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Commentationes Mathematicae Universitatis Carolinae

14,1 (1973)

ON GENERATING OF RELATIONS
J. PELANT, V, RUDL,. Praha

Abstract: Given a family of relations R; indexed
by a set I and a relation® on I one can form a new rela-
tion R (v,R;) induced by Ry and « . (If ¢ is an or-
dering then R (v, Ry) 1is the lexico-graphic product of

Ri{ o) The question is studied how many Ri are necessary
to generate a given relation R . This 1is related to prefe-
rence-relations in psychology.
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Introduction. Let X be a set, let (Ry)iex be a fa-
mily of binary relations on X . In addition, let = be a bi-
nary relation on I, This system of data generates a new bina-
ry relation on X defined in the following way: < x,4)>€R.
if and only if there is 4 €I such that 1) <x,4>eR;,
2) <rg, X>§Rifor every <i',id>ex, 4 + .

Thus we can, from relations R{ and 1 of special charac-
ter, obtain relation far more general, For example any anti-
gymmetric relation is generated in this sense by means of
quasielementary preferences RKi (by a quasielementary prefe-

2

rence we understand R e & what may be written as R =

’
=AxB , vhere AcX,BcX and ANB= @ ; in case
of AuB =X we say that R 1is an elementary preferen-
ce) and a bi .ur order ® . At this place we might recall the
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motivation of the above consiruction: having an antisym-
metric reletion @ , we interpret <x,y> € @ as " x
is preferred to ¢ " and try to represent @ by means cf a
system of simple decisions, For instance, the above theorem
statéd that any antisymmetric relstion on a set X may be
obtained from a finite sequence of subsets Vq,Vy,..., Vm
of X , if we interpret them as properties for elements of x
and where for 4 < 3 we congider the 4 -th property mo-
re important than the j -th one. Hence we prefer x to 4 ,
whenever from the point of the most important property Vj
we prefer x to 4 ( V; is the most important property if
3" ig the first d, such that x 1is compatible with 44 in
Vi ).

Given a certain class of relations &r (elementary
preferences, quasielementary preferences, linear orders,
partial orders, etc.) and a relation R generated by means
of relations from & , and appropriate reletion = (v 1i-
near order, respectively) we define the dimension (the line-
ar dimension, respectively) of R with respect to & as
the least number of R4i & ®r vwhich generate R via some
relation (linear order, respectively). Very often we realize
that the dimension of relations with respect to && grows
beyond any limit merely ascertaining the number of elements
in 3 . (Thie is the case in both foregoing instances.) In '
-1970 a problem was put by professor Kat&tov: what is the bg—
havior of dimension in cases which one cannot decide by me-
rely comparing the numbers, namely what happens wﬁen'we Ze-
nerate general relations from partial orders. In the seqdel,

we shall concern ourselves in the dimension with respect to
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partial orders only.

We saall show that there exist tournaments (trichotono-
mic relations) of an arbitrarily great dimension. First we
proved that the linzar dimension of tournaments grows beyond
any limit. The general result was achieved by formulating a
correspondence between the general and the special dimension
of tournaments.

We would like to thank A, Pultr who not only acquainted
us with the problem mentioned above, but helped us in the de-

velopment of its solution.

A tournament T is a couple <X ,R>, where X is a
finite set and R is a subset of X? such that the follow-
ing holds:

X, 4 €X => ({x, 4> Ré= gy, x>¢R).

Definition 1. Let X ,I  be nonempty sets. Let {R; ;ie
€13 be a collection of partial ordering on X . Let = be a
relation on I. A relation R is said to be generated by
-(B..;, I1 eIt and by © if for every couple <x,y> e€R there
exists £ € I such that the following holds:
1) <{x,4%€eR,; ,

2) if VeI, i 4" and <i,i> eI, then <q, x> Ry .

The relation R generated by ¥ and by {R;,i €I3 will be
denoted by R(v,{f{Ri%;e1) - ’

Propogition 1. Let G =< X,R > be a graph., There exists
a collection of partial orderings on X +{Riyl4 el}¥ and an
index relation ® (2 c I? ) so that R= R (r,{R:¥¢1).

Proof. Put I=R, = =f, Rex,qy> = Ay v i<x,g>3 .
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(We put Ay = f<x,x>/xeX}.)

Proposition 2, A graph G = <X,R?> has no 2-cycles
iff R=R(e,{Ry3,er) vhere ©* 1is a linear order of I.

Proof, Let G=<X,R)> be a graph without 2-cycles.
Put I-R,Ro‘.,“,-ﬂxuf(x,q})} . Let = be

any linear order of I . Obviously R = R (z,{R;3) .
If Rax R(x,fRitiqg1? where * 1s any linear or-
der of I it obviously holds: <(x,4>,<4,x>3¢R .

Definition 2, Let Q be a class of relations. The § -
dimension of a graph G = <X,R> (dim g 6 ) is the least
cardinality of an index-set I such that R= ﬁ(fu,{kq-,h.x)'.
where v c I?, v € § . We write dim G = dimg G  (the uni-
versal dimension of G ) if @ 4s the class of all relations.

We write d-im‘G = dim g G (the linear dimension of G ) if

$ . is a class of linear orders, | v
We write dimy G = dim g G (the acyclic dimension) if § is
a class of graphs without cycles,

Remark, Every graph has the universal dimension according
to the proposition 1., Every graph without 2-cyclés has the 1i.

near dimenéion according to the proposition 2,

Notation., 1) The collection of all tournaments with m

vertices is denoted by I -
2) Put Dy (m) = Max fdimy, T} .
& )
TeT,
In the following the two main theorems will be proved:
Theorem 1, Let T be a tournament, If dim T = fe , then

M&T$3~ .
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Theorem 2., Let vs 3uppose m > 4 ., Then J)I (m) =

Lg, (m)

2 T
z 2g2(24g,(m)+4) (hence :D.‘! (m) tends to infinity

if m tends to infinity).
It follows from Theorem 1 and Theorem 2 that the set
{§dim T|T 1s a tournament $ is unbounded as a subset of N.

—

“A: Theorem 1: ‘
Definition 3., Let T=<X,R> ©be a tournament, R =
= R(¥,{Ry¥; ¢1) . Let {M,,M5,M,1 be a decomposition of I,

Denote by B<M,,M,,M,)> the set of all <x,¢>eR which
satisfy: =%

1) <x,4>eR; for every TeM ;
2) (,,x>eR; forevery 1 s M, ,

3) neither <x,4>eR; nor <{g,x>eR; for everyieMy.

The set 4B Mg, Ma,M3> 1 {M 4, My, M3 is a decomposi-
tion of I% is denoted by @B '

- Convention. The symbol B(M,,My,M;> will denote in
the following the set defined in Definition 3,
We shall write B instead of B <M , M3, M, > when there is

no danger of confusion.

Remark.s. B<M,,M,,M4? is a relation on X with-
out cycles.
Proposition 3. Let Tw=<X,R> be a tournament, R =

= R(x,4R1Y or) . Let { M4, My, M3} end M, M, M1
be decompqsitiéns of I .Put B=B<M, M0N0, B=B<N), 'a,l',).
Then B#» §,B % # implies either My & M'z or M ¢ M, .

Broof. Let us suppose M, c M; endM cM,,BP+f,P+p.
a - 99 -



There exists a couple <x,4 > € B and consequently there
exists 4, e I such that ¢(x,4 > « R{, (hence i,6 M, ).
Further <{i,ip> et =b<y,x>@R; for any < €I . As B's {
there exists <x’,4’> & B’. Since i,e Ms; and M, c M),
it holds {q/,x’> € Ri, . 4s <x,4'>eR andR=R (z,{R;3;,1)
and T 1is a tournament, there exists 4, € Mj such that
{i4,v0€ 2 .

However, M{ c M, , therefore {y,x>eR; 6 vhichise
contradiction with the properties of 4, . '

Definition 4. Let @ c X2 be a relation without cyc-
les. We define @ =N{elpcedc X, ¢ is a partial
order§ . Obviously § 1is a partial ordering. ,

Definition 5. Let T=<X,R > be a tournament, R =
=R(¥,{R;3;1). Let B be a set defined in Definition 3,
We define the relation sc B2:<B,B > e v B 'nBE' % 7.

Proposition 4. Presumptions are the same as in Defini-
tion 5. The relation ,5 defined in Definition 5 is a relation
without cyclras, -

Proof. In the way of contradiction, let {Bqs:-» Bgt
be a subset of B  such that: <B;,B;,,der for 4 =1,...
ceea M =4,<By B €A, It 18 By B b P and
ByABj #4, hence By ¥ 8 for L =4,..,k .

1

The following holds for 4 = 1,..., %k~ and 4 € I accor-

[y

ding to the Definition 3:
(Bi,, CRy) = (B, e Ry)=o (Bi' AR, 4 M) = (B]"cR,) .
Shortly:
(1) By,,cR;=8"cR;, i=1,..., -1

~ 100 -



We can obtain in the same way:

(11) B,cR, =B cR; ,

(zi1) Bj) <R, =B, ck;, L=d,., -1,

-1
(IV) 31 cR&ﬂthxi .

Statements (III) and (IV) can be obtained in a similar
way as (I). First, we consider the case M m2p+44 . It holds
according to I,IT,III,IV:

-1 -4
B,‘ CR.«" =>an+4 c Ri':)BaﬁCR‘L’,u. sz CR_"' —'=>B1 Cc R._L ’
hence B,' c R‘-‘ => .B,," <R, which is a contradiction (31

is a nonempty set and R; is an antisymmetric relation).
Secondly, let % = 2.1 . The folloving holds according to I,
IT,II11,IV:

BjcRy = B;fn c R, =>B,, 4cR; and inductively B;'cR; ,

-
hence B,‘ck_i,as).Bz cR; .

It follows from (I) also: B, c RigB;" cXR; . Ve put

1
B,y =B<M, ,M;,M; >, .32=B<.M.:',M§, M3%> . Consequently
M: c M: , Mﬁ c M} , vwhich is a contradiction (it follows

from Proposition 3),
Eroposition 5. Let T =< x,]{) be a tournament, R =
=R (2, {R43;¢31). Let » be the relation defined by Defi-

nition 5. Then R = R (4,{Bglpen) -

Proof. 1) If {x,4> € R , there exists Be B such
that <x,4>e€B . If <y,x>e B’ then<B,B>e€ 5

(Definition 5). As » is an antisymmetric relation, it is
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<B,BY & » . This implies that there exists no B edH
such that both {g,x> € B/ - and (B’,B>e b , conse-
quently <x,ny>e R(s»,{Bplgemn’ -

2) As T 1is a tournament, it is sufficient for the proof of
the statement to show the following:

LyYeRT=2(x,u>& R (5,{Bg3gcan) -

Let <x,y> € R~ . There existe Boe R such that
{y,x>€B, . If <x,yp> € B fora Be B then(B.o,B>€
€ 4 according to Definition 4, hence {x,4> € R (5,{B 3pen)-
Proposition 5 is proved.

Proposition 6. Let T be a tournament, If dim T = % ,
then dim T = 3™

Proof. The statement follows easily if we consider the
remark under Definition 4, Proposition 4, Froposition 5 and

rn inequality |{< M, , My, Ma> | €M, My, M3% 15 & decom-
position of I, IIl= A 3| < 3™ .,

Proposition 7. Let G=<X,RY» be a graph. Let R be
an antisymmetric relation, Then dim gy G = dimy G .
Proof. 1) Obviously dimy G &£ disz .

2) Let X= R (%,{R33¢1) where ¥ is an acyc-
lic relation, There exists obviously e partial ordering «
on I such thet w 2 and R=R (w,{R33;¢1) , kence
dimy G & dimy G .

Now a proof of Theorem 1 follows immediately from Pro-
positions 5,6 and T.
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B: Theorem 2:

Notation. Let < X,R > ©be a graph, The maximal cardi-
nality of a set ¥ such that Y ¢ X and <Y,RnY¥xY)>
is a linear order is denoted by £(R) .

The maximal cardinality of a set ¥ such that ¥ ¢ X and

(YxY)AR=/ 1is denoted by 4 <X,R> .
Let m be a positive integer. We define:

Lin)=min {L(RYI<X,R>e 8/, . The following two propo~
sitiong are well known and we state them without proofs.

Propogition 8, L(m) < 2.2Lg,m +1 .

Proposition 9., Let <X ,RY be a partially ordered

sete Then L£(R) .+ <¢(X,R> =2 cand X .
Notation. Let X be a set. Let ¥ be a subset of X . Let

R be a subset of X x X . We denote Rn(¥x ¥Y) by B/y .

EFroposition 10. Let ¢X,R> ©be a graph., Tet R =
= R(v,4Ri3 e1) where ¥ is a linear order of I . LetY
be a subset of X . If there exists 4, € I such that
B&"/}' = f§ , then l/y- R(2, 1 By, eI’) ~ vhere

I'-Ir‘[i‘,} and t':‘z/l' .

Proof is trivial,
Notation. The symbol Th will denote a2 natural order

of the set {4,..., 0% .
Proof of Theorem 2, Let T, =<X;,R,> be a tournament

Let us suppoge thet 114- :Ra(‘rk_-, <cf._ !1‘1.‘.‘) and

< 2g,m

>y ¢ . W gt -
2,0 Lg,mre 1 m =m,) ., We shall construct tour
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naments Ty = (Xa',.,Rg.) (G = 2y...,) vhere X3 cXi-1,
Rim R (g .48 céi-«-t}u«!.sh.éw) and caxd X3 = m; ,by induc-
tion.

Suppose that the tournaments Ty, ..., T3  have been
constructed. Ry = &(%,j_ﬂ,{cg_,,.; Yieism-dg+i1}

hence £(R3) 2 £(C;) . According to Proposition 9 there
exists a set Xj,4 ¢ X; Ceaxd X5, 4 = my, ) such that

s ¥
M3pa 2 —L—('%;"' and 5/x’-*4 = f . Put
U | ..
Ripa= t/x Gea 0 C" = 'w/x“M y Gimged, ... %) .

It holds Rj, "R'czh-é’{c’+4}4£o‘b-‘-) according

to Proposition 10. As I.(R ) £ I(R )=L(m) for } =

= _;- B - n
4,...,& and /n. x(Té.) it holds: W
Lg,zfm.)

Purther M < Jga(28g, ()4 1)

,hence m > (2 qa(m)+4)"'z

=z L(m)Y®  (according to Proposition 8), Consequently

My > L (m) . However, T,._ is a tournament and a partially
ordered set, hence T, 1is a linearly ordered set, hence

my= L(R)) L¢(m) which is a contradiction,
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