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EXTENDING TENSOR PRODUCTS TO STRUCTURES OF CLOSED CATEGORIES

Ales PULTR, Praha

Let & be a category, I an object, ®: & x & — R s
H: 8" x & — R functors such that R(A®3B,C)= &(AH(B,C))
and (A@3B)® C XA®(B®C) naturally in A,B, C ,
A@B=ZB®A naturally in A,B and A@I 2 A na-
turally in A , The natural equivalence being unspecified,
the problem arises whether they may be chosen coherent in
the sense of MacLane, in other words, whether the collection
of data (@, H ,I) can be extended to a structure of a
closed category on & (in the sense of [2] - symmetric mo-
noidal closed in the sense of [11).

In the present paper, this question is positively ans-
wered (Theorem 4.4) for the case where I is a generator of
R . Moreover, in this case it is shown that the associati-
vity and commutativity equivalences are uniquely determined
by the data (®, H, I ) and the variety of the remaining
information described (Theorems5.3 and 5.7)

The condition on I to be a generator is certainly res-
trictive and the author has to admit he does not know whet-

her it is essential at all. No counterexample is known, i.e.,
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all the known systems (®,H,I) with non-generating I
are parts of structures of a closed category, bqt the at-
tempts to prove a general extension theorem were so far un-
successful . On the other hand, in the case of concrete ca-
tegories (&R ,U) with U: & —> Set faithful (which
leaves out some important cases, e.g. the category of small
categories with the discretization for U ) and those
(8,H,1I) , where H bhehaves like a hom-functor, i.e.
UHE&8(-,-), 1 is necessarily a generator (see
1.4 2)), so that here the result halds without restrict -
ion.

Acknowledgment. I am indebted to Professor Saunders

MacLane for stimulating this paper and valuable advice.

§ 1. Preliminaries

1.1. Definition. A preclosed category is a category &

together with a fixed object I ,, functors @:&x & — &

and H: 8" x & — & , and natural equivalences

M ueBrec— A8 (BOC)
.
¥ AT A,

*.AeB—>BeA ,
2%, R (A@B,C)— BC(A,H(B,C)) .
It is said to be a closed category if, moreover,
(®, 1,a,4,c) is a coherent multiplication in the sen-
se of MacLane ([41,[5)). The collection of data

(®,H,I,a,t,c, k) is called a structure of a closed
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(preclosed, resp.) category on $# . Abbreviated, SC (SPC,
resp.).

If a functor ®: 8 = 8 — & (couple (®,H)),
triple (®,H ,I) resp.) can be extended to an SPC, it

is called a tensor product (tensor couple, tensor structu-

re, resp.) on & .
The object I is called a unit of @ .
by, , Ry) (£=4,2) are

<+ Y4

Two PSC (GL,H;‘,Q,

said to be equivalent if there exists a natural equivalence

T: @, —> ®, and an isomorphism U : I4 — 12 such that
the diagrams
ABC
e, _
(A®,B)@,C _A@,,CB@,, )

/\B&.Q \;r““&"'c /1:‘ 1,8, ¢ 8¢

ENUR,BR,C (ABBB,L  ARBRC)  A®,(BSC)

4
\im,s,c /A%Jc o \:IP1 /A B@,C
Q,
2

(A@,B)®,C ®,(B®,C)

A®,1,
2 \1»\@1"
(£2) A®,1, AR 1,

Ne 2
Ag1, ,
AB
&
A®,B > B®,A
(E3) e 1 <BA
AR
commute. Ae,B 2 > B&A
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l.2. Remark. This definition of a closed category dif-
fers only formally from that of [2]. By the construction
described in [2] immediately after the definition we see
readily that the SCs in the two senses are in a one-to-one
correspondence,

1.3. Remark. If (®,H,I,a,®,c,®) is an SPC then
H(1,Xx)= X naturally in X . Really, we have
RYLH(I, X)) = R (YILX) = ®(Y,X) naturally in
Y,X  which yields the statement.

l.4. Definitions and remarks. 1) Given a concrete ca-
tegory (R ,1) (a category ® with a fixed functor
UW: & —> Set ; the functor U  is mostly - but not al-
ways - assumed faithful), a tensor product on (& ,U) is
a tensor product on ® such that, for the associated H s
W(H(A,B)) = & (A,B) naturally in A,B . In this
sense we also speak about a tensor couple, tensor structu-
re, SCon (R ,U) .

2) If there is a tensor structure (® ,H,I) on
(®,U) then U 1is naturally equivalent to % (I,-)

(we have WU(X) = UH(I,X) = R (I,X) by 1.3).
Thus, if the 1l is assumed faithful, I is necessarily a
generator.

3), Obviously, ® determines the I up to isomorph-
ism,

4) We shall see later (in 2.2) that the unit has to ha-
ve commutative endomorphism semigroup. Comparing this with
2) we see that the choice of a forgetful functor W on R
such that ( ® , W) has a tensor product is usually rather
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restricted. See, however, 2.9.

l.5. Proposition. An SPC equivalent to an SC is an SC.

Proof. Just a tedious checking of the coherence pro-
perties.

1.6. Proposition. Let (®,H,I,a,,c, %) be an SPC

b A Al

such that ¢ = 4101 and M. M= 4I®A . Then
there is an equivalent one (®‘,H,I, o/, & c)&’) such that
=4 and M= ¥ = 14 (and, hence, always

’ /
1,08y =91, =g )e .

Proof. Put A@B =A®B for A LB+ 1, A® I=16&'
QA=A ,define "B A®@B—> A@B by "2 a4 for
A,B+1I, chI=2yA,fch-_-2rAc“ , and, for o : A —
—-C, [L:B——»]) , put ot @’(& = 22, (« ®(3>.?AB .
Obviously ®’ is a functor and *:® —> ®’ a natural

equivalence. Now, it suffices to put

{4 ’
APl L whBOC (1, @ 2BC), M0, (T MBg 4,). FA®DL

YA o pA FAL AB _ LBA L AB - AB

s . C

(the bars designate inverses).

§ 2. More about the unit I
., - Throughout this paragraph a preclosed category
(%,8,H,1,a,#,c, o) is assumed to be given. If there
is no danger of confusion, M R &t B ™ are written
simply a , &, c

2.1. Lemma., For every oc: I —> 1 there is exact-
lyone «':I— I with «a®1 = 1, ® «’ (and

vice verea).
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Proof. Namely, o’ = &.(4®@ ). & . Then we have
@'=3lbre(1@x’) =il (W@ e =tbh ' be=EUBc)c=x® -
The unicity is obvious.

2.2, Lemmg. For any two «, 3:I1— I, xf3 =[x .

Proof. We have <3 = (<@ N FL (BAINE =
= (x@®NABPRN T = L (1PN (< @NE = Box .

2.3. Lemma. For any two «,3:1— 1 ,

LB =RBAx =4 B(xp)= (xf3)® 1,

In particular, «<®1, =4 ® x .

Proof. Since 1® 1 = I , the morphisms I1® I —

—»1®I also commute. Thus, x @3=T(BB=x)IC=Cc(B®x)=
= A® o . Consequently, x@®fB=(x@N(F®1) =
= (o Frei .

2.4, Lemma, For every morphism (isomorphism, resp.)
y:1—1 there is a natural transformation (natural
. . . 1
equivalence, resp.) T: 4)‘0 - 4,‘ with 27 = ¢ . If I

is a generator, there is exactly one such =

Proof. Put ' = &% (4, ® ¥). &” . The unicity

for the case of I a generator is evident.
2.5, Lemmg. A ® -iterate is a functor obtained recur-
sively by the following rules:

(i) ® is a ® -iterate, 4&. is a @ -iterate,

(ii) if ¥,...,E, , F are @ -iterates, T

in m. variables, Fo (I}, X.eox ) is an ® -iterate.

Generalized @ -iterates are obtained from & -iterates
by permuting the variables and replacing some of them by
constants.



Let F, G be generalized @& -iterates, z,? : F—>
— G  natural transformations. Let I be a generator. Then

T = 5 iff ’CL"I = 49.1...1

Proof. Let w:I—» A, 9:A®@B — C be morph-

isms. We have
(g . (@) = (. BR(x@1,1)) (g) =
= R (e, H(1,4)) (R(P)) = k(). x .

Thus, we have

1) (Ve:I»A @ge(x@N=7. (x@®1))=>g =% -
Using the natural equivalence o we obtain
(2) (Vx:I—>A 9. U ) =9. (B L)) = g= ¥

Hence, since @ .(x@B3) = g.(x®@1).(1®3) ,

(3) (Yc: I A,B:I> B . (x@B)=y. (x@B)) =g =Y -
Now, we easily obtain by induction that for a generalized

® -iterate F

(VOC_': ;I_)A‘l: g?-F(oO4,..., d:m_) =‘1}IIP((L4,,,,7 0{,”"))—_:)?: ¥,

from which the statement immediately follows.

2.6. Since a ,dr, ¢ are natural equivalences, we ob-

tain immediately
Lemma. 1) ™! - 4'e 4

1®L,L,I =1 u 1
2) & =(Bl@ Ay, ) @ (2@ @ 1))
3) @M (e (FTe ). . (@D @ 1))

1,1,I1e1 51 piig I
4) =(1I®(41®,?y N. .(41®I®Ir ) .
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5) 1t oM = 4, then M®1_. Ble o1 .

2.7. Theorem. Let I be a generator of & , let
(®,H,1,a,&,c, k) beanSPCon & . Then it is

an SC iff o = '@ &I and M = .

Proof. We shall use the notation of coherence requi-
rements from (2] (C4~-C4). a™ , &1, T shall
be abbreviated to a,#,c  resp. Let (®,H,I,a,¥,¢c, k)
be an SC. Then, @ = &® & is obtained immediately from
C2 . Further, by C4 we obtain

Il (4. a.(c®1) .

By €2, a.cP®l a0 - weB). M (e B) = SO
by C2 and 2.6.1),

18c).a.(c@®1)=UU@).1OT). ¥ (c@1) =

2(1@c). (U@ F). . = @) . @51

Thus 1®c =1 , g0 that ¢ = 1 .

On the other hand, let a = @& and ¢ =141 . By
2.5 it suffices to check (4 ~ C4 at the values
I,..., 1 .By 2.6.2) = 4) we have

1oa)."® (a@1) =
=1® (1B N.(Lek).(re1)e1) =

cU@UBEN.(r@F). (18 ). (Fe1).(bek). (rel)e1) =
- DB I®I 181,11

which gives €4 ; (€2 is required in ¢ = &£ @ & by

7
2.,6.1), €3 is trivial, Finally, we have
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(1®¢).a.(ca1) 32)'@17, (b@E).(E@&). (bQE)za”cI:IOI‘ a

by 2.6.5), 80 that also C4& holds.

2.8. Remarks. 1) By the proof of 2.7 we see that in
the case of a generator I, C2 and C4 imply €4 and
€3 .

2) If I has no non-identical automorphism, then eve-
ry SPC (®,H,I,a,¥,c, &) is an SC. Moreover, the na-
tural equivalences a, &, ¢ are uniquely determined by.
®,H,I . We shall see later (5.6) that also the natu-
ral equivalence & is uniquely determined.

2.9. Remark. Lemma 2.2 often limits radically the can-
didates for units of possible SCs on a given category. We
will show now elementary examples of categories with many
objects starting an SC as a unit. Take a partially ordered
set (X, <) . Regarding it as a category in the usual way,
we see easily that an SC on (X, < ) consists of two bi-
nary operations ® and H on X such that (X, < ,®)
is a partially ordered commutative monoid and -

(1) X®y £z iff x < H(y,z) .

Thus, e.g., any @ such that (X, <, ®) is a partial-
ly ordered abelian group makes an SC withH(g,2)=(-9)® x .
In particular, for a discrete category, any structure of an
abelian group is an SC (and vice versa: the condition (1)
gives here X ® 4 = x iff x=H(4,z) , so that, de-
noting by 4 the unit, we obtain Xx® H(x,<)=4{ ) and
hence any of its objects is a unit of an SC.

This is, however, a too trivial example. To give & better
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one, take a linearly ordered (X, <) with a smallest ele~-
ment 0 and a largest element 1, and an e e X, e # 0. Put
X®@0 =0®x=10, for x<«e and g£e putx®y =
= min (x,4) ,otherwise x @ 4 = max (x,4 ). Put H(0, )=
34,for0<@.éxée put H(y,x) = e, for e<ny
and z<;g_ put H(g,2z) = 0 , otherwise H(g,x)=x .
It is easy to check that this is an SC on (X, <). Thus,
taking a complete linear ordering with smallest and largest
elements, we have an example of a complete cocomplete cate-
gory such that every object except cosingleton ( = initial
object) is a unit of an SC (since -® X is la left adjoint,
a cosingleton can be a unit only in the category with a sing-

le morphism).

§ 3. Equivalence of SC with generators as units
3.1. Lemma. Let & = (@;,H; ,I;,a;,&;,c;,k;)
(£ =1,2) besC, let I, ©be a generator. Then ¥, is
equivalent to 32 iff there exists a natural equivalence
@, —> @, and an isomorphism ¢ I, —> I, such
that

1, LI, I,
ZEEE L @ ) = byt

Proof. Write 1 = I‘1 , J o= 12 . We obtain (using 2.7)

m , n 18,1,1
e, A @241).1:

= (F&(FO, TN (0,8, ) (g ®, 1) 8, 7= @,1,) .

13,

9
L L (G0,(F @, FNU,8,5,) ()78 ) (e 1) @,
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I 1,1
@243)(4@29”)' T 4

—_ _ — =9 J
= (7@, (7@, 718, 5,) (&, (&4 )e,1)" (U8 5 =

= F e (Fo, FN UG E) ((y v 8118 7) =

1,1®,1, I — =\ LD
2 (174@4((?®27);27)) =

1,181, 1 —_ ey =33 ~3
= % e (Fe,FI)T (e ) 7)) =

1181

1,18,1 1, ,1 I, _ 1Ty 1l
=t YU v )L ek, )= 4@ r)a s

so that, by 2.5, E4 commutes. The commutativity of E2
is obtained immediately from the assumption on 9 . Final-
ly, E3 commutes since

n 1 b1y tl]
T.c, e, - .

= ’dnz: (;iez'? ). cia. (’X@z'x‘)-’cl[

3.2. Theorem. Let ¢; = (@;,H- 1;,a;,%;,c;,%;)

4 ?

(4 =14,2) be SC, let I, be a generator. Then ’:94 and
b‘z are equivalent iff 91 and ®, are naturally
equivalent.

Proof. Let =z ®, — ez be a natural equiva-

JI

lence. Put (again, I = 11 ,Jd=1 ) = bf. " .

’

2

19 7 1
ey 2"2 . Then we have
o) o 2 1 J JI J1
%, .® ,(13®4y)=b2(4a®27)z =,c, (1, y)t =
o J1 11 1 .01 01 9

so that the statement follows by 3.1,
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§ 4. Extending a tensor product with unit a genera-

tor to a structure of closed category

4.1. Lemma. For every tensor structure (®,H,6I)

there is a natural equivalence P 4B — BeA with

u
) =4m1 .

Proof. Teke an SPC (®,H,I1, @, &,c’, &) . Put
9:&15'1151 . Thus, & = g ® 1; . Further,

define = : 1, — 1, by P ,?:*A(4A® Q)EA and final-

A +tAB

ly ¢*™®:A0B3 —> BoA by *®=(2P®@1,) - ¢

Obviously, ¢ is a natural equivalence. We have ! =

=2 (4,89). BT = Y. (g@ 1. F = 9 by 2.3, s0

that cn

= (9®4I)c'u= gl T

4.2, Lemma. Let (® ,H,I) be given, let ® be
naturally equivalent to ® , let Y'= (@, H,1,a/, &,c’, &")
be an SPC. Then there is an SPC (® ,H,1,a,&,c, )
equivalent to ¢’ .

Proof is trivial.

4.3. Lemma. For every 4 : H(I,X) — H(I,Y) the-
reisa g:X— Y with y=HU ,g).

Proof. Put 4 =}k,nx(4x): X—> H(1,X) . We see
easily that thus a natural equivalence 4: 4, —> H(I -)
TV .y %,

is obtained. Now, it suffices to put @

4.4, Theorem. Every tensor structure (®,H, 1)
such that I is a generator can be extended to a structure
of closed category.

Proof. Let (®,H,1,a,t,c, k) be an SPC
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extending (®,H,1) . We may assume that & =4 ana

cAl = A = 1A (Really, by 4.1, ¢ can be chosen
with ¢ = 4,4 .  Then, by 1.6, (8,H,I,a,t,c, &)
can be replaced by an equivalent (®@°, H’, I’,a/, &, ¢/, &%)

AI: C’1A= 4A . NOW, if

satisfying &#'=4 and ¢’
(®’,H’, I’) can be extended to an SC, (®,H,1) can,

by 4.2 and 1.5.) Consider the diagram

£ (A®(B®C),D) BN 2(A®B)® C,D)
RIACBOOD L"},(MB)QC’”

RUMH (‘A@ (B&C),D)) &(4’H(°°ABC’4)§ R (L,H((A®B)® C,D))
R(1,2M®0P) 81,00

5 cx,nik,nas@ ¢ by —BH AP, n(l,};(A,H(B,H(C,D))>)
ZhAHBeCD) F AN «,p»

nm,x‘gm ¢,DN) LN St R(A,H‘:B,]{(C,ZD)))

where 22 is a natural equivalence H(-®- ,-) &
X H(-,H(-,=~)) (which exists due to the associati-
vity of ® - this fact was first observed by Linton) and

o is the transformation conjugate to 2 . Thus,

¢ (L®B)®C —- A (B®C)

is a natural equivalence.
The big rectangle commutes by the definition of o , the

outer squares commute since % is a transformation. Thus,
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since all the mappings involved are one~to-one onto, the in-

ner square commutes. Since I is a generator, we obtain

) =

(1) S MBHED)  AeBC,D H(«,‘", 1

D

= H, ), o M1BOCD

Write ge for g’ . Thus, se:H(I, 1) —> H(I,H(1,1))
and hence, by 4.3, there isa A:1—> H(I,I) with 2 =

=H(4,A) . Hence, we obtain H(4,2e) . 0e =

1,1,H(1,1)

=HU,HU,A)) 0 = 2 CH,A) = aePTHDD | g

Thus, by (1), H(<™ 1) =1 , so that o™= 1 =

=1®4 = 40 B . Hence, by 2.7,
(@, H,1,x, &,c, o) is an SC.

4.5. Corollary. If I is a generator of ® then the
natural equivalence classes of tensor products on # with
unit I are in a one-to-one correspondence with the equiva-
lence classes of SC with unit I on & .

Proof. Follows immediately by 4.4 and 3.2.

4,5, Recalling 1.4 we obtain

Corollary. Let (® ,U ) be a concrete category (with
U faithful). Then every tensor product on ( R, W) can be
extended to an SC and thus the equivalence classes of tensor
products on (h, W) are put in a one-to-one correspondence
with the equivalence classes of SC.

4.7. Remark. A concrete category with a tensor product
differé from the autonomous category of Linton ([31) - abbre-
viated AC - in the following points: 1) U°H is assumed
just equivalent, not identical, with R (- ,-) , 2) In AC
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the existence of unit is not assumed (if U  is induced by
a generator, however, this I is a unit), 3) In AC a strong
assumption (A5) on behavior of underlying sets and mappings
is done . It has no counterpart in (®#,U) with tensor
product (except that here the commutativity of ® , which is
in AC a consequence of the axioms, has to be assumed expli-~
citly) .
In [31, 2.5, the tensor product of an AC is proved to

be (associativity and commutativity) coherent, the procof de-

Ny

pends, however, heavily on (A5).

§ 5. How far a structure of a closed category is deter-

mined by a tensor product
5.1, Lemmg. Let & be a tensor product, A0 1>
— A, (3‘: A®JI— A natural equivalences. Let I be
a generator. Then there is a uniquely determined isomorphism
y:I— 1 such that [JA=bA.(4A®3~)'. On the ot~
her hand, let & be given, o :J — 1 an isomorphism.

Then (3A = o, (14 ® ) 1is a natural equivalence.

Proof. If p* = &% . (1, @ ¥) then in parti-
cular 1;® y = . (31 and hence = &' C'3’®'11).Irl=

= o.M B, [31 e Y. Evidently, for any 7,
,(’J;A. (14 ® o) is a natural equivalence. Taking the 2 gi-
ven by the formula above, we have &, 4 7) = [$I and
hence A%, (1, @ @) = /SA by 2456

5.2, Lenma. Let #*:A @1 — A, p*:A®I0— A,

B (A@B)®C—> A®(B3®C) be natural equivalences,
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let & - 4l B! . Then o777 - ﬂ"a®ﬂ3 )
Proof. By 5.1, {31 = &t (1, ® ) . Consequent-
ly,

F (g =F.0" (18 ¢). (y@ 1) =F. . (yo 1) = §°.

Thus, &’ = (F@(FO@FN . M. (@ prey) =

=(F. & (gorNe(F. o (gaer) =0 B’

5¢3. Theorem. Let ® Dbe a tensor product such that
some (and, hence, each) of its units is a generator. Then
there is exactly one natural equivalence P heB)ecs

> A®(B®C) and exactly one natural equivalence

e*® ;A®@B—> B®A such that (®,H,1,a,%,c, k) is
an SC for some H,I, &, & . On the other hand, I can be
replaced by an arbitrary isomorphic J , and £ by an ar-
bitrary natural equivalence FA; Al — A .

Proof, Let (®,H,,I,a , &, ,c,, b, ),

11
(8,H,,9,a,,%,,c,,%,) be two SC. Thus, a," =

1 I 333 2 > J
- 4 ®F, and hence, by 5.2, a)' = &, ® F,

= o}’ . Tus, a, = a, by 2.5. Similarly, ¢, = ¢, ,sin-
22

ce c:J= (rex)c (F@F)=4=0c,
5.4. Corollary. A tensor structure (®, H,I) to-

gether with a natural equivalence %°°C:® (A ®3B,C)—>

— % (A,H(B,C) and an isomorphism l:101— 1

uniquely determine an SC (®,H,1,a, &, k) .
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5.5. Lemmg. Let @, H be given. Then the natural

hABC

equivalences are in a one-to-one correspondence

with the natural equivalences < : ® — @

Proof. First, fix a natural equivalence h:ac and
associate with a general h"’c the natural equivalen-

ce &k o Jh,o « Thus, a one-to-one correspondence with the
natural equivalence H#(A®B,C) —> HR(A®B,C) is ob-
tained. Now, for an e*®*¢: R (A®B,C) = R(A®B,C)

JAB _  A,B,A®B

define +(e): @ — @ by z(e (dp@p ) -

It is easy to check that this is a natural equivalence, On

the other hand, for a t: ® = ® define s(t)ABc :

: R (A®B,C) — R(A®B,C) putting e ("B (g) =

= Q@ o tAP . Again, we see easily that this is a natural
equivalence. We have

e (eN*® () = 9. eA’B'A@B(4AOB) =

Y () = &P

ABASB AR

eA,B,AOB

=(R 1, ). () ,

ele CEN*® 2 e ()

5.6+ Lemma. Let a unit I of a tensor product ® be
a generator. Then the natural equivalences ©: @ — @
are in a one-to-one correspondence with the isomorphisms

sl — 1 .

Proof. Let bA c:A®I — A be a natural equiva-
lence. For a natural equivalence © : ® — ® put

px) = X, 2. B . By 2.5, @(2) = @ ()

implies ® =2 . Now, let :1—> I ‘be an arbitrary

~

isomorphism. By 2.4 there is a 2 : 4“ = 1y with Qﬂlzf,
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Put f\:AB = ,5.‘ ® 48 . We have

)= (ro1)). B = ¢ .

5.7. Theorem. Let a tensor structure (®,H,I) on
% be given, let I be a generator. Then the SC
(®,H,I,a,#,c,%) are in a one-to-one corresponden-
ce with the set of couples of isomorphisms I — 1 .

Proof: follows immediately by 5.3, 5.5 and 5.6.

5.8. Corollary. A tensor structure (@ ,H,I) on &
with I a generator without non-identical automorphisms

determines uniquely an SC on & .
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