Commentationes Mathematicae Universitatis Caroline

Jarmila Lisá
Frattinian constructions

Commentationes Mathematicae Universitatis Carolinae, Vol. 13 (1972), No. 3, 511--533

Persistent URL: http://dml.cz/dmlcz/105438

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae 13,3(1972)

FRATTINIAN CONSTRUCTIONS
Jarmila LISA, Praha

```
1. Introduction. In accordance with [1] and [3], we define the Frattini sublattice of a lattice as the intersecction of all its maximal sublattices and we denote it by \(\Phi(L) ;\) if there is no maximal sublattice, we define \(\Phi(L)=L\) (by a maximal sublattice, here a maximal proper one is meant). So we have the analogue of Frattini s construction, very well known in groups ([2], p.156),
We use these symbols and assumptions:
\(\cap\) (resp. \(\mathbb{C}\) ) signifies the symbol for the intersection (resp. for the union) of sets. Further, \([a, b, \ldots]\) (resp. \(\{a, b, \ldots\}_{L}\) ) denotes the set consisting of \(a, b, \ldots\) (resp. the sublattice generated by the set \([a, b, \ldots]\) ).
We assume that \(\varnothing\) is a lattice and that the axiom of choice holds.
We shall often use the following assertions:
Let \(L\) be a lattice. Then
(i) \(\{\operatorname{Irr}(L)\}_{L} \backslash \operatorname{Irr}(I) \subseteq \Phi(L) \subseteq L(u) ש I(n)\)
(cf.[3], Lemma 2; Jrr (I) means the set of all irredu-
AMS, Primary: 06A20
Ref. Ž. 2.724 .8
```

cable elements of $L, L(\nu)$, or resp. $L(\cap)$, means the set of all u-reducible, or \cap-reducible elements of I).
(ii) $\Phi(I)=\left[x \mid(x \in L) \&\left(\forall T \subseteq L,\{T, x\}_{L}=I \Rightarrow\{T\}_{L}=L\right)\right]$ (cf. [2], p.156).

2. Direct product

Let I_{1}, L_{2} be lattices, $L_{1} \times I_{2}$ be their direct product. Generally, it is not true that $\Phi\left(L_{1} \times I_{2}\right)=\Phi\left(I_{1}\right) \times \Phi\left(L_{2}\right)$. We shall introduce some conditions which permit to go over to the decomposition of the Frattini sublattice formed for the direct product of lattices.

Theorem 1. (a) Let L_{1}, I_{2} be lattices and let any maximal sublattice M of $I_{1} \times L_{2}$ be of the form $M=$ $=A \times B$ where A is a sublattice of I_{1}, B is a sublattice of I_{2}. Then $\Phi\left(I_{1}\right) \times \Phi\left(I_{2}\right) \subseteq \Phi\left(I_{1} \times I_{2}\right)$.
(b) Let for any maximal sublattice M_{1} of L_{1} and for any maximal aublattice M_{2} of L_{2} the lattices $M_{1} \times$ $\times I_{2}$ and $I_{1} \times M_{2}$ be maximal sublattices of $I_{1} \times I_{2}$. Then

$$
\Phi\left(I_{1}\right) \times \Phi\left(I_{2}\right) \supseteqq \Phi\left(I_{1} \times I_{2}\right)
$$

Proof. 1) Let $c=\left(c_{1}, c_{2}\right) \in \Phi\left(L_{1}\right) \times \Phi\left(I_{2}\right)$ and $c \notin\left(I_{1} \times I_{2}\right)$. By (a) there exists a maximal sublattice M of $L_{1} \times I_{2}, c \notin M$ such that $M=A \times B$. Since M is maximal in $L=L_{1} \times L_{2}$, it must be either $M=A \times L_{2}$ where A is a maximal sublattice of L_{1}, or $M=L_{1} \times B, B$ being a maximal sublattice of L_{2}.

Let $M=A \times I_{2}$ where A is a maximal sublattice of I_{1}. Since $c \notin \mathbb{M}=A \times I_{2}, c_{1} \notin A, c_{1} \notin \Phi\left(I_{1}\right)$ - a contradiction.
2) Let us suppose (b). If $c_{1} \notin \Phi\left(I_{1}\right)$, then there exists a maximal sublattice M_{1} of I_{1} such that $c_{1} \& M_{1}$. By assumption, $M_{1} \times L_{2}$ is a maximal sublattice of L. For any element h_{2} of L_{2} we have $\left(c_{1}, h_{2}\right) \neq M_{1} \times L_{2}$ and it follows that $\left(c_{1}, h_{2}\right) \notin \Phi(I)$. Thus $\Phi(I) \subseteq$. $\subseteq \Phi\left(L_{1}\right) \times \Phi\left(L_{2}\right)$.

Corollary. If the conditions (a) and (b) hold, then

$$
\Phi\left(I_{1}\right) \times \Phi\left(I_{2}\right)=\Phi\left(I_{1} \times I_{2}\right)
$$

Definition. Let L be a lattice. We shall say that L satisfies the $X=$-condition for the element b, if there exists a maximal sublattice K of L which does not contain b and which contains some b_{1}, b_{2} such that $b_{1}<$ $<b<b_{2}$.
L satisfies the X-condition, if L satisfies the X-condition for any element of $L \backslash \Phi(L)$.

Lemma 1. Let L_{1}, I_{2} be lattices, b $\in I_{2}, I_{2}$ satisfying the X-condition for the el ement $\&$. Then
$\Phi\left(I_{1} \times I_{2}\right) \subseteq I_{1} \times\left(I_{2} \backslash[b]\right)$.
Proof. $I_{1}=\varnothing$ - trivial.
We assume $L_{1} \neq \varnothing ; K, b_{1}, b_{2}$ are used in the same sense as in the definition. We shall show that $(x, y) \neq$ $\notin \Phi\left(I_{1} \times I_{2}\right)$ whenever $(x, y) \notin I_{1} \times\left(I_{2} \backslash[b 1)\right.$. It is sufficient to show that there exists a proper sublattice T of $L_{1} \times L_{2}$ having the property $\{T,(x, y)\}_{L_{1} \times L_{2}}=$ $=I_{1} \times I_{2}$. In our case we can take $T=I_{1} \times K$ (clear-
$I_{y}, I_{1} \times \mathcal{K}$ ㄷ $\left.I_{1} \times I_{2}\right),(x, y)=(a, b)$ for arbitrary element a of I_{1}. We shall easily verify that $\left\{L_{1} \times K,(a, b)\right\}_{L_{1} \times L_{2}}=L_{1} \times L_{2}$: Indeed, let $(k, u) e$ e $L_{1} \times L_{2}$ be arbitrary. As K is a maximal sublattice of I_{2} and $b \notin \mathbb{K}$, then $u=£\left(x_{1}, \ldots, x_{m}\right)$ where f is a lattice polynomial in I_{2} and $x_{1}, \ldots, x_{n} \in \mathbb{K} \because[b]$. Then $(k, k)=f^{\prime}\left(y_{1}, \ldots, y_{n}\right)$ where f^{\prime} is the same lattice polynomial as f, but in $L_{1} \times L_{2}, y_{i}=\left(k, x_{i}\right)$, $i=1, \ldots, n$. If $x_{i} \neq b$, then clearly $\left(k, x_{i}\right) \in I_{1} \times K$; if $x_{i}=b$, then $(k, b)=\left(\left(k, b_{1}\right) \cup(a, b)\right) \cap\left(k, b_{2}\right)$, i.e. $(k, b) \in\left\{L_{1} \times K,(a, b)\right\}_{L_{1} \times L_{2}} ;$ so $(k, \mu) \in$ $\in\left\{L_{1} \times K,(a, b)\right\}_{L_{1} \times L_{2}}$

Theorem 2 Let I_{1}, L_{2} be lattices, let L_{2} satisfy the X-condition. Then $\Phi\left(I_{1} \times L_{2}\right) \subseteq I_{1} \times \Phi\left(I_{2}\right)$.

Proof follows by Lemma 1.
An immediate consequence of Theorem 2 is the following:
Corollary 1. Let L_{2} be a chain without 0 and $1, L_{1}$ being an arbitrary lattice. Then $\Phi\left(L_{1} \times L_{2}\right)=\varnothing$.

Corollary 2. For an arbitrary lattice L_{1} and any distributive lattice L_{2} without 0 and 1
$\Phi\left(I_{1} \times I_{2}\right) \subseteq I_{1} \times \Phi\left(I_{2}\right)$.
Proof. We shall show that I_{2} satisfies the X-condition. Let us suppose that this is not true, i.e., that there exists an element b $\in I_{2} \backslash \Phi\left(L_{2}\right)$ such that for any maximal sublattice K of I_{2} which does not contain b, it is either $K \subseteq L_{2} \backslash[b)$, or $K \subseteq L_{2} \backslash(b]$. Say that e.g. $K \leq L_{2} \backslash[\&)$.

In this case there is clearly an element b_{1} of L_{2} such
that $b<b_{1}$. Since $b_{1} \notin K,\left\{K, b_{1}\right\}_{L_{2}}=I_{2}$, and hence b $\varepsilon\left\{K, b_{1}\right\}_{L_{2}}$. By diatributivity of L_{2}, one of the following cases is necessarily true:

1) $b=b_{1} u$ fe for some le $\in K$,
2) $b=b_{1} \cap$ for some $k \in K$,
3) $b=\left(b_{1} \cup k\right) \cap h$ for some k, $h \in K$
and it is easy to check that we obtain a contradiction in each of these cases.

By $A \times B \cong B \times A, \quad$ it is immediate that the following assertion holds:

Theorem 2^{\prime}. Let L_{1} be a lattice satisfying the X condition, I_{2} be an arbitrary lattice. Then
$\Phi\left(I_{1} \times I_{2}\right) \subseteq \Phi\left(I_{1}\right) \times I_{2}$.
It is possible to obtain similar results from Corollaries 1 and 2.

3. L -sum

Let L be a lattice with the partial ordering E_{L} and lattice operations $U_{L}, \cap_{L}, A \subseteq \operatorname{Jrr}(L)$ a possibly empty set, $\mathscr{C l}=\left[L_{a} \mid a \in A\right]$ a family of pairwise disjoint lattices which are all disjoint with L; if $a \in A$, the partial ordering in I_{a} is denoted by \leqslant_{a}, the lattice operations are denoted by u_{a}, \cap_{a}.

Denote $K=(I \backslash A) \Psi \underset{a \in A}{\bigcup_{a}} I_{a}$ and define a binary relation \leqslant in K :
$x, y \in K, x \leqslant y \Leftrightarrow\left\{\begin{array}{l}x, y \in L, \text { then } x \leqslant_{L} y ; \\ x, y \in L_{a}, a \in A, x \in a y ; \\ x \in L_{a}, y \in L_{\ell}, a, b \in A, a \neq b, a \in_{L} b ; \\ x \in I_{a}, y \in L \backslash A, a \in A, a \leq_{L} y ; \\ x \in I \backslash A, y \in L_{a}, a \in A, x \leqslant_{L} a .\end{array}\right.$
The relation \leq is a partial ordering. K is even a lattice with operations U, \cap; we shall describe $x \cup y, x \cap y$ for $x \| y$:
$x, y \in K, x \| y ;\left\{\begin{array}{l}x u y \\ x \cap y\end{array}\right\}=\left\{\begin{array}{l}\left\{\begin{array}{l}x u_{L} y \\ x n_{L} y y\end{array}\right\} x, y \in L ; \\ \left\{\begin{array}{l}x u_{a} y \\ x n_{a} y\end{array}\right\} x, y \in L_{a}, a \in A ; \\ \left\{\begin{array}{ll}a u_{L} b \\ a n_{L} b\end{array}\right\} x \in L_{a}, y \in L_{b}, a, b \in A, a \neq b ; \\ \left\{\begin{array}{l}a u_{L} y \\ a\end{array} \cap_{L} y\right.\end{array}\right\} x \in L_{a}, a \in A, y \in I \backslash A$.
We shall call the lattice K the L-sum of the family $C l$ and we denote K by $\Sigma_{L}\left(L_{a} \mid a \in \mathcal{A}\right)$. It represents a generalization of L-sum defined in [3].

Now, let L be a lattice with $\operatorname{Jrr}(L) \neq \varnothing$; we can ask if $\Phi\left(\Sigma_{L}\left(L_{a} \mid a \in \operatorname{Irr}(L)\right)\right)=\Phi(L) \bigcup_{a \in A}^{\bigcup_{U}} \Phi\left(I_{a}\right)$ (cf.[3], Lemma 2).
As we assume that \varnothing is a lattice, this is not in general true, which can be demonstrated by Fig.l.

Fig. 1

$$
\begin{aligned}
& \phi(L)=[0,1] \quad K \text { is the } L \text {-sum of } L_{a}, L_{b} ; \\
& \Phi(K)=\varnothing .
\end{aligned}
$$

However, we can show
Theorem 3. Let 1 be a lattice, $\mathcal{A} \in \operatorname{Irr}(L)$ and let $L_{a} \neq \varnothing$ be a lattice for all a $\in \mathcal{A}$. Then

$$
\Phi\left(\Sigma_{L}\left(L_{a} \mid a \in A\right)\right)=\Phi(L) \omega_{a} \cup_{A} \Phi\left(I_{a}\right)
$$

Proof. Denote $K=\Sigma_{L}\left(I_{a} \mid a \in A\right)$. First we shall describe all maximal sublattices of \mathbb{K}.

1) Let M be a maximal sublattice of L and $A \subseteq M$. Then $M^{\prime}=\Sigma_{M}\left(I_{a} \mid a \in A\right)$ is a maximal sublattice of K by the definition of the binary operattons on K.
2) Let N be a maximal sublattice of L_{b} for some b $\in \mathbb{A}$. Then $M=\Sigma_{L}\left(I_{a}^{\prime} \mid a \in A\right)$ is again a maximal sublattice of K where for any element $a \in \mathcal{A}, a \neq b$, there is $I_{a}^{\prime}=I_{a}$ and $I_{b}^{\prime}=N$.
3) The maximal sublattice of a different type does not exist:

If M is a maximal sublattice of K, let us denote

$$
\begin{aligned}
& I_{a}^{\prime}=M \cap I_{a} \text { for } a \in A, \\
& B=\left(M \cap L^{\prime}\right) w\left[a \mid a \in A, I_{a}^{\prime} \neq \varnothing\right],
\end{aligned}
$$

i.e., $M=\Sigma_{B}\left(I_{a}^{\prime} \mid a \in A \cap B\right)$.

Let $x \in K \backslash M$ be arbitrary, then $\{M, x\}_{K}=X$.
a) If $x \in L$, then $\{M, x\}_{k}=\left(\left\{B, x \xi_{L} \backslash A\right) \omega_{a \in A \cap B} I_{a}^{\prime}\right.$ and this implies B is a maximal sublattice of I and for all $a \in A \quad I_{a}=I_{a}^{\prime}$.
b) If $x \in I_{\ell}$ for some $b \in \mathcal{A}$, then $\{M, \times\}_{k}=$

$a \in A, a \neq b$, we have $I_{a}^{\prime}=I_{a}, I_{b}^{\prime}$ is a maximal sublattice of $I_{\&}$ and $\left\{B, b \xi_{L}=I\right.$.

In the case a), the maximal sublattice is of the same type as in 1), in the case b) it is of the same type as in 2).
Now we obtain immediately: $\Phi\left(\Sigma_{L}\left(L_{a} \mid a \in A\right)\right)=\Phi(L) ש$ $\psi_{a \in A} \Phi\left(L_{a}\right)$.

Corollary. Let $\left[L_{i} \mid i \in I\right]$ be a family of lattices. Then $\Phi\left(+_{i \in I_{i}}\right)={ }_{i \in I} \Phi\left(L_{i}\right) \quad$ (where + denotes the ordinal sum).

Proof. The ordinal sum is a special case of the L sum for a chain L. In [3] this corollary follows immediately from Lemma 2, but it is true also provided some of the lattices are empty, for $i_{\&}^{+} I_{i}=_{i \in I \backslash J}^{+} I_{i}$ where $J=\left[j \mid j \in I, L_{j}=\varnothing\right]$.

4. The Frattini hull and some of its properties

Khee-Meng Koh showed in his interesting paper [3] that for each lattice L, Card (L) $\geqslant 1$ there exists a lattice K such that $\phi(K)=1$. Evidently, it is
true also for the lattice $L=\varnothing$.
We shall show here a generalization of Khee-Meng Koh's construction, which gives some stronger results.

Let L be a lattice with a partial ordering \leq_{L}, lattice operations U_{L}, \cap_{L} and $\operatorname{card}(L) \geq 2$, er $\subseteq D=\left[(a, b) \mid a, b \in L, a>_{L} b\right]$.

We add two new elements $a_{1}(b), a_{2}(b)$ to I for all $(a, b) \in$ er such that if $(a, b),(c, d) \in \mathscr{C l},(a, b) \neq$ $*(c, d)$, supposing $a_{1}(b), a_{2}(b), c_{1}(d), c_{2}(d)$ pairwise different. We obtain a set $K=L ש\left[a_{i}(b) \mid i=1,2,(a, b) \in e r\right]$. Let us introduce two unary operations: For $x \in \mathbb{K}$ we define $\overline{\mathbb{x}}$ or \underline{x} in the following way:

1) $\bar{x}=\underline{x}=x$ if $x \in 1$;
2) $\bar{x}=a, \underline{x}=b$ if $x=a_{i}(b)$ for some $(a, b) \in$ ell, $i=1,2$.
Let us define a binary relation \leqslant_{K} on \mathcal{K} : $x, y \in K, x \leqslant_{K} y \Longleftrightarrow$ if $x=y$ or $\bar{x} \leqslant_{L} \underline{y}$. Evidently, \leqslant_{K} is a partial ordering in \mathcal{K}, K is even a lattice with lattice operations U_{K}, \cap_{K}, which are defined as follows: If $x, y \in \mathbb{K}, x \leq_{k} y$, then $x u_{k} y=$ $=y, x \cap_{k} y=x$;
if $x \| y$, then $x u_{k} y=\bar{x} u_{L} \bar{y}, x \cap_{K} y=x \cap_{L} y$.
Theorem 4. Let L be a lattice with Card (I) ≥ 2. Then there exists a lattice K which satisfies the following claims:
(i) L is embeddable in K, (ii) $L=K(u) ш K(n)$,
(iii) $\Phi(\mathbb{K})=I$.

Proof can be given by the investigations of the lattice K constructed for $\mathscr{M}=[(a, b) \mid(a, b) \in D$, $a \$ \Phi(L)$ vel b $\$ \Phi(L)]$.
Evidently, the claim (i) is true.
(ii): If $x \in K \backslash I$, then $x \in \operatorname{Irer}(K) ;$ if $x \in \operatorname{Irr}(I)$, then $x \notin \Phi(L)$, i.e., there exists $y \in 1$ such that either $(x, y) \in \mathscr{C l}$ or $(y, x) \in \mathscr{C l}$. In this case $x \notin$ \& Irr (K) and (ii) is also true.
(iii) : $K \backslash 1=\operatorname{Irr}(\mathbb{K}) \subseteq K \backslash \Phi(\mathbb{K})$, i.e., $\Phi(\mathbb{K}) \subseteq L$. If $x \in L, x \notin \Phi(K)$, then there is a maximal sublattice M of K such that $\times \notin M$, but then $\times \$ \Phi(I)$ for $x \neq M m 1$ and $M \in \mathcal{L} \quad$ is a maximal sublatice in L. By the choice of $\mathscr{C}, x \in\{\operatorname{Irr}(K)\}_{K} \backslash \operatorname{Irr}(K) \subseteq \Phi(K)$ - a contradiction.

Remark. I) If the following supplement (iv) is added to the hypothesis of Theorem 4,
(iv) every proper sublattice of K can be extended to a maximal one,
it is possible to choose $\mathscr{C l}=\mathbb{D}$ (cf.[3], Th. 3).
2) Sometimes it is possible to take $\mathscr{C}=[(a, b) \mid a$, be $\left.L, a>_{L} b\right]$ (for instance, when for each element x of L there exists an element y with $x>_{L}$ y or $y \gg_{L} x$.).

Definition. Let L be a lattice. We shall call the lattice K Erattini al =hull (or only Erattini hull) of L, iff K is formed from L by the introduced construction for this \mathscr{O} and the claims (i), (ii), (iii) are
true in K.
Theorem 5. Let L be a lattice with Card (1) >1, let K be its Frattini hull. If I has some of the properties
(1) the lattice satisfies the D.C.C.;
(2) the lattice satisfies the A.C.C.;
(3) the lattice is finite;
(4) the lattice is complete;
(5) the lattice is complemented,
then X has the same property.
Proof. 1) Let D.C.C. be true in L, let
(+) $\quad y_{1}>_{K} y_{2}>_{K} \ldots>_{K} y_{n}>_{K} \ldots$
be a descending chain of elements in K, then
(++) $y_{1} \geq_{L} y_{2} \geq_{L} \ldots \geq_{L} y_{m} \geq_{L} \ldots$
is a chain in L;
$y_{i}=y_{i+1}$ iff there exiats an element x of I auch that
(+++) $y_{i}=x_{j}\left(y_{i+1}\right) \quad$ for $j=1$ or $j=2$.
Evidently, there exists a positive integer m such that the chain (++) has just m different elements; according to this and to (+++), the chain (+) does not contain more than $2 m$ elements.
The case (2) can be demonstrated similarly.
3) Let L be a finite lattice, then \mathscr{D} is also a finite set and hence K is finite.
(4) Let I be complete and let M be a subset of K. Denote by H the set $\left[x \in K \mid \forall y \in M \quad y \leq_{K} \times\right]$.

If (a) $H \cap M \neq \varnothing$, then $\operatorname{Card}(H \cap M)=1$, i.e., $H \cap M=[h]$ and h is the aupremum of M in X; if (b) $H \cap M=\varnothing$, denote $\cap(H \cap L)$ by h. We shall show that k is the supremum of M in K. Actual$y_{y} x \in M \Rightarrow \forall y \in \mathcal{H} \quad x \leq_{k} y \Longrightarrow$
$\Longrightarrow \forall y \in H \quad \bar{x} \leqslant_{L} y \Longrightarrow \bar{x} \leqslant_{L} h \Longrightarrow x \leqslant_{x} h ;$ further, if $z \in \mathcal{K}, \forall x \in M \quad x \leqslant_{k} x$, then:
 (5) Let L be a complemented lattice, $x \in 1$ and let x^{\prime} denote a complement of the element x. For $y \in \mathbb{X}$ we shall distinguish the following cases:
If (i) $\bar{y} \neq 1$, then $(\bar{y})^{\prime}$ is a complement of y in K; if (ii) $y \neq 0$, then $(\underline{y})^{\prime}$ is a complement of y in K; if (iii) $\bar{y}=1$ and $y=0$, i.e. $y=1_{1}(0)$ or $1_{2}(0)$, then $1_{1}(0)$ is a complement for $1_{2}(0)$ in K. This completes the proof of Theorem 5.

Remark. Let 1 be a lattice with Card (L) $\geq \$_{0}$, let K be its Frattini hull. Then C ard $(L)=$ Card (K).

Lemma 2. Let I be a lattice with Card (L) $>2, K_{1}$ be its Frattini \mathbb{D}-hull, X_{2} be ita Frattini \& \mathbb{l}-hull for $\operatorname{CH} \neq \mathscr{D}$. Then X_{1} is not isomorph to X_{2}.

Corollary. For each lattice I, Card (I) >2, there exist at least two Frattini hulls which are not isomorph.

Let L be a lattice with Cand $(L)>1$. Denote L by $(I)_{0}$, the Frattini hull of L by $(L)_{1},\left((L)_{n-1}\right)_{1}$ by (L) n_{n} for arbitrary positive integer n, supposing all Frattini hulls constructed in the same way. It means e.g.
that $(L)_{1}$ is the Frattini $Q X_{1}$-hull of I for $\& X_{1}=$ $=\left[(a, b) \mid a, b \in L, b<_{1} a\right],(L)_{2}$ is the Frattini er -hull of (L) for $\varphi R_{2}=\left[(c, d) \mid c, d \in(L)_{1}, d \prec_{(L)_{1}} c\right]$ and so on.

We define $(L)_{\infty}=\bigcup_{n=0}^{\infty}(I)_{n}$ as a lattice where the partial ordering is determined by
$x, y \in(L)_{\infty}, x \leq y \Longleftrightarrow \exists n \quad$ such that $x, y \in(L)_{m}$ and $x \leqslant_{(L)_{n}} y$.

Let * denote the transitive closure of the following relation ε in $(1)_{\infty}$:
$x, y \in(L)_{\infty}, x \in y \Longrightarrow \exists n \geq 1, x \in(L)_{n}, y \in(L)_{n-1}, \bar{x}=y y$, or $x=y$ (\bar{x}, \underline{x} mean the elements corresponding to x under the unary operations defined on the Frattini hull of (I) n_{n-1})。

Theorem 6. Let L be a lattice with Card (L) >1, let for all $x, y \in I, x L_{L} y$ there exist $x_{1}, y_{1} \in L$ such that $x<_{L} x_{1} \leqslant_{L} y_{1}-<_{L} y$ and let each Frattini $\mathscr{X _ { i }}$-hull be of this type:

$$
\varphi n_{i} \subseteq\left[(a, b) \mid a, b \in(L)_{i-1}, b-l_{(L)_{i-1}} a\right] .
$$

Then $\Phi\left((L)_{\infty}\right)=(L)_{\infty}$.
Proof. Let $a \in(L)_{\infty} \backslash \Phi\left((L)_{\infty}\right)$, i.e., there exists a maximal sublattice M in $(L)_{\infty}$ such that $a \notin M$. Clearly, $a \in(L)_{n}$ for some positive integer m and there is some $b \in(L)_{n}$ such that $a-_{(L)_{n}} b$ or $b C_{(L)_{n}} a$, say $b \mathcal{K}_{(L)_{m}} a$, then $a=a_{1}(b) \cup a_{2}(b)$ and therefore e.g. $a_{1}(b) \notin M$. If an element $y \in(L)_{\infty}$ such that $y * a_{2}(b)$ or $y=a_{2}(b)$ is contained in \mathbb{M}, then $M \subseteq L \backslash X \quad$ where $X=\left[a, a_{1}(b)\right] \omega\left[x \mid x \in(L)_{\infty}, x * a_{1}(b)\right]$.

But each element x of $X \backslash[a]$ does not belong to $\{(L \backslash X) \omega[a]\}_{(L)_{\infty}}$, especially, $a_{1}(b) \notin\{M, a\}_{(L)_{\infty}}-$ a contradiction.

Then $a_{2}(b)$ and the elements $y, y * a_{2}(b)$, are not contained in M and we again obtain a contradiction in the same way.

5. Iterations of the Frattini sublattice and the first problem of [3]

Let L be a lattice and α and ordinal number. Denote by $\Phi^{0}(L)$ the lattice L. We shall proceed by transfinite induction in defining $\Phi^{\alpha}(L)=\Phi\left(\Phi^{\alpha-1}(L)\right)$ if $\alpha-1$ exists and $\Phi^{\alpha}(I)=\bigcap_{\beta<\alpha} \Phi^{\beta}\left(I_{1}\right)$ for \propto limiting ordinal.

We shall say that K is a submaximal sublattice of L of the order 0 iff $K=L$. We shall call K the submaximal sublattice of L of the order $\alpha+1$ iff one of the following cases takes place:

Case I. K is a maximal sublattice of a submaximal sublattice of the order \propto.

Case II. There is no maximal sublattice in every submaximal sublattice of the order \propto and \mathcal{K} is a submaximal sublattice of the order $\boldsymbol{\alpha}$.

Finally, \mathcal{K} is said to be a submaximal sublattice of 1 . of the order \propto where \propto is a limiting ordinal iff $K=A K^{\prime}$ where K^{\prime} range over all submaximal sublattices of the orders $\beta<\alpha$.

We denote by $\mathscr{K}_{\alpha}(L)$ the family [K|K is a submaximal sublattice of L of the order $\propto 1$ and we define
$\Phi_{\alpha}(L)=\prod_{K \in \chi_{\alpha}} K_{(L)}$. Evidently, $\Phi(L)=\Phi_{1}(L)=\Phi^{1}(L)$.
We shall call $\Phi_{\alpha}(L)$ (resp. $\Phi^{\alpha}(L)$) the iterated Frattini sublattice of the order \propto and of the type $\Phi_{\alpha}(L)$ (resp. $\Phi^{\alpha}(L)$). The sublattice $\Phi^{n}(I), n \in \mathbb{N}$, has been defined in [31.

Theorem 7. For any lattices L_{1}, I_{2} and any ordinal number \propto

$$
\begin{aligned}
& \Phi^{\alpha}\left(I_{1}+I_{2}\right)=\Phi^{\infty}\left(I_{1}\right)+\Phi^{\alpha}\left(I_{2}\right) \\
& \Phi_{\alpha}\left(I_{1}+I_{2}\right)=\Phi_{\alpha}\left(I_{1}\right)+\Phi_{\alpha}\left(I_{2}\right)
\end{aligned}
$$

Remark. For any positive integer m there exiat lattices L, M such that $\Phi^{n}(L) \neq \varnothing, \Phi^{n+1}(L)=\varnothing$ and $\Phi_{n}(M) \neq \varnothing, \Phi_{n+1}(M)=\varnothing$.
In fact, it is sufficient to take $L=\left(L^{\prime}\right)_{n}$ where L^{\prime} is the chain with Card $\left(L^{\prime}\right)=2$ and $M=I_{m}$ is the lattice of Fig.2.

$$
\text { Fig. } 2
$$

According to Fig.2, it is possible that there exist m, n positive integer such that $\Phi_{m}(L)=\Phi_{m+1}(L) \neq \varnothing$ and $\Phi_{n}(L)=\varnothing$.

However, it is not true in the case of the iterated Frattini sublattice of the type $\Phi^{\alpha(1), ~ a s ~ i t ~ c a n ~ b e ~}$ deduced from the following consideration:

If $\beta<\alpha$ and $\Phi^{\beta}(L)=\Phi^{\alpha}(L)$, then $\Phi^{\beta}(L)$ contains no maximal sublattice and therefore $\Phi^{\beta}(I)=\Phi^{\gamma}(L)$ for all $\gamma>\beta$.

In [3], the problem
"Does the sequence $L \geq \Phi(L) \supseteq \Phi^{2}(L) \supseteq \ldots$ always terminate?" is formulated.

Consider first that if L is a set, then the index set I of ordinal numbers auch that $1 \geqslant A_{1} \neq \ldots \neq A_{c} \neq \ldots$, LeI satisfies Card (I) \leq Card (L).

It is obvious that there exists an ordinal number \propto such that $\Phi^{\alpha}(L)=\Phi^{\gamma}(L)$ for all $\gamma>\propto$. But it is not certainly true that there always exists an ordinal number \propto such that $\Phi^{\alpha}(L)=\varnothing$. Indeed, let us observe the lattice K of Fig. 3 (which has no maximal sublattice) or the L-sum of this lattice K where L is the lattice of Fig. 4 and the element x is replaced by K.

Fig. 3

Fig. 4 (cf. [3], for Card (L) $<\psi_{0}$)

Evidently, for the second construction the following claim is satisfied: For any ordinal number \propto there exists a lattice H such that: if $\alpha>\beta>\gamma$, then $\Phi^{\beta}(H)=\Phi^{\gamma}(H)$, but for all ordinal numbers σ^{r} $\Phi^{\delta(\Omega)} \neq \varnothing$.

A similar assertion holds for the iterated Frattini sublattices of the type $\Phi_{\infty}(L)$, i.e.: For an arbitrary lattice L there exists an ordinal number \propto such that $\Phi_{\propto}(L)=\Phi_{\beta}(L)$ for all $\beta>\alpha$. Suppose it is not true, then there are ordinal numbers \propto, β such that $\operatorname{Card}(L)=\pi_{\delta,} *_{\delta+1} \leq \alpha<\beta$ and
$\Phi_{\alpha}(I) \neq \Phi_{\beta}(I)$. Then there necessarily exists a submaximal sublattice K of L of the order β such that for each submaximal sublattice X^{\prime} of the order $a r \leq \propto$ the inclusion $K \subseteq X^{\prime}$ implies $X \xlongequal{\ddagger} X^{\prime}$ 。

Let us have the sequence of submaximal sublattices X_{C} of L of the order \subset with $K_{\beta}=X$:
$\mathcal{L}=K_{0} \supseteq K_{1} \supseteq \ldots \supseteq K_{\iota} \supseteq \ldots$.
If there exist two ordinal numbers ξ_{1}, ξ_{2} with $\xi_{1}<\xi_{2}$ and $X_{\xi_{1}}=X_{\xi_{2}}$, then $K_{\xi_{1}}=X_{\xi}$ for all $\xi>\xi_{1}$, therefore it is $K_{\delta_{1}}$? $K_{\sigma_{2}}$ for all $\delta_{1}, \delta_{2}^{\sim}, \delta_{1}<\delta_{2}^{r} \leq \alpha$ and aince $\operatorname{Card}(I)=\psi_{\sigma}<\psi_{\delta+1} \leq \propto$ it gives a contradiction by the above remark.

Summary. Let I be a lattice with Card (I) $=N_{\sigma}$. Then there exiat ordinal numbers α_{1}, \propto_{2} such that α_{1}, $\alpha_{2} \leqslant \psi_{\delta+1}$ and for any $\beta>\alpha_{1} \Phi^{\alpha_{1}}(L)=\Phi^{\beta}(L)$, for any $\gamma>\propto_{2} \quad \Phi_{\alpha_{2}}(L)=\Phi_{\gamma}(L)$.

6. The lattice of all sublatices of a lattice

In this chapter we shall assume that L is a nonempty lattice.

The lattice of all sublattices of L is denoted by Y\& (L) , its lattice operations are denoted as follows: $A \cup_{s} B=\{A, B\}_{L}, A \cap_{s} B=A \cap B$.
$\mathscr{Y}(\mathrm{I})$ is a complete lattice with the least element \varnothing and the greatest element L. Each sublattice A such that $\operatorname{Card}(A)=1$ is an atom of $\mathscr{Y}(L)$ and to
every atom of $\mathcal{S} \ell(L)$ there corresponds a sublattice which consists of one element. A similar relation is between the maximal sublattices and the dual atoms of Sl(L).

In this section we shall study the Frattini sublattice of L as an element of $\mathcal{Y}(L)$.

Evidently, if $\mathcal{Y \ell}(L)$ is complemented, then $\Phi(L)$ is empty, but the converse does not hold, as it can be seen from Fig. 5: There exists no complement to the marked sublattice A in $\mathscr{S}(1)$ though $\Phi(L)$ is empty.

Fig. 5

If K is a complete latfice, let us denote $\operatorname{rad}(X)=$ $={ }_{m-1} m$ (cf.[4]) (if there exists no element $m \in K$ such that $m<1$, we put $\operatorname{mad}(K)=1$). Obviously, $\operatorname{mad}(9 \ell(L))=\Phi(L)$.

We shall call an element or of a lattice M with the
greatest element 1 amajl if $k v b \neq 1$ for all k of $M, k+1$. It is immediate that if $h \leq h$ and h is small, then h is also small.

Theorem 8. Let L be a lattice. Then
$\Phi(L)=\operatorname{rad}(\mathscr{L E}(L))=U_{s}[A \mid A$ is amall in $\mathscr{P}(L)]$.
Proof. Clearly, if A is small in $\operatorname{Sl}(L)$, then $A \subseteq \Phi(L)$. Let $B \supseteq \mathcal{A}$ for all A small in se(L), i.e., $\{k\}_{L} \subseteq B$ for all $\{k\}_{L}$ amall in $\mathscr{S}(L)$. As $\Phi(L)=\left[h \mid\{h\}_{L}\right.$ is amall in $\left.\varphi \ell(L)\right], \Phi(I)$ is contained in B.
$\Phi(\mathrm{L})$ is not necessarily small in $\mathscr{P}(\mathrm{L})$ as it can be seen from Fig. 3.

Corollary I. Let I be a latice.
If A is a sublattice of 1 and A is small in $\mathscr{H}(\mathrm{I})$, then $A \subseteq \Phi(\mathrm{~L})$.

If moreover $\operatorname{rad}(\mathscr{P}(L))$ is small in $\operatorname{Y\ell }(L)$, then A is small in $\mathscr{H}(L)$ iff \mathcal{A} is a sublattice of $\Phi(L)$.

Corollary. 2. The following conditions are equivalent:

1) $\mathscr{Y}(\mathrm{L})$ contains a small element different from \varnothing,
2) $\operatorname{rad}(\mathscr{H}(L)) \neq \varnothing$,
3) $\Phi(L) \neq \varnothing$.
7. The intersection of all maximal ideals of a lattice

Let L be a lattice, let us denote $\Phi I(L)=L$ if there exists no maximal ideal of L and $\Phi I(L)=\cap M$
otherwise, where M are maximal ideals of L.
In this chapter we shall compare the sublattices $\Phi(L)$ and $\Phi I(L) . \Phi I(L)$ has completely different properties than $\Phi(L)$, as it can be seen from the comparison of the corresponding assertions.

Lemma 3. Let I_{1}, I_{2} be lattices, I_{2} being nonempty. Then
$\Phi I\left(I_{1}+I_{2}\right)=I_{1}+\Phi I\left(I_{2}\right)$.
Corollary. 1) If L is nontrivially decomposable in an ordinal sum, then $\Phi I(L)$ is nonempty.
2) If L is a chain, then $\Phi I(L)$ is empty iff Card (I) ≤ 1.
3) If I is a lattice with Card (L) > 1 such that every descending chain of reducible elements of 1 is finite, then $\Phi I(1)$ is nonempty.

Remark. For every lattice L there exists a lattice K such that $\Phi I(K)=I$. We can take, e.ge, $K=I+I^{\prime}$ where L^{\prime} is a singleton.

Theorem 2. Let L_{1}, L_{2} be lattices. Then
$\Phi I\left(I_{1} \times I_{2}\right)=\Phi I\left(L_{1}\right) \times \Phi I\left(I_{2}\right)$
Proof. It is sufficient to realize that
a) I is an ideal of $I_{1} \times I_{2}$ iff $I=I_{1} \times I_{2}$ where I_{1} is an ideal of I_{1}, I_{2} is an ideal of $I_{2}, I_{1}=$ $=\left[x \in L_{1} \mid \exists y \in I_{2}\right.$ such that $\left.(x, y) \in I\right], I_{2}=$ $=\left[y \in I_{2} \mid \exists x \in I_{1} \quad\right.$ such that $(x, y) \in I I$; b) I is a maximal ideal of $I_{1} \times L_{2}$ iff $I=I_{1} \times I_{2}$ where either $I_{1}=I_{1}$ and I_{2} is a maximal ideal of I_{2}
or I_{1} is a maximal ideal of I_{1} and $I_{2}=I_{2}$.
Theorem 10. Let L be a lattice with 1 . Then $\Phi I(L)$ is empty iff for all $h \in L, h \neq 1$ there exists an element k $\in I, k \neq 1$ such that $k \cup k=1$.

Proof. Let $\left(a_{1}, a_{2}, \ldots\right]$ denote the ideal generated by the set $\left[a_{1}, a_{2}, \ldots\right]$. Let $k \in L, h \neq 1, h \neq \Phi I$ (I). Hence, there exists a maximal ideal I in L auch that ($I, k]=1$. Then there exists an element $k \in I$ such that $k \cup h=1, h \neq 1$, because of $I \neq I$. Let $k \neq 1$, $k \neq 1$, $k \cup k=1$. Then $h \neq$ ($k]$ and CChl, $h]=L$. By Zorn's lemma, there exists a maximal ideal I_{0} such that $h \notin I_{0}$ and ($\left.k\right] \subseteq I_{0}$. I_{0} is even a maximal ideal of L, hence $h \$ \Phi$ I $\left(\frac{2}{2}\right)$.

The proof of the following lemma is immediate:
Lemma 4. Let Card (I) >1, L be a lattice satisfying A.C.C. Then I is a maximal ideal of L iff $I=(a)$ for some dual atom a.

Corollary. Let \mathcal{L} be a lattice satisfying A.C.C. and Card $(I)>1$. Then $\Phi I(I)=[k \mid h$ is amall in L].

If in addition 1 is a complete lattice, then
$\Phi I(I)=[k \mid h$ is amall in $L]=(\operatorname{mad}(L)]$.
Proof. If h is amall in L then $k v a<1$ for all dual atoms, i.e., $h \leqslant a$ and so $h \in \Phi I(L)$.

If $k \in \Phi I(L)$, then $k \leq a$ for all dual atoms, i.e., \& is small.

```
If L is complete, then }\PhiI(L)=,\mp@subsup{\bigcap}{1}{(a)=(\operatorname{rad}(L)].
Referencea
[1] BIRKHOFF G.: Lattice Theory, 3rd ed.,New York,1967.
[2] HALL M.: The Theory of Groups, New York 1959.
[3] KOH K.-M.: On the Frattini sublattice of a lattice,
Algebra Univ.,Vol.1'1/1(1971),104-116.
[4] STENSTROM B.: Radicals and socles of lattices, Arch.
    Math.20(1969),258-261
Matematicko-fyzikalni fakulta
Karlova universita
Sokolovaká83
Ceskoslovensko
```

(Oblatum 10.7.1972)

