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Commentationes Mathematicae Universitatis Carolmae 

13,4 (1972) 

EXTENDING TENSOR PRODUCTS TO STRUCTURES OF CLOSED CATEGORIES 

Ales' PULTR, Praha 

Let & be a category, I an object, ® * & x & —•• % , 

K? fl^x &,—* 1fl functors such that &CA<S>3,C)-£ fcCA,K(B,C)) 

and a ® 3 ) ® C S A O C B O C ) naturally in A ,3, Z , 

A 8 B » B O A naturally in A, 3 and A ® I * A na­

turally in A . The natural equivalence being unspecifiedf 

the problem arises whether they may be chosen coherent in 

the sense of MacLane, in other words, whether the collection 

of data C <2>, H , I ) can be extended to a structure of a 

closed category on & (in the sense of [2] - symmetric mo-

noidal closed in the sense of I11). 

In the present paper, this question is positively ans­

wered (Theorem 4.4) for the case where I is a generator of 

& , Moreover, in this case it is shown that the associati­

vity and commutativity equivalences are uniquely determined 

by the data C 0 , K, I ) and the variety of the remaining 

information described (Theorems5.3 and 5«7) 

The condition on I to be a generator is certainly res­

trictive and the author has to admit he does not know whet­

her it is essential at all. No counterexample is known, i.e., 
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all the known systems (<& yR , I ) with non-generating 1 

are parts of structures of a closed category, but the at­

tempts to prove a general extension theorem were so far un­

successful • On the other hand, in the case of concrete ca­

tegories (il,U) with U; & —• Set faithful (which 

leaves out some important cases, e.g. the category of small 

categories with the discretization for U ) and those 

(® ,H , I ) , where H behaves like a hom-functor, i.e. 

It H =--&(-,-), I is necessarily a generator (see 

1.4 2)), so that here the result holds without restrict­

ion. 

Acknowledgement. I am indebted to Professor Saunders 

MacLane for stimulating this paper and valuable advice. 

§ 1. Preliminaries 

!•!• Definition. A preclosed category is a category % 

together with a fixed object I ,, functors ®: fox & —> & 

and H J il°^ x & —* & , and natural equivalences 

ABC 

o : CA®B)<g> C—» A<S> ( B O O , 

JlrA : A <B I —> A , 

CAB : A ® B —* 3 <S> A , 

hA*C * fcCA®B,C)—* & C A , H C B , C ) ) . 

It is said to be a closed category if, moreover, 

C®, IjO*,^, c ) is a coherent multiplication in the sen­

se of MacLane (C43,C53)« The collection of data 

C<3>,H,I,o/,i>'-1c,&) is called a structure of a closed 
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(preclosed, resp.) category on $1 - Abbreviated, SC (SPC, 

resp.). 

If a functor ® * .ft * 1fi> —> & (couple ( ® . , H ? ) , 

triple ( ® , H ,1) resp.) can be extended to an SPC, it 

is called a tensor product (tensor couple . , tensor structu-

re- resp.) on fe . 

The objec t I i s c a l l e d a un i t of ® . 

Two PSC C <3>4,, H^ , *4, , i% , c ^ , Jk± ) (1*4,2) a re 

said to be equivalent if there exists a natural equivalence 

t : O^ —• ®2 and an isomorphism t, : 1̂  —• I 2 such that 

the diagrams 
ABC 

% (AO-B^C >Afc,tB«,C> 
/£\4C \*A*P>C ^Wy^fr-t* 

CE1)CA»2B)«,C CAfiJ-B^C Afî fBfî C) A^(B®/ ) 

V 
CA®2Б) 2C ь-A®aCB®ŁC) 

A «i, I.. 2 — »-A 

/Á\л 
Җ2) A ® ^ A ® ^ 

sЛíV /%A1-

A«A 
AB 

C4 

AS^B vBSí-A 

(E3) fAB "c** 

A®,B fa ». B®,A 
commute. - ^ -
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--•2. Remark. This definition of a closed category dif­

fers only formally from that of [23. By the construction 

described in [2] immediately after the definition we see 

readily that the SCs in the two senses are in a one-to-one 

correspondence• 

--•3* Remark. If C® , H, I, a, &, c , ̂  ) is an SPC then 

HC1,X) « X naturally in X . Really, we have 

&Cy,HCI,X)) -S. H Cy<g>I,X) SS 3Uy,X) naturally in 

y,X which yields the statement. 

1.4. Definitions and remarks. 1) Given a concrete ca­

tegory C %,U ) (a category fo with a fixed functor 

U : & — • Set * the functor U is mostly - but not al­

ways - assumed faithful), a tensor product on C & , 11) is 

a tensor product on 1a, such that, for the associated H , 

UCH(A,B)) as ftCA,B) naturally in A , B . In this 

sense we also speak about a tensor couple, tensor structu­

re , SC on C fo , U ) . 

2) If there is a tensor structure C®.>jrt,I) on 

C &, tt) then It is naturally equivalent to &/ CI, - ) 

(we have tt CX ) S ttH (I,X ) £- & C I, X ) by 1.3). 

Thus, if the U is assumed faithful, I is necessarily a 

generator. 

3), Obviously, ® determines the I up to isomorph­

ism. 

, 4) We shall see later (in 2.2) that the unit has to ha­

ve commutative endomorphism semigroup. Comparing this with 

2) we see that the choice of a forgetful functor U on 1ft 

such that C 1ft/ , U ) has a tensor product is usually rather 
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restricted. See, however, 2.9« 

1.5. Proposition. An SPC equivalent to an SC is, an SC. 

Proof. Just a tedious checking of the coherence pro­

perties. 

--•6. Proposition. Let (0,31, I, a*, ir^c, & ) be an SPC 

such that cJI « ^ I O T and ^A • cAI ~ ^JOA ' Tnen 

there is an equivalent one (®',H , I, a/, -Gr', c\ M! ) such that 

ir'ss 4 and c/*1 -=- c/X* « 4& (and, hence, always 

4 ®'g> « <p ̂ / / 1 I » <p ). 

Proof. Put A®'B-=A<8>B for A,B * I, A ®' J « I ®' 

©'.A « A , define r A B: A <&B-~* A ® ' B by r A I » ^ for 

A , B 4 = I , T A I - */ , xlA m V * c l A , and, for oc : A -* 

_* (̂  ^, B — • j ^ put ^ ®
y/3 _ -cC1). (oc <g>/l). £ * B . 

Obviously ® # is a functor and x : ® — * ® ' a natural 

equivalence. Now, it suffices to put 

*/* - *A.*AS , t'AB- T M . c A B . * A B 

(the bars designate inverses). 

§ 2. More about the unit I 

Throughout this paragraph a preclosed category 

C k , 0 ; H , I , a , ^ e, it.) is assumed to be given. If there 

is no danger of confusion, a,111 , &l , a11 are written 

simply a , &% c . 

2.1. Lemma. For every oc : 1 • I there is exact­

ly one oc' s I — > I with cc ® /f1 =» ̂ j ® oc' (and 

vice versa). 
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Proof. Namely, oc' -* i r . H ® o t ) , .-P . Then we have 

4<3oc./.scirjer^C4®cGO = c & ^ . 

The u n i c i t y i s obvious . 

2 . 2 . Lemma. For any two ot,9 /& : I —> I , oc/3 == /Sac . 

Proof. We have ocfi =. jfcrCoc® A)7rir (ft® 4 ) Ir =-. 

» iKocca'nC'l <&/&')&-= JerC4®/3')C<*<gM)Ir = /3oc . 

2 . 3 . Lemma. For any two oc, |3 J 1 - t 1 , 

0 6 ® / * - = - / $ ® ^ = ^ ® Coc/1) =- Cot/3) ® 4X . 

In p a r t i c u l a r , ot ® "fj = 4- ® oc . 

Proof. Since I ® I S I , t he morphisms I ® I —-> 

- > I ® I a l so commute. Thus, oc ® /J » c ( / i ® o c ) c = c c C/X®oc) = 

» /& ® oc . Consequently, ao®/$=.Coo<3H)C/3<S>'1) =. 

s (ot /*) ® A , 

2 . 4 . Lemma. For every morphism (isomorphism, r e s p . ) 

*jf ; I —> I t h e r e i s a n a t u r a l t rans format ion ( n a t u r a l 

equ iva lence , r e s p . ) t r ; 4- —y >V with t.1 =-. -y , I f I 

i s a g e n e r a t o r , t h e r e i s exac t ly one such f . 

Proof. Put t A « ^ A * C ^ ® y ) * & * . The u n i c i t y 

for the case of I a genera to r i s ev iden t . 

2«5« Lemma. A ® - i t e r a t e i s a functor obta ined r e c u r ­

s i v e l y by the fol lowing r u l e s : 

( i ) ® is a ® - i tera te , 4<. is a ® - i te ra te , 

(ii) if F^,...^^, F are ® -iterates, F 

in m* variables, Fo (̂  x .«« x T^ ) is an ® -iterateo 

Generalized ® -iterates are obtained from 0 -iterates 

by permuting the variables and replacing some of them by 

constants. 



Let F , G be genera l i zed <8 - i t e r a t e s , t } $* : F —-> 

—> G n a t u r a l t r ans fo rma t ions . Let I be a g e n e r a t o r . Then 

x * <& i f f - i - 1 ' " 1 » . # 1 - 1 . 

Proof. Let ot ; I ~~» A , <p: A ® B —• C be morph-

isms. We have 

Jb(g>. Coc® ^ ) ) = ( f c . * (*c<8M,4)) (90) -

* &Coo,HC'.%'<)) C*,C$>)) « ,fe,(g>>. oc . 

Thus, we have 

(1) ( V O C J I - ^ A g>>(cc<®4) = <y. CccigH)) -=*> cp = T * 

Using the n a t u r a l equivalence a we ob ta in 

(2) (Voc 1 I ~ ^ A 9 . C-1 ®oc) » f*C^(S> oc)) =*=-> g> = y . 

Hence, s ince g> . <oc €> /£ ) « 97. (oc<3> 4 ) * (4 <B> (I > , 

(3) CVoc?I~+A,/£: ! - -> B 9-Coc^t3;-=n/r.Coc<S>/3)) = > <? « Y -

Now, we easily obtain by induction that for a generalized 

® -iterate F 

CVoc^ il-+AJL 9»T(vo4,..^€C^)^Y'Pc^^n^m^)^9sa7lf f 

from which the statement immediately follows. 

2m6» Since ou, -fr", c are natural equivalences, we ob-
f 

tain immediately 

Lemma. 1) Jb1®1 » j^1® 4 . 

2) ^^^c^e^^.^KaJir1^^)®^) . 

3) a,1'1®1'1*- C ^ ^ C S ^ 1 ® ^ ) ) . ^ 1 . C(^®i2rI)€)^I) . 

4) O 5 ' X ' J * 1 - C - ( T < » ( 1 T ® J 5
X » . ^ . C ' V ® ^ x ) , * 

I I l#l 
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5) If c" « /V T then c1'*91-. &1® Srz . 
J® I 

--•7. Theorem. Let I be a generator of & , let 

(<S,H,I,a-,jfc%c,Jfe) be an SPC on & . Then it is 

an SC iff cJn =. 8rl<&l!fx and c11 » 4X . 

Proof. We shall use the notation of coherence requi­

rements from [2] CC4 - C4) . <vm , ^ 1 , c11 shall 

be abbreviated to CL,£T, C resp. Let (<»,H,I, <̂ , ̂ , c, fe) 

be an SC. Then, a, » £r® ir is obtained immediately from 

C2. . Further, by C4 we obtain 

d lc
I' I® I.a s(^c),a.(c(»

<l) • 

By C2, <L. c W t I. a - (*•*) • e ^ 2 . ^ * J ) - c ^ x , 

by C2 and 2.6.1), 

— IOI 

(4<3c). a . ( e ^ D - r (4®c)*(4®jer)„ %r -(c®4> « 

.»(4®c>.(4® ^)*c.jer1*I« O l d c ) . c1®1'1 . 

Thus 4 <& c m 4 , so that c -=» 4 -

On the other hand, let a, as ,£r ® $r and c .=. 4 . By 

2.5 it suffices to check C4 - tk at the values 

I,..., I . By 2.6.2) - 4) we have 

U « a 0 . a , W # 2 , 1 . C a , * ' l > -

• C 4 < * C 4 * J r » * C J f r * £ > . C(Jbr®4)®4 ) -

« (1 ®M ® £ ) ) . (jgr® j&).(4<»jer).(ir®4).(^®j&),(((£r®4>®>f). 

which gives C4 • C2 i s required in a^s i > ( 9 ? by 

2.6.1) , C3 i s t r iv ia l . Finally, we have 
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(4®c). a, (c<a4).*jer®ir*C,er®Ir>.C^ 

by 2.6.5), so that also C4 holds. 

2.Q. Remarks. 1) By the proof of 2.7 we see that in 

the case of a generator I , C2 and C4 imply CA and 

C3 . 

2) If I has no non-identical automorphism, then eve­

ry SPC C®,.K,I, O/j-fr', c, ̂  ) is an SC. Moreover, the na­

tural equivalences a,, J2rf c are uniquely determined by 

<# , R , I . we shall see later (5«6) that also the natu­

ral equivalence M> is uniquely determined. 

2.9. Remark. Lemma 2.2 often limits radically the can­

didates for units of possible SCs on a given category. We 

will show now elementary examples of categories with many 

objects starting an SC as a unit. Take a partially ordered 

set (!,.= ) . Regarding it as a category in the usual way, 

we see easily that an SC on C X , .6 ) consists of two bi­

nary operations <2t> and H on X such that CX, £ 9 & ) 

is a partially ordered commutative monoid and • 

(1) * & <y, .£ » iff * -£ H Co^ai) . 

Thus, e.g., any ® such that C X , -= , <& ) is a partial­

ly ordered abelian group makes an SC w i t h K ( ^ . r ) s ( - f ) ® x* 

In particular, for a discrete category, any structure of an 

abelian group is an SC (and vice versa: the condition (1) 

gives here * ® <%. =• as iff x a K C ̂  as ) , so that, de­

noting by i the unit, we obtain x <&HCx>+) **> £ ) and 

hence any of its objects is a unit of an S C 

This is, however, a too trivial example. To give e better 
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one, take a linearly ordered (X, -6 ) with a smallest ele­

ment 0 and a largest element K , and an e e JC, e + 0. Put 

x ® O ~ 0 ® x - » O , for ̂  s6 e and ^ .4 e put # ® <tf a 

» /mt/Ti, (Xity) 1 otherwise x ® ty ** <»icuc C«x, y, ) . Put Jf(0, a*)-*-

m 4 , for 0 <: ̂. <& as & e put H (<^, at) « e , for e -< ^ 

and & «< t̂ . put H (̂  , a; ) -» 0 , otherwise H (/#.,*,) = # . 

It is easy to check that this is an SC on (JC, *£ ). Thus, 

taking a complete linear ordering with smallest and largest 

elements, we have an example of a complete cocomplete cate­

gory such that every object except cosingleton ( = initial 

object) is a unit of an SC (since - ® X is a left adjoint, 

a cosingleton can be a unit only in the category with a sing­

le morphism). 

§ 3. Equivalence of SC with generators as units 

3.1. Lemma,. Let ££ « (^, H+ , 1-,, 0,4,, £5, c- - M,± ) 

(*£ » 4.J.2) be SC, let 1^ be a generator. Then if^ is 

equivalent to if* iff there exists a natural equivalence 

K i 0yj — • <&2 a n d a n isomorphism 'jf* 1^ — > 1^ such 

that 

Proof. Write I » I. ; J -» I* . We obtain (using 2.7) 

«<r*fe/7 ®2r>>^2® .2^/ ) c (^®2T>®aT>^n<%^> • 

. 1J ̂ ^ . W ÿ ^ Г ^ ^ 
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®2yc4<82r>.<e
I*'X'1 = 

= (f»2(f®2f))(^<s2^)(C Jbjc<r*Jl4x'»a>24:i)'i:
Im's'3(4air) -. 

-*I'^1Cr»/f«af))C^*iHCrir
1)^f7)f4<^r) „ 

= vh™*l( sr1 <&A ((f ®2 r ) * / r J) = 

. *I ,^1cj.vI« -rccr^r^*w<, ,«.ir)-5 ;.j ,rW -

, ^"-'(^"H*. 1®,S 1) = t^Ma.-*")*1" , 

so that, by 2.5t "Zi commutes. The commutativity of E2 

is obtained immediately from the assumption on qf • Final­

ly, £3 commutes since 

tP.cJ- *H« <f^T)-^-^<aJlr)^
u=41 • ** * 

3.2. Theorem. Let tf4 » f ®i > H^ , I ; , a^ ,*^ , c ^ , fc^ ) 

(i, -=. 4 .̂2 ) be SC, l e t I . be a generator. Then *£ and 

tfn are equivalent i f f ® and ® are natural ly 

equivalent. 

Proof. Let x % % > <2&« be a natural equiva­

lence. Put (again, I » I , a 0 I f t ) y * -*-, * * 

. c 1 0 . 3r * . Then we have 
% 1 

hi .<-". ci 3^ r) = jer/fciJ®2r>'c
:'I= -^cf c^®ar^

JI -

-»Z<ft*9>c**n - r*!*?*'1- *2 * 

so that the statement follows by 3.1. 
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§ 4. Extending a tensor product with unit a genera­

tor to a structure of closed category 

4.1. Lemma. For every tensor structure (®,K , I ) 
A& there is a natural equivalence c : A o B —• $<&A with 

u A 

Proof. Take an SPC C® , K , I , a, , Jlr, of f %v ) . Put 

g? » ^ c ' 1 1 ! ? J , Thus, c / J t - s 9? <8 4-- . Fu r the r , 

def ine T : 4 ^ —* 4 ^ by **« je/c4A<g> 9 ) I? A and f i n a l ­

l y c A B * A ® B > £<8>A by e*%mC+*94A) . c" 4 * . 

Obviously, c i s a n a t u r a l equ iva lence . We have t:1 3= 

« Jbr1. C4x®gf) . 2P1 = b1. (<y <& 4) . &1 = 9? by 2o3 , so 

t h a t c11 m (9 <& 4 t ) c ' J I . c ' n c ' 1 1 . 4 . 

4.2. Lemma. Let (<& , H , I ) be given, let <$' be 

naturally equivalent to ® , let #'=* (<»', H'l', a',^ c', *<') 

be an SPC. Then there is an SPC C<&,H,l,a, 4r, c,Jfe») 

equivalent to tf' . 

Proof is trivial. 

4.3. Lemma. For every y : .HCI,X) — • .HCI,y) the­

re is a <y i X —*> y with y * H (4- , <p ) . 

Proof. Put 4,* =r Jfexix C4X) : X —-> H(I,X ) . We see 

easily that thus a natural equivalence 4- : 4^—.• H(J,~) 

is obtained. Now, it suffices to put <p as £"y. f . <£ * . 

4.4. Theorem. Every tensor structure (#, Ji , 1 ) 

such that I is a generator can be extended to a structure 

of closed category. 

Proof. Let C ® , H , 1, a, ir, c, Jfe ) be an SPC 
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extending (<$ , H , 1 ) . We may assume t h a t St & A and 

c*l - c - * m j A (Real ly , by 4 . 1 , c can be chosen 

with c n = 4X(S>X . Then, by 1.6, C<S>,H; I , a , tr, c , M,) 

can be rep laced by an equ iva len t C®', H', l \ cu\ $r\ c ' , k,') 

s a t i s f y i n g Jbr'** \ and c '* 1 - . oflA m AA . Now, i f 

( ® ' , H ' , 1 ' ) can be extended to an SC, ( < 3 , X , 1 ) can, 

by 4 .2 and 1.5 o) Consider the diagram 

fø(Л<íKB®C>,D) 
&Coc,*BC,4) 

-> &((A<2>B>® C,B) 

V 
I,A®CB<8>C),D 

ABC 

Jfe 
J,CA<g>B)®c,3) 

' &CI,HCocT ,4)) . T 

&U,HCA®CB®C),I»> s >&CI,HCCA®B)<8>C,:D)) 

* 

4 , , . A,B,HCC,T» Aв»,CЗ 

ÍШ,HCA,HCB®C:D))
 a > J Í >ЭŁ J>ft.ci>нcA.жв>жc,:D)))) 

I,A,HťB«>C,3» 
* 

Äa,нcв®c,i») 
Й.C1, 8 Є

B C B ) 

.-1,А,НСВ,НССЛ») 

*• &CA,H CB,H CC,J)))) 

where ae i s a n a t u r a l equivalence H ( ~ ® - , - ) .5 

a - H ( - , H ( - , - > ) (which e x i s t s due t o the a s s o c i a t i ­

v i t y of 0 - t h i s f a c t was f i r s t observed by Linton) and 

oc i s t h e t r a n s f o r m a t i o n conjugate t o ae - Thus, 

<x,ABC : (A<8>B)<8>C A <2> CB ® C) 

is a natural equivalence* 

The big rectangle commutes by the definition of oc , the 

outer squares commute since %o is a transformation. Thus, 
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since all the mappings involved are one-to-one onto, the in­

ner square commutes. Since 1 is a generator, we obtain 

(1) **W**\ **••»*.* . HC«*M, V -

-HC^fe M P).9e A , B a c^ • 

Write ae for a*111 . Thus, se : HCI,I) > H(I,H(I,D) 

and hence, by 4.3, there is a X: I — • H O , I) with ae = 

~ H C "f ,A) . Hence, we obtain H M ,-ae ) . ae « 

• HCi,HC^A)).«e.ae 1 , 1 , H a , 1\ H M , * ) « *e1'IfHC1*1> . * . 

Thus, by (1), H ( o c U \ A) -» 4 , so that oc111- 4 * 

sr 1®'! * Jb-U 5 1 . Hence, by 2.7, 

C<$ , H , I , oc, , 8r, c , M, ) is an SC. 

4»5. Corollary. If I is a generator of % then the 

natural equivalence classes of tensor products on fc with 

unit I are in a one-to-one correspondence with the equiva­

lence classes of SC with unit I on fc 

Proof. Follows immediately by 4.4 and 3.2. 

4o5. Recalling 1.4 we obtain 

Corollary. Let C <rV , IL ) be a concrete category (with 

U. faithful). Then every tensor product on C fo , U ) can be 

extended to an SC and thus the equivalence classes of tensor 

products on ( & , U ) are put in a one-to-one correspondence 

with the equivalence classes of SC. 

4*7. Remark. A concrete category with a tensor product 

differs from the autonomous category of Linton (C31) - abbre­

viated AC - in the following points: 1) \l°R is assumed 

just equivalent, not identical, with & C— , — ) , 2) In AC 
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the existence of unit is not assumed (if U is induced by 

a generator, however, this I is a unit), 3) In AC a strong 

assumption (A5) on behavior of underlying sets and mappings 

is done . It has no counterpart in (fo^ti) with tensor 

product (except that here the commutativity of & , which is 

in AC a consequence of the axioms, has to be assumed expli­

citly) . 

In t3], 2.5, the tensor product of an AC is proved to 

be (associativity and commutativity) coherent, the proof de­

pends, however, heavily on (A5K 

§ 5. How far a structure of a closed category is deter­

mined by a tensor product 

5«1« Lemma. Let <B be a tensor product, > : A <& I -* 

—• A , /3 ! A ® J — > A natural equivalences© Let I be 

a generator. Then there is a uniquely determined isomorphism 

r f D — • I such that fiA » !rA. H A <2> y ) • . On the ot­

her hand, let Xr be given, y : J — » I an isomorphism. 

Then flA -= SbA. (/\A ® y ) is a natural equivalence. 

Proof. If (hA » ArA • (4A ® y ) then in parti­

cular <\t % y ** J&1 . (&1 and hence y ** fr1. (<̂ <S>/.1)-Ir
1=-. 

=- Jbr1. c11. Jr x . (h1 . Z1D . Ir ° . Evidently, for any y > 

Jbr . ( 1A ® y ) is a natural equivalence. Taking the y gi­

ven by the formula above, we have Jbr . (^i ® y ) -= ft>1 and 

hence JlrA . ( AA ® y ) - (hA by 2.5<> 

5 . 2 . Lemma. L e t JtrA t A <2> I —* A , /&A « A <3> 0 —> A , 

AfeC 
a* '. ( A < $ 3 ) ® C — > A<8K.£®C) be natural equivalences, 
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l e t a 1 1 1 - J r 1 ® & 1 . Then a?33 = /3 a ® fi J . 

P£0j2T. By 5 . 1 , A1 - - * 1 . M2 <8> r > • Consequent­

l y , 

Thus, a ? ^ « ( x ® (f Q J >) * a 1 1 1 . (C^® T > ® ^ > -

a c r • *rl - <t®r^ <*> f f "fr1* <Y® r » = /&3a /5D . 

5*3. Theorem. Let <g) be a tensor product such that 

some (and, hence, each) of its units is a generator. Then 
/4BC 

there i s exact ly one natural equ ivalence a s(A®B)<S>C«* 

—yA<&(B<$C) and exactly one natural equ ivalence 

c / B ;A<8>B—> B ® A such that (<g>,H,l , a , i r , e , h ) i s 

an SC for some H , I , tr, M, . On the other hand, I can be 

rep laced by an arb i trary isomorphic J , and Jir by an ar­

b i trary natural equ ivalence ft '. A ® J —~* A . 

Proof* Let C ®, H^ , I, a^ , ir, , c^ , *-,, > -

( O , H ^ J , ^ , ^ , ^ , ^ a ) be two SC. Thus, a " 1 -

« i^1 <» F / and hence, by 5 .2 , o^JD « j&£ ® J / » 

= o?33 . Thus, a . a-* a ^ by 2 . 5 . S imi lar ly , ^ -= cfi , s in 

C <" = Lr ® r > c " f 7 ® Ť > - 4 - & " 

5.4. Corollary. A tensor structure (<8>> H .> I ) to­

gether with a natural equivalence M, * & ( A ® 3 , C ) 3 

—> fc(A,H(B,C) and an isomorphism fr1:!*!—* * 

uniquely determine anSC (®,H,l,a*,ir,fl'**'> • 
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5»5. Lemma. Let Q y H be given. Then the natural 

equivalences Jfc, are in a one-to-one correspondence 

with the natural equivalences t .' <d —• <& * 
ABC 

Proof. First, fix a natural equivalence M,0 and 
ABC 

a s s o c i a t e with a genera l A*, the n a t u r a l equiva len­

ce M, o fa, , Thus, a one-to-one correspondence with the 

n a t u r a l equivalence fc(A®3?C) > fy(A&H> ,C) i s ob­

t a i n e d . Now, for an e A * c : fo (A<2>.B,C) -S fo(A<S>3?C) 

define r ( e ) : <g> —* <2> by r C e ) A B * *A,*'A(**C<1A<&* > • 
I t i s easy to check t h a t t h i s i s a n a t u r a l equivalence.. On 

A SC 

the other hand, for a t - <S -25 ® define e(t) ? 

J &CA.<8>B.,C) — > fe(A®B,C) putting e ( t ) A B C C 9 > « 
A & 

SK 9> o t # Again, we see easily that this is a natural 

equivalence. We have 

~r^t sv^C. A » & , A ® & , , x 

e(tr(e)) (9?) - 9 . e • ^ A « > & * -

^ ( e ( t ) ) A B . ^(t) A> &' A* s(4) - i A B . 

5.6. Lemma. Let a unit I of a tensor product <g) be 

a generator. Then the natural equivalences T t % — • ® 

are in a one-to-one correspondence with the isomorphisms 

tf ; I —> I . 

Proof. Let Jly \ A ® 1 • A be a natural equiva­

lence. For a natural equivalence t- s <2> — • ® put 

9>(<r) = jfr1. <z11 . j& * . By 2.5, 9 Ctr) ~ ^ 6 * ) 

implies *e a *£ • Now, let $: I — > I be an arbitrary 

isomorphism. By 2.4 there is a & : 4^> s A^ with tf1 = ̂ r # 
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Aft A 

Put t « <** fc 4ft . We have 

g> (t ) « jfr1. (3* <g> 'I x ) . Ir x m <y . 

5*7. Theorem. Let a tensor structure C® ,H , I ) on 

% be given, let I be a generator. Then the SC 

( ® , H , I, a, ir, c , Jk) are in a one-to-one corresponden­

ce with the set of couples of isomorphisms I —» 1 . 

Proofe follows immediately by 5.3, 5*5 and 5.6. 

5.8. Corollary. A tensor structure (® , H , I ) on & 

with I a generator without non-identical automorphisms 

determines uniquely an SC on & 
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