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A THEOREM ON HAMILTONIAN LINE GRAPHS 

Ladislav NEBESKY, Praha 

Abstract: In this paper, the following theorem is r>ro---
ved; Let G Fe a graph with at least five vertices and <T be 
the complement of <S 5 then for at least one graph <?' of the 
graphs G and 5 , Q' is connected and the line graph of G' 
is hamiltonian. 

Key words: hamiltonian graphs; line graphs; the comple
ment of a graph 

AMS, Primary: 05C99 Ref. Z. 8.83 

In t5l Harary and Nash-Williams raised the problem of 

characterizing those graphs the line graph of which is hamil

tonian. The present paper is a contribution to this topic. 

We shall say that a graph G^ is an LH-subgraph of a 

graph G0 if (i) dA is a subgraph of G0 , (ii) G4 is ei

ther trivial or eulerian, and (iii) for each edge x • AJLAT of 

fr0 , at least one of the vertices M. and At belongs to <?̂  . 

(For the terms of the theory of graphs which are not defined 

here, see Behzad and Chartrand Cl3.) 

Lemma. Let 6 be a connected graph with at least three 

edges. Then the line graph LCG) of 6 is hamiltonian 

if and only if G contains an LH-subgraph. 

This lemma directly follows from Proposition 8 in [53. 

(Note that for G » K Cif2) this proposition does not 

hold.) 
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The path P^ f which is self-complementary, is the on

ly graph G with four vertices such that (i) G' and the 

complement u of G are connected, and (ii) neither 

L CG) nor L CG) is hamiltonian. 

Theorem. Let G be a graph with ^fi 22 5 vertices. 

Then for at least one graph G' of the graphs C? and G? 9 

<j# iŝ  connected and LCG') is hamiltonian. 

Proof. For Jft m S 9 the proof of the statement can 

be obtained by exhaustion (diagrams of all 34 graphs with 5 

vertices can be found in Harary C4]). Assume that -fl* -=- dv 2r 

2- 6 and that for p, m m, - A 9 the statement is proved. 

The case when iGtl(ji'} -r i K^ ,3L* J i^ obvious. We shall as

sume that G contains a vertex x, such that i & CU^Q. & 6 

m /ft, - 2 . Denote G0 * ff * K . By the induction hypothe

sis, for at least one graph G" of the graphs G0 and 

G0 , G" is connected and LCG") is hamiltonian. With

out loss of generality we assume that G" o G0 . As G0 

has at least fy - 2 -£ 4 edges, then G© contains an LH-

subgraph. Obviously, G is connected. We shall assume that 

L C G ) is not hamiltonian. Let G>j be an LH-subgraph of 

G0 with the maximum number of vertices. 

I) Let G^ be trivial. Then G0 -*XC
/J,/ft-2) .As 

L C G ) is not hamiltonian, G is connected and L C G ) 

is hamiltonian. 

II) Let G^ be nontrivial. By Y0 and Y^ we deno

te the vertex, set of G0 and G^ , respectively. By E and 

E we denote the edge set of G and G , respectively. 

Vv ; denote 1/̂  « V0 - V̂  • by /wv we denote the number of 
- 108 -



v e r t i c e s of Vj . As L C 5 ) i s not hami l ton ian , the re 

e x i s t s & m V% such t h a t KM e E . Obviously, the comp

l e t e graph with the ve r t ex se t T̂  i s a subgraph of 3" . I f 

t h e r e e x i s t s wr0 e V̂  such tha t x, /ur0 , A>niT0 e E , then 

G con ta ins an LH-subgraph, which i s a c o n t r a d i c t i o n . Thus 

for each v e r t e x AT € F-j , e i t h e r /LIT e E or /%& m E . 

Let mrA , /ur% e V^ such tha t 4 ^ n*r% e E . As <?.-, i s an 

LH-subgraph of G0 with the maximum number of v e r t i c e s 

and G con ta ins no LH-subgraph, we can e a s i l y prove t h a t 

e i t h e r K<uK) , /*nr^ e £ or /C4tr% , /9/ur% e E . As S^ 

contains a cycle, there exist distinct vertices t f AJU C V^ 

such tha t Kt, >*t , ^x4 , */& e £ . 

I t i s easy t o see tha t ST i s connected. We s h a l l con

s t r u c t an LH-subgraph of 2" . Let P denote the subgraph 

of <? induced by V^ t Let * m nrA nr% be an edge of F • 

by A CX ) we denote a se t 4 4^ i r a , /tr̂  tr}' , AT% 4T% ! whe

re ( i ) or^, / t ^ e 4 ft %/**h , (t±) 4%nrjf *r%nr% e E , and ( i i i ) 

i f the re e x i s t s <v'a 4H,^ * 1 such tha t t i ^ / t r ' , i r ^ t r ' c 3> , 

then /tfy «r nr% , Consider a maximum matching J4. in the 

graph P - t - xt . By A we denote the set W A C « ) , 

Let ^ denote the number of those x « M t h a t t he re ex

i s t s an- K - /9 path of ST induced by A Cx ) . Let 4T0 

be a v e r t e x of F and Y be a subset of E •, by 3 ^ we 

denote the se t of those v e r t i c e s of V^ which a re adjacent 

t o 4T0 i n P and inc iden t with no edge of Y * I f jf i s e -

ven, then by 3 we denote the s e t A u 4 *-t , * t , K,U,,/*IL ! • 

Let £ be odd. I f 3)£ - 41! » 0 , then by 3 we denote 

the se t A u < * t , A t ! . If. 3>£ - f t ! + 0 , then by J 
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we denote a s e t A v 4 tit t tot 1 u A (dd, 44,' ) , where JU,' 

i s a v e r t e x of B^ - 4 i ? . I f m. m 4 t then by Z we 

denote the s e t B . I f m, -ft 3 , then by 2 we denote a 

s e t 3 u Z * , where Z * i s the edge se t of a cycle with 

the v e r t e x s e t V2 . Let em. m % and /»' be the only v e r 

t e x of V*2 d i f f e r e n t from /* . I f each v e r t e x /ur € V^ adja

cent t o ,*' in ff i s i nc iden t with an edge of 3 , then 

by Z we denote the s e t B . Let t he r e e x i s t mr' e V4 such 

t h a t fc'mr' e L and 4cr' i s i nc iden t with no edge of B - I f 

*><ur' e E , then by Z we denote 3 u <^4>', *4o-', h'ar'Tt . 

Let /M*r' $ E . Then /&4<r'c E . I f B® * / , then by Z 

we denote CB - 4 * t , * t } } u i . W , * V , /t4*r' J • i f ^ e 

€ B* , then by Z we denote CB~4*t f ) u <**',*'<»>', tatr'i *f 

i f B * + # a n d t ^ ' ^ J-f » then by Z we denote 

( B - f f c t j / b t l ) u iM't/b'*'9*(*'luAliti') , where t ' i s a ve r t ex 

of B* . 

Now, let H denote the subgraph of G induced by Z , 

It is easy to see that H is an LH-subgraph of (j . Thus 

L (S) is hamiltonian and the proof is complete. 

Corollary. Let G be a nontrivial graph. Then for al 

least one graph G' of the graphs 6 and W f G' is con

nected and L C G' ) contains a hamiltonian path. 

Remark. It is possible to ask for connections between the 

present theorem (and its proof) and sufficient conditions for 

a graph to be hamiltonian which depend on properties of the 

degree sequence (as in [41, pp. 66-68 , [l, pp. 131-135J , and 

the most generally in Chvatal £23), or on the other quantita

tive indices (Chvatal and Srdos C33)• The following example 
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gives a partial answer to the problem in question. Let 

Jjp, £ 12 and G be the graph which we obtain from the path, 

P* and the complement C^,.^ of the cycle with >ft - 2. 

vertices in such a way that we identify one vertex of C^mJi 

with one end-vertex of P.. , Obviously, LCff) is not ha-

miltonian. Let H, denote the only end-vertex of S j it ia 

easy to see that L (&-K,) is hamiltonian. The graph 

L ( ? ) . has Sty - ¥ vertices, the maximum degree 41 , 

the connectivity 5 f and the independence number 

\ (#, _ 1 ) / 2 J . The grapli L C <? ) isf of course, ha

miltonian but its degree sequence does not fulfil the condi

tion of the first statement of Theorem 1 in C21, and the re

lation between its connectivity and its independence number 

does not fulfil the condition of Theorem 1 in C33• 
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