Commentationes Mathematicae Universitatis Carolinae

Ladislav Nebeský
A theorem on Hamiltonian line graphs

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 1, 107--112

Persistent URL: http://dml.cz/dmlcz/105474

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
14,1 \text { (1973) }
$$

A THEOREM ON HAMILTONIAN LINE GRAPHS
 Ladislav NEBESKÝ, Praha

Abstract: In this paper, the following theorem is pro.ved: Let G be a graph with at least five vertices and G be the complement of G; then for at least one graph G^{\prime} of the graphs G and G, G^{\prime} is connected and the line graph of G^{\prime} is hamiltonian.
$\frac{\text { Key words: }}{\text { of a graph }}$ hamiltonian graphs; line graphs; the compleAMS, Primary: 05C99

Ref. Ž. 8.83

In [5] Harary and Nash-Williams raised the problem of characterizing those graphs the line graph of which is hamiltonian. The present paper is a contribution to this topic.

We shall say that a graph G_{1} is an LH-subgraph of a graph G_{0} if (i) G_{1} is a subgraph of G_{0}, (ii) G_{1} is either trivial or eulerian, and (iii) for each edge $x=\mu \sim$ of G_{0}, at least one of the vertices μ and v belongs to \mathcal{G}_{1}. (For the terms of the theory of graphs which are not defined here, see Behzad and Chartrand [1].)

Lemma. Let G be a connected graph with at least three edges. Then the line graph $L(G)$ of G is hamiltonian if and only if G contains an LH-subgraph.

This lemma directly follows from Proposition 8 in [5]. (Note that for $G=K(1,2)$ this proposition does not hold.)

The path P_{4}, which is self-complementary, is the only graph G with four vertices such that (i) G and the complement \mathcal{G} of G are connected, and (ii) neither $L(G)$ nor $L(\bar{G})$ is hamiltonian.

Theorem. Let G be a graph with $\uparrow \geq 5$ vertices. Then for at least one graph G^{\prime} of the graphs G and \bar{G}, G^{\prime} is connected and $L\left(G^{\prime}\right)$ is hamiltonian.

Proof. For $n=5$, the proof of the statement can be obtained by exhaustion (diagrams of all 34 graphs with 5 vertices can be found in Harary [4]). Assume that $\nVdash=n \geq$ ≥ 6 and that for $\eta=n-1$, the statement is proved. The case when $\{G, \bar{G}\}=\left\{\boldsymbol{K}_{\uparrow}, \bar{X}_{\nless}\right\} \quad$ is obvious. We shall assume that G contains a vertex r such that $1 \leq \operatorname{deg}_{G} r \leqslant$ $\leq \not \leq-2$. Denote $G_{0}=G-r$. By the induction hypothesis, for at least one graph $G^{\prime \prime}$ of the graphs G_{0} and $\bar{G}_{0}, G^{\prime \prime}$ is connected and $L\left(G^{\prime \prime}\right)$ is hamiltonian. Without loss of generality we assume that $G^{\prime \prime}=G_{0}$. As G_{0} has at least $\nVdash-2 \geq 4$ edges, then G_{0} contains an IHsubgraph. Obviously, G is connected. We shall assume that $I(G)$ is not hemiltonian. Let G_{1} be an LH-subgraph of G_{0} with the maximum number of vertices.
I) Let G_{1} be trivial. Then $G_{0}=K(1, \uparrow-2)$. As $L(G) \quad$ is not hamiltonian, \bar{G} is connected and $L(G)$ is hamiltonian.
II) Let G_{1} be nontrivial. By V_{0} and V_{1} we denote the vartex set of G_{0} and G_{1}, respectively. By E and $\bar{E} \quad$ we denote the edge set of \bar{G} and \bar{G}, respectively. wenote $V_{2}=V_{0}-V_{1}$; by m we denote the number of - 108 -
vertices of \mathbf{V}_{2} ．As $L(G)$ is not hamiltonian，there exists s $\in V_{2}$ such that κ か $\in E$ ．Obviously，the comp－ lete graph with the vertex set \boldsymbol{V}_{2} is a subgraph of \bar{G} ．If there exists $w_{0} \in V_{1}$ such that $r w_{0}$ ，sw $w_{0} \in E$ ，then G contains an LH－subgraph，which is a contradiction．Thus for each vertex $v \in V_{1}$ ，either rue \bar{E} or $\boldsymbol{\sim} \boldsymbol{v} \in \bar{E}$ ． Let $w_{1}, w_{2} \in V_{1}$ such that $w_{1} w_{2} \in E$ ．As G_{1} is an LH－subgraph of G_{0} with the maximum number of vertices and G contains no LH－subgraph，we can easily prove that either κw_{1} ， $\boldsymbol{r} w_{1} \in \bar{E}$ or $\kappa w_{2}, \gamma w_{2} \in E$ ．As G_{1} contains a cycle，there exist distinct vertices t ，山 $\in V_{1}$ such that $\kappa t, s t, \kappa \mu, s \mu \in \bar{E}$ ．

It is easy to see that \bar{G} is connected．We shall con－ struct an LH－subgraph of \bar{G} ．Let \mathbf{F} denote the subgraph of \bar{G} induced by V_{1} ．Let $x=v_{1} v_{2}$ be an edge of F ； by $A(x)$ we denote a set $\left\{v_{1} v_{2}, v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime}\right\}$ whe－ re（i）$v_{1}^{\prime}, w_{2}^{\prime} \in\{r, r\}$ ，（ii）$v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime} \in \bar{E}$ ，and（iii） if there exists $v^{\prime} \in\{\kappa, 力\}$ such that $v_{1} v^{\prime}, v_{2} v^{\prime} \in E$ ， then $v_{1}^{\prime}=v_{2}^{\prime}$ ．Consider a maximum matching \mathcal{M} in the graph $F-t-\mu$ ．By A we denote the set ${ }_{x} \in M A(x)$ ． Let j denote the number of those $x \in M$ that there ex－ ists an．$x-m$ path of \bar{G} induced by $A(x)$ ．Let wo be a vertex of \boldsymbol{F} and \boldsymbol{Y} be a subset of $\bar{E} ;$ by $D_{v_{0}}^{Y}$ we denote the set of those vertices of $\boldsymbol{V}_{\boldsymbol{1}}$ which are adjacent to w_{0} in F and incident with no edge of Y ．If j is e－ ven，then by B we denote the set $A \cup\{\kappa t$ ，st，ru，su\}. Let j be odd．If $D_{\mu}^{A}-\left\{\boldsymbol{t}^{\mathbf{j}}=\varnothing\right.$ ，then by B we denote the set $A \cup\{n t$ ，ot $\}$ ．If $D_{\mu}^{A}-\{t\} \neq \varnothing$ ，then by B
we denote a set $\mathcal{A} \cup\{\kappa t, \operatorname{st}\} \cup \mathcal{A}\left(\mu \mu^{\prime}\right), \quad$ where μ^{\prime} is a vertex of $D_{\mu}^{A}-\{t\}$. If $m=1$, then by Z we denote the set B. If $m \geq 3$, then by Z we denote a set $B \cup Z^{*}$, where Z^{*} is the edge set of a cycle with the vertex set V_{2}. Let $m=2$ and s^{\prime} be the only vertex of V_{2} different from s. If each vertex wr $\boldsymbol{\varepsilon} V_{1}$ adjacent to s^{\prime} in $\overline{\mathbf{G}}$ is incident with an edge of \mathbf{B}, then by Z we denote the set B. Let there exist nor' e V_{1} such that $s^{\prime} w^{\prime} \in \bar{E}$ and $\boldsymbol{w}^{\prime \prime}$ is incident with no edge of B. If onv $w^{\prime} \in \bar{E}$, then by Z we denote $B \cup\left\{\Delta s^{\prime}, \Delta w^{\prime}, \Delta^{\prime} w^{\prime}\right\}$. Let sw' $\neq \bar{E}$. Then $n w^{\prime} \in \bar{E}$. If $D_{t}^{B}=\varnothing$, then by Z
 $\in D_{t}^{B}$, then by Z we denote $(B-\{s t\}) \cup\left\{s s^{\prime}, s^{\prime} w^{\prime}, t w^{\prime}\right\} ;$ if $D_{t}^{B} \neq \varnothing$ and $w^{\prime} \neq D_{t}^{B}$, then by Z we denote ($B-\{r t, s t\}$) $\cup\left\{s s^{\prime}, 力^{\prime} w w^{\prime}, r n w^{\prime}\right\} \cup \mathcal{A}\left(t, t^{\prime}\right)$, where t^{\prime} is a vertex of D_{t}^{B}.

Now, let H denote the subgraph of G induced by Z. It is easy to see that \mathcal{H} is an LH-subgraph of \bar{G}. Thus L ($\bar{G}) \quad$ is hamiltonian and the proof is complete.

Corollary. Let G be a nontrivial graph. Then for at least one graph G^{\prime} of the graphs G and \bar{G}, G^{\prime} is connected and $L\left(G^{\circ}\right)$ contains a hamiltonian path.

Remark. It is possible to ask for connections between the present theorem (and its proof) and sufficient conditions for a graph to be hamiltonian which depend on properties of the degree sequence (as in [4], pp. 66-68, [1, pp. 131-135], and the most generally in Chvátal [2]), or on the other quantitative indices (Chvátal and Erdös [3]). The following example
gives a partial answer to the problem in question. Let $\nsupseteq \geq 12$ and G be the graph which we obtain from the path P_{3} and the complement $\bar{C}_{\Re-2}$ of the cycle with $\nless-2$ vertices in such a way that we identify one vertex of \bar{C}_{n-2} with one end-vertex of P_{3}. Obviously, $I(G)$ is not hamiltonian. Let Ω denote the only end-vertex of G; it is easy to see that $L(G-N)$ is hamiltonian. The graph $L(\bar{G})$ has $3 \nsim-7$ vertices, the maximum degree R, the connectivity 5 , and the independence number $\{(\not-1) / 2\}$. The graph $L(G)$ is, of course, hamiltonian but its degree sequence does not fulfil the condition of the first statement of Theorem 1 in [2], and the relation between its connectivity and its independence number does not fulfil the condition of Theorem 1 in [3].
References
[1] M. BEHZAD, G. CHARTRAND: Introduction to the Theory of Graphs, Allyn and Bacon, Boston (Mass.) 1971.
[2] V. CHVÁTAL: On Hamilton's ideals, J. of Combinatorial Theory 12 (B) (1972),163-168.
[3] V. CHVÁTAL, P. ERDÖS: A note on Hamiltonian circuits, Discrete Mathematics 2(1972),111-113.
[4] F. HARARY: Graph Theory, Addison-Wesley, Reading (Mass.) 1969.
[5] F. HARARY, C.ST.J.A.NASH-WILLIAMS: On eulerian and hamiltonian graphs and line graphs, Canadian Math.Bull. 8(1965), 701-709.

Filosofická fakulta
Karlova Universita
Krasnoarmějců 2
11638 Praha 1
Czechoslovakia
(Oblatum 14.11.1972)

