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Commentationes Mathematicae Universitatis Carolinae 

14,1 (1973) 

OH GENERATING OF RELATIONS 

J. PELANT, V. RQDL,. Praha 

Abstract: Given a family of relations JL{, indexed 

by a set I and a relation t on I one can form a new rela­

tion % (r, R4, ) induced by K4, and t . (If t is an or­

dering then HI (xf Ki ) is the lexico-graphic product of 

R-i, •) The question is studied how many Ri are necessary 
to generate a given relation X. . This is related to prefe­
rence-relations in psychology. 

Key words: relation 

AMS, Primary: 05C99 Ref. Z. 8.83 

Introduction. Let X be a set* let (Jij,)^ m% be a fa­

mily of binary relations on X . In addition, let t be a bi­

nary relation on I . This system of data generates a new bina­

ry relation on X defined in the following way: < x , ̂ > e R . 

if and only if there is i el such that 1) < x f <&> e R^, 

2) <tf, H > ̂  JLv for every < i ' , t > e <t , * 4* V . 

Thus we can, from relations £4, and *K of special charac­

ter, obtain relation far more general. For example any anti­

symmetric relation is generated in this sense by means of 

quasielementary preferences R.£ (by a quasielementary prefe­

rence we understand R c * a
 f what may be written as Km 

* AxB , where A c JC , B c X and A ft B ** 0 $ in case 

of A u B = X we say that R is an elementary preferen­

ce) and a bi .ar order t . At this place we might recall the 
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motivation of the above construction: having an antisym­

metric relation f> , we interpret < x , ^ > e f a s " * 

is preferred to ty. " and try to represent q> by means cf a 

system of simple decisions. For instance, the above theorem 

stated that any antisymmetric relation on a set X may be 

obtained from a finite sequence of subsets Vlf , V^ , . ,,, Xn, 

of X , if we interpret them as properties for elements of X 

and where for A* < 3. we consider the i> -th property mo­

re important than the 3. -th one. Hence we prefer x to /y, , 

whenever from the point of the most important property V$ 

we prefer x to /y. ( V-j, is the most important property if 

j- is the first ^ such that x is compatible %ith /ty in 

Given a certain class of relations oft* (elementary 

preferences, quasielementary preferences, linear orders, 

partial orders, etc.) and a relation % generated by means 

of relations from & > and appropriate relation t* (r li­

near order, respectively) we define the dimension (the line­

ar dimension, respectively) of X with respect to cfr as 

the least number of Jl-t • fcfr which generate H via some 

relation (linear order, respectively)* Very often we realize 

that the dimension of relations with respect to 06" grows 

beyond any limit merely ascertaining the number of elements 

in £6* • (This is the case in both foregoing instances.) In 

1970 a problem was put by professor KatStov: what is the be­

havior of dimension in cases which one cannot decide by me­

rely comparing the numbers, namely what happens when we ge­

nerate general relations from partial orders. In the sequel, 

we shall concern ourselves in the dimension with respect to 
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partial orders only. 

We R.aa?.l show that there exist tournaments (trichotono-

mic relations) of an arbitrarily great dimension. First we 

proved that the linear dimension of tournaments grows beyond 

any limit. The general result was achieved by formulating a 

correspondence between the general and the special dimension 

of tournaments. 

We would like to thank A. Pultr who not only acquainted 

us with the problem mentioned above, but helped us in the de­

velopment of its solution. 

A tournament T is a couple < X ,5 > , where X is a 

finite set and R is a subset of X such that the follow­

ing holds: 

X . < ^ e l aa> C<X,<!J.> S R<s=> < ty9 X > # R ) . 

Definition 1. Let X , I be nonempty sets. Let iJLj, ; ie 

el? be a collection of partial ordering on X . Let t be a 

relation on I • A relation R is said to be generated by 

{&.;, I 4 e I if and by tr if for every couple < x . ^ ) e K there 

exists -£ e I such that the following holds: 

1) <X,^> € Zj, , 

2) if </e I, i + i ' and <£, i'> € I , then <^,x> #R*/ * 

The relation R generated by tf and by {R4 ,£ m 1 J will be 

denoted by % it, iR-j, %i m 1 ) • 

Proposition 1. Let <ar»<X,R> be a graph. There exists 

a collection of partial orderings on X -CR^IicIt and an 

index relation r ( t c I a ) so that R » ft Ctr, CRi ?i c 1) . 

Proof. Put I m R, x m 0, -£<*,«y,>- A x v « x , y>> 1 • 
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(We put A% m <<x}x>/x e X } . ) 

Proposition 2a A graph <5 « <X , X > has no 2-cycles 

iff K m #,(©, <\\0%^§i ) where f is a linear order of I. 

Proof. Let G » < X , . K > be a graph without 2-cycles. 

Put I «• K f S.<xf*y> "*AX «-*{<*.>.#.>} • ket tr bs 

any linear order of I * Obviously K m $1 (v, iRil ) . 

If & m & Ctr, -f Rif-i #i ) where T is any linear or­

der of I It obviously holds: i<x%y>> ^ </y»,x>? 4r R • 

Definition 2. Let $ be a class of relations. The § -

dimension of a graph Gr m < X ,K> (dbrn,^ S ) is the 1 east 

cardinality of an index-set I such that & » SI C , r , < X . i ? i « i >, 

where tr c I a , t e $ . We write dburrv <5 * oLum^ 6 (the uni­

versal dimension of S } if $ is the class of all relations* 

We write ddm,^ Gf a dun** G (the linear dimension of Gr ) if 

$ is a class of linear orders. 

We write ctf/m^G* dim,* G (the acyclic dimension) if $ is 

a class of graphs without cycles. 

Remark. Every graph has the universal dimension accordini 

to the proposition 1. Every graph without 2-oycles has the li­

near dimension according to the proposition 2. 

flotation. 1) The collection of all tournaments with /rv 

vertices is denoted by (fin, • 

2) Put HZ Cm.) m Woe i eUmu^ T J . 

In the fol lowing the two main theorems w i l l be proved: 

Theorem 1 . Let T be a tournament. I f dumT m Jk. then 

4Am,# T £ 3** . 
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Theorem 2* Let us 3uppose m > 4 , Then JjJ Cm,) £ 

^9vC«u) T 

* jetaCaifafto + 4) ( h e n c e * * C f l ° t e n d s t 0 ******** 

i f in tends to infinity) * 

It follows from Theorem 1 and Theorem 2 that the set 

4cU/m,T IT i s a tournament I i s unbounded as a subset of Jf • 

" A: Theorem 1? 

Definition 3* Let T-»<X>H> be a tournament* ft » 

«• JLCr•'ClliKci^ • Le* <M i,Ma,M3? be a decomposition of I . 

Denote by B<M 1 9 M 1 9 M 3 > the set of a l l < x , ^ > « R which 

satisfy: h* 

1) < ^ , ^ > c K ^ for every i e ^ , 

2) <-,^<>ep3t-t for every * c A a . 9 

3) neither <*., ^ > e It-i, n o r <-u^o* > € X.£, for every-LcMa« 

The set 4B < M<1t,Ma,M3> I -C Mi , Ma , M3 J i s a decomposi­

tion of I? i s denoted by 3i . 

Convention* The symbol B<M<f9M£,M3> wil l dencte in 

the following the set defined in Definition 3. 

We shall write B instead of B < M i t M^,M3 > when there i s 

no danger of confusion* 

Remark* B <M*t>Ma^M.3> i s a relation on X with­

out cycles* 
Proposition 3* Let T » < X f ] L > *>« a tournament• %-m 

m JtC<e9{riU»x> -Let 4 M 1 , M a f M 3 ? aad 4M; .M* ,M'$ 1 

be decompositions o* I • Put B»B<M1,^2fM|>,B^•B<M^ri*^»^^*• 

Then B + 0, B '4 0 implies either M1 <fc M'a or A\ <fc Ma . 

Proof* Let us suppose Mi c M$ ^ M j c J l ^ J +. & B V 0 . 
*. - 99 -



There exists a couple <*f<u-> « B and consequently there 

exists i 0 m I such that <x,'jf-> € R-C0 (hence i0 € .M^ )• 

Further < i , i 0 > i t - 4 fy>x^ ^ * * f o r a n y * € * * A s ^ ' * ^ 

there exists <*', <y,'> e B' « Since -t0 e M^ and Jl^ c Jt^ , 

i t holds <^ ' ,* '> e Xip . As <x',<^'> e R andX* &(*,<!*%«*) 

and T is a tournament , there exists -î  € Ji£ such that 

<-£< , i 0 > € tr . 

However, J4̂J c Jt^ , therefore <*̂ , x>cXi which is a 

contradiction with the properties of t0 . 

Definition 4* Let f> c X1 be a relation without cyc­

les . We define tp a f | { y | p c ^ c JCa , IT is a partial 

order | . Obviously p i s a partial ordering. 

Definition 5. Let T«- < JC , R. > be a tournament, 31 » 

» ft Ctj-tH^l^^j ) . Let $ be a set defined in Definition 3. 

We define the relation A> C 33* j <B, B'> 6 a <-**--> B~'n Sf 4> 0 . 

Proposition 4. Presumptions are the same as in Defini­

tion 5» The relation Ja> defined in Definition 5 is a relation 

without cycles. 

Proof. In the way of contradiction, let •(B i»'--?B^1 

be a subset of di such that: < Bi ,Bi4.1>6 .^> for *t, m 4,.--

..., M, - 4 , <.Bflt,B>, > 6 * • It is Sl̂ .t A B ^ * # and 

5^ A Bj£ 4*0 > hence B-t * ^ for £ » \% ,„, Jk, * 

The following holds for -i « 4 f . . , f fc~i and 4. e I accor­

ding to the Definition 3: 

(*i+4 c X ^ - f r f B ^ c ^ l - ^ C B X ^ n X ^ + jBf l^ fB^cX. ) . 

Shortly: 

(I) Bi4><1 c R^ =«e> ST*cR^ f * « 4,*.., J t - 1 . • 
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We can obtain in the same way: 

( ID B, c JL± -»> B £ c X^ , 

(III) B T ^ c ] . . s - > B . c X i , 4,m4,...,Jk-4 , 

(IV) 3? c J . - « > J A c X . . 

Statements ( I I I ) and (IV) can be obtained in a similar 

way as ( I ) . F i r s t , we consider the case M, mljfi + 4 0 I t holds 

according to 1,11,III ,IV: 

\ c \± - > B i ^ c Ki => B 2 ^c R^-o. . . *-*B2 c R^ -=-> B ^ c R ,̂ , 

hence B^ c R^ -=.> BJj"1 c R^ which i s a contradiction (B*j 

i s a nonempty set and R.£ i s an antisymmetric r e l a t i o n ) . 

Secondly, l e t Jfc, ar 2j% . The following holds according to I , 

I I , I I I , I V : 

B,, c R4, —> B ^ c R^ =-*->BafJ>1 c R^ and inductively B ^ c R^ , 

hence B1 c R^ m+ 3^ cz: K^ . 

I t follows from (I) a l so : B$, c R^ asfr B ^ c X i . We put 

3 4 - B < M j f J | J , i l l > , B a « B < M * , i t * , M f > , Consequently 

J\î  C Jtt£ , M* c M^ , which i s a contradiction ( i t follows 

from Proposition 3)# 

Proposition 5« Let T =* < X , R > be a tournament, R =* 

-* 5tCtf, <TLJL J . i«i ) . Let 4> be th<* re la t ion defined by Defi­

ni t ion 5. Then 3L * 4t < * , <Bg ? 0 C ^ > • 

Proof, 1) If <X9ty> € X , there exis ts B c & such 

that <x,<y>> € 3 . If < / ^ , * > c B ' then < B , B ' > m b 

(Definition 5 ) . As ^ i s an antisymmetric r e l a t ion , i t i s 
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<B' , B> 4$. & * This impl ies t h a t t h e r e e x i s t s no B ' 6 {& 

such t h a t both < ^ , x > € B ' * &J-& < B /
! ) B > € A) f conse­

quent ly < ^ , ^ > c 3 t C / b , - ( B 5 ^ € ^ ) • 

2) As T i s a tournament, i t i s s u f f i c i e n t fo r the proof of 

the s tatement t o show "the fo l lowing: 

Let <X,/jf>> € .&"'* « There e x i s t s B 0 € J3 such t h a t 

< # , x > c B0 . I f < x , /y, > e B for a B c ^ then <B 0 ,B>€ 

£ 4, according to D e f i n i t i o n 4 f hence <iX,/^>^ ^ ^ ^ ^ - B ^ ^ g ^ ) * 

P ropos i t ion 5 i s proved. 

P ropos i t ion 6, Let T be a tournament. I f dimuT« Jte ? 

then dim, T ^ 3 * . 

Proof. The s ta tement fol lows e a s i l y i f we cons ide r the 

remark under D e f i n i t i o n 4 , .Proposit ion 4 , P ropos i t i on 5 and 

rn i n e q u a l i t y K < M,, »-Ma,M$> I f J4-, , J l * , J4 3 * i s a decom­

p o s i t i o n of I „ 111 « Jk, i i,£ 3 * . 

P ropos i t i on 1. Let Gf-s<X, .3l> be a graph. Let X be 

an antisymmetric r e l a t i o n . Then dLurrv^ Gf * cLum^ G • 

Proof. 1) Obviously dimu^G & dimv&G . 

2) Let l » ^ C t r , - C X 4 5 - t t j ) where r i s an acyc­

l i c r e l a t i o n . There e x i s t s obviously a p a r t i a l o rde r ing JUL 

on I such t h a t u, a % and X a? & Co,, -C R ^ $.i g j ) , hence 

dvm,y> G .£ dJum^ Gr • 

Now a proof of Theorem 1 fol lows immediately from Pro­

p o s i t i o n s 5,6 and 1. 
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B; Theorem 2 : 

n o t a t i o n . Let < X , 31 > be a graph. The maximal c a r d i ­

n a l i t y of a se t Y such t h a t Y c X and <y ,K n YxY > 

i s a l i n e a r o rder i s denoted by JL CX) . 

The maximal c a r d i n a l i t y of a s e t Y such t h a t Y c X and 

(Y xY)n\** 0 i s denoted by I < X , X > . 

Let itt be a p o s i t i v e i n t e g e r . We d e f i n e : 

L (m*) « mun, iZ(K) I < X , X > 6 3^,} . The fol lowing two propo­

s i t i o n s are well known and we s t a t e them without p roofs . 

P ropos i t ion 8. L (n) £ ^^%z^ + 4 • 

P ropos i t ion 9* Let < X ^ JL> be a p a r t i a l l y ordered 

s e t . Then £ C . J t ) . ' i < X > ] i > > oo^d X • 
Nota t ion . Let X be a s e t . Let y be a subset of X • Let 

R be a subset of X x X . We denote JL A C Y X Y) by V y . 

P ropos i t ion 10 . Let < X , X > be a graph. Let JL « 

» i t Ctr >*Xi , i i ,Gl) where % i s a l i n e a r order of I . Let Y 

be a subset of X . I f t h e r e e x i s t s -i0 m I such t h a t 

fop/y » 0 , then * / y « % (*', i X* /y } ̂  € r ) - Y ¥ n e r e 

I ' « I . - « 0 1 and x ' « * / x ' -

Proof i s t r i v i a l . 

Nota t ion . The symbol tf^ w i l l denote a n a t u r a l order 

of the s e t { 4 , . . . , 4* ) . 

Proof of Theorem 2 . Let T4 » < X4 ,R^ > be a tournament 

such tha t ocuud X^ * m>A , ..A CK4 ) ar L C/iv4 ) and ciim^ X, « fc . 

Let us suppose t h a t R^ « &Cr%*, < Cl ?,t ^ ,* % ) a*1** 

* - ^ . / P i f r G n , ) * . ' . Crtv • "S 5 • W e s h a 1 1 c o n s t r u c t t o u r -
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naments T-j. - < Xj-., „ f > Cj » 2 , . . . , * ) vfcere JC-j. c *£_., , 

tion. 

Suppose that the tournaments T.j, ..., T-J. have been 

constructed. l£» ^^-^-o^f-w-h-t ?1** _t*,-*.M * > 

hence £CX£) 2 iCC| > . According to Proposition 9 there 

exists a set X}+i c X^ (coxd, JC3.+ 4 *• "^-M ' s a c h t h a t 

<*b_̂ _, 25 _^f r and C* / r ^ . » 0 . Put **« * ToTT and 7 /JC*^ - * ' 

It holds X j + i - & C * w , < Cj*^ *<*.<,** _^ ) according 

to Proposition 10. As Z(JL^) 4 Ji CX,,) _ L (m,) for £ 

___ 

•-* 
4 , . . . , * , and ^ i * 77x17 l t - o l d B i a v - LcT)*-* 

"^9_i ^ ^ At 
Further k, < -5 7x7—7, „% , hence m, > C2 <foCm*)4->0 2 

£9,4 (££9^*1)+4) ^* 

2! LCitt)** (according to Proposition 8). Consequently 

iti|^>L (m,) . Howeverf T ^ is a tournament and a partially 

ordered set, hence 1)^ is a linaarly ordered set, hence 

1tVj.a1JtCl.ijj.) ** LC/rv) which is a contradiction. 

R e f e r e n c e s 

[1] J.W. MOON: Topics on tournaments, Holt,Rinehart and 
Winston,Hew York(1968). 

t2] W. EDWARDS: The theory.of decision making, Psychol. 

Bull.51(1954),380-417. 
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