1, (L), is the Frattini
€, -null of (L) for e, = [(c,d)lc,de(L),d=<, el
and so on.
o0

We define (L) = ﬂLU‘Jo (L), as a lattice where the
partial ordering is determined by
x,yel(l), ,x< 4y &> 3m such that x, 4 € (L)y

.

and X ém,nzy, .

Let X denote the transitive closure of the follo-
wing relation ¢ in (L), :
x, 94 €(L)y,xeyé=>3m =4,xe(L),,ypell) ,X=y,orx=g
(¥, x mean the elements corresponding to x under the

unary operations defined on the Frattini hull of (L),_4 ).

Theorem 6. Let I, be a lattice with Caxd (L) =1 let
for all X, 4 € L, , x < o there exist x , 4, &l such
that x —, x, £, 4 —<, 4 and let each Frattini % -hull

be of this type:
‘a_"’ (= [ca,ze")'a—,,ere (L);_4 9 /cr—‘<(|_)1.‘-1a’] .

Then @ ((L),) = (L), .

Broof. Let a € (L), ,\ $ ((L), ) ,i.e., there exists
a maximal sublattice M in (L), such that ¢ § M . Clear-
ly, @ € (L), for some positive integer m and there is
some ¥ € (L), such that @ —<,, & or &—<,, a,6ssy
A —,, a,then a = a, (&)u a, (f) and therefore e.g.

m 2

a (&) &M . If en element 4 € (L), such that
4 % a,(&) or g =a,(l) is contained in M , then

MeL X where X=la,a (#] wlixlx e(L),, xxa, ()] .
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But each element x of X \ [a] daes not belong to
{(LNX) wlalt, , especially, a, (&) & {M, ek, -
a econtradiction,’

Then @, (&) and the elements -, 3 * a,(f) are not
contained in M and we again obtain a contradiction in

the same way.

5. Iterations of the Frattini gublattice and the first
problem of [3]

Let L be a lattice and « and ordinal number. Deno-
te by $°(L) the lattice L . We shall proceed by trans-
finite induction in defining &®(L) = d(* L)) if o -1
exists and @“(L):ﬂ@‘,‘@"(L) for < limiting ordinal.

We shall say that X is a submaximal sublattice of
L of the order 0 iff K = L ., We shall call X the

submaximal sublattice of L of the order o + {4 iff one
of the following cases takes place:
Cagse I. K is a maximal sublattice of a submaximal subla-
ttice of the oréer - 20
Case II. There is no maximal sublattice in every submaximal
sublattice of the order « and X ia a submaximal sublat-
tice of the order o .

Finally, X is said to be a gpubmaximal sublgttice of
L of fhe order o« where o is a limiting ordinal iff
X= Ak’ where X’ range over all submaximal sublatti-
ces of the orders 3 < x .

We denote by ¥, (L) the family [K| K is a subma-

ximal sublattice of 1. of the order o« ] and we define
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q:‘(L)-KQ“ K, . Evidently, &(L)= (L) = d'(L) .

We shall call (L) (resp. $*(L) ) the jiterated
Frgttini sublattice of the order o and of the type
o CL) (resp. $*(L) ). The sublattice §™(L), meN,
has been defined in [3].

Theorem 7. For any lattices L,, L, and any ordi-
nal number oc )

(L + L) = §¥(L) + =<, ,

B (L,+L,) = . (L) + du (L,)

Remark. For any positive integer m  there exist lat-

tices L, M such that ™ (L) % £, (L) =4 and
S MY+ F, Qp M) =f

In fact, it is sufficient to take L = (L’), where L’ is
the chain with Card (L) =2 and M = L, is the latti-
ce of Fig.2.

Fig.2

4

3y 89 Anay

0] Ln

According to Fig.2, it is possible that there exist
m., m positive integer such that &, (L) = Qm., (L)% F
and ¢, (L) = J'§ -
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However, it is not true in the case of the iterated
Frattini sublattice of the type $* (L) , as it can be
deduced from the following consideration:

If B<o and PPC(L)= P*(L), then PP(L) con-
tains no maximal sublattice and therefore $?(L) = Qf( L)
for all o > 3 .

In [3], the problem
"Does the sequence L 2 $ (L)= $%(L)=2... alwaya termi-
nate?" is formulated.

Consider first that if 1. is a set, then the index
set I of ordinal numbers such that LR A, R... RA 3 -
tel satisfies Card (1) & Card (L) .

It is obvious that there exists an ordinal number o«
such that *(L)=3%(L) for all ¢ > o . But it is not
certainly true that there always exists an ordinal number
oc such that d*(L) = # . Indeed, let us observe the
lattice X of Fige3 (which has no maximal sublattice) or
the I -sum of this lattice X where L is the lattice
of Fig.4 and the element x is replaced by K .

Fig.3
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Fig. 4 (ef.[3], for Cand (L) < %, )

Evidently, for the second construction the following
claim is satisfied: For any ordinal number o there ex-
ists a lattice H such that: if « > (3 > 4 , then
3%°H) § d7(H) , but for all ordinal numbers o”
)+ 4 .

A similar assertion holds for the iterated Frattini
sublattices of the type $, (L) , i.e.: For an arbitra-
ry lattice I  there exists an ordinal number oc such
that $ (L) = (L) for all B> o .

Suppose it is not true, then there are ordinal numbers o« ,

# such that Caxd (L)= %y, 8, € « < f8 and
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P (L) % p(L). Then there necessarily exists a submaximal
sublattice X of L of the order 3 such that for each
submaximal sublattice K’ of the order o = the in-
clusion XK & X’ implies X § X’ .
Let us have the sequence of submaximal sublattices X,
of L of the order v with K; = X :
L=X,2XK,2...2K 2... .

If there exist two ordinal numbers f,, §, with § < §,
and X = ng ,then Kg = K¢ for all § > § , therefo-
re it is Kd;zxd‘i for all d;, d;, dj< o) & « and ain-
ce Card (L) = &, < &4, , = o it gives a contradiction

by the above remark.

Summary. Let L be a lattice with Card (L) = & _ .
Then there exist ordinal numbers o , <, such that o« ,
. g
x, = #4,, end forany B>, $'(L)=Q (L), for

any g > o, ’1’%(1‘7= $, (L) .

6. The lattice of all sublattices o ic

In this chapter we shall assume that L is a nonempty
lattice. .

The lattice of all sublattices of I, is denoted by
92 (L) , ita lattice operations are denoted as follows:
Aov,B=4AB}, AngB=AmB .

SLCL) is a complete lattice with the least ele-
ment £ and the greatest element I, . Each sublattice A
such that Caxd (A) = 4 is an atom of 4R (L) and to
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every atom of YL (L) there corresponds a sublattice
which consists of one element. A similar relation is be-
tween the maximal sublattices and the dual atoms of

(L) .

In this section we shall study the Frattini sublatti-
ce of 1. as an element of P (L)

Evidently, if ¥2 (L) is complemented, then & (L)
is empty, but the converse does not hold, as it can be seeh
from Fig. 5: There exists no complement to the marked sub-

lattice A in <2(L) +though (L) is empty.

Fige 5

If X is a complete latfice, let us denote red (K)=
- Y\ m (ef.[4]) (if there exista no element m & X
m-<1

such that m — 1, we put rad (K)=4 ). Obviously,
rad (FLCL)) = (L) .

We shall call an element £ of a lattice M with the
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greatest element 1 gmall if & U & + 4 for all e
of M, M & 4., It is immediate that if & =< % and &

is emall, then % ia also small.
Theorem 8. Let L be a lattice. Then

(L) = nad (L(L))=,[AlAis amall in 2y .

Proof. Clearly, if A is small in 2 (L) , then
AsdP(L) . Let B2 A for all A small in (L) ,
i.e., {hyi'_ B for all {fj  emall in (L) . As
BCL)Y = [mI4$m},_  is amall in $2(L)I , $(L) is
contained in B .

(L) is not necessarily small in $2(L) as it
can be seen from Fig. 3.

Corollary 1. Let L. be a latice.

If A is a sublattice of L and A is amall in
(L) ,then A S (L) .

If moreover nad(fLCL)) is small in <£(L) , then
A is emall in 42(L) iff A is a sublattice of (L).

Corollary- 2. The following conditions are equivalent:
1) <L) containa a small element different from

g,
2) nrad (L) % 4 ,

3 P+ A .

Te e i £ imgl ideals of g 1 ic
Let I, be a lattice, let us denote $I(L) =1 if
there exists no maximal ideal of L and $I(L)= AM
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otherwise, where M  are maximel ideals of L .
In this chapter we shall compare the sublattices
$(L)Y =and $IC(LY. I(L) has completely different

properties than @ (L) , as it can be seen from the com-

parison of the corresponding assertions.

Lemma 3. Let L, , L, be lattices, L,
empty. Then

$I(L,+L) =L +&I(L,) .

being non-

Corollary. 1) If L is nontrivially decomposable in
an ordinal sum, then &I (L) is nonempty.

2) If L. is a chain, then $1(L) is empty iff
Cond (LY = 4 .,

3) If 1. is a lattice with Card (L) > 1 such that
every descending chain of reducible elements of L

nite, then $ I(L) 1is nonempty.

is fi=-

Remark. For every lattice L  there exists a lattice

X such that $I(K) =L . We can take, e.ge, K =L +L’
where L’ 1is a singleton.

Iheorem 9. Let L, , L, be lattices. Then

61(1.,, »xL,) = QI(L‘,) x & I(L,)

Proof. It is sufficient to realize that
a) I is an ideal of L1 = L2 iff 1 =I1x I, wvhere I,
is an ideal of L, , I, is anidealof L, , 1

1
slxel |3ye L, such that (x,4)e 11 , 1

2 =
=[lygel,l3xe L, such that (x,4)e 11 ,
b) I is a maximal ideal of L, x L, iff I=1x1I,
where either I, = L, and I, is a maximal ideal of L,
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or I, is a maximal ideal of L, and L, =1, .

1
Theorem 10. Let L. be a lattice with 4 , Then $I(L)
is empty iff for all h €L , A& s 4 there exists an ele-
ment % &€ L, %k 44 such that hu k = 1 .

Proof. Let (a,,&,,... ] denote the ideal generated
by the set La,, a,,.-- 3 . Let mel, hsi, h &dI(L).
Hence, there exists & maximal ideal I in L  such that
(I, ] =4, Then there exists an element % & I such
that % v h =4, o 4 , because of I & L .
Let M w4, R4, HUS =41 .Then h ¢ (k] and
(C%1,m] =L . By Zorn’s lemma, there exists a maximal

ideal I, such that & & Io and (k1< Io . I, is even a
maximal jdeal of L , hence % ¢ § IiyL).

The proof of the following lemma is immediate:

Lemma 4. Let Caxd (L) >4, L be a lattice satiafy-
ing A.C.C. Then I is a maximal ideal of I, iff Iax (a]

for some dual atom a

Corollary. Let L. be a lattice satisfying A.C.C. and
Caxd (L) >4 , Then $I(L)=Lh|h is small in L 1.
If in addition L is a complete lattice, then

QICL)=LHx | h is small in L 1= (xad(L)] .

Proofe If 5 is small in 1. then sva < 41 for all
dual atoms, i.e., h = a and s0o h e« QIC(L) .
If % « $I(L) , then & £ a for all dual atoms, i.e.,

A is small.
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If L is complete, then $ I(L)~ _@(m]— (rad (LY .

11
£2]
3]

(4]
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