Commentationes Mathematicae Universitatis Carolinae

Walter Perry
Nonlinear eigenvalue problems

Commentationes Mathematicae Universitatis Carolinae, Vol. 14 (1973), No. 1, 113--126
Persistent URL: http://dml.cz/dmlcz/105475

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1973
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

$$
14,1(1973)
$$

NONLINEAR EIGENVALUE PROBLEMS

Walter PETRY, Düsseldorf

Abstract: Let g be a continuously differentiable functional on a real Banach space γ and $f^{\prime \prime}$ - in one sense - the limit of continuously differentiable functionals on γ with domain $D\left(f^{\prime}\right):=\left\{u \in V: £^{\prime}(\mu) \in V^{*}\right\}$.
The existence of a solution of the nonlinear eigenvalue problem

$$
f^{\prime}(\mu)=\lambda g^{\prime}(\mu)
$$

with $\lambda \in R^{1}$ and $\mu \in D\left(f^{\prime}\right) \cap M_{c}(g)$ is proved, where the level surface is defined by $\mathbb{M}_{c}(g):=\{u \in V: g(\mu)=c\}$. Application to a nonlinear elliptic eigenvalue problem is given.

Kev words: Variational problem, nonlinear eigenvalue problem, regularization method, elliptic diferential equation, boundary condition.

AMS, Primary: 58E05, 47H15, 35 J 60
Secondary: 35D05

$$
\begin{aligned}
\text { Ref. Ž. } & 7.956, \\
& 7.978 .5
\end{aligned}
$$

Let V be a real Banach space, f and g two functionals defined on γ which are once continuously differentiable with the derivatives f^{\prime} and g^{\prime} respectively. Let c be a real number and define the level surface. $M_{c}(g):\{\mu \in$ e $V: g(\mu)=c 3$. Then the critical points of f with respect to $M_{c}(g)$ are (under suitable restrictions) solutions of the eigenvalue problem

$$
\begin{equation*}
f^{\prime}(\mu)=\lambda g^{\prime}(\mu) \tag{1}
\end{equation*}
$$

with some $\lambda \in \mathbb{R}^{1}$. This reduction of the eigenvalue problem (1) to the problem of extremizing a functional f on the level surface $M_{e}(g)$ is used to prove the existence of a solution for (1) (see e.g. [5-8]).

It is the purpose of the present note to prove the existence of a solution μ_{0} for (1) with $\mu_{0} \in M_{c}(g)$ (Theorem 1) under the assumption that f^{\prime} is the limit of the derivatives of sequence of functionals on V. In particular, $f^{\prime}(\mu)$ must not be defined for all μ of $M_{c}(g)$. The proof of the theorem is based on regularization methods, recently used by the author in studying nonlinear integral equations [9] and nonlinear elliptic boundary value problems [10]. Theorem 1 generalizes results of Browder [5, 6] and Hess [8]. As an application of Theorem 1 we obtain a result (Theorem 2) on nonlinear elliptic eigenvalue problems which strengthens the corresponding statements in $[1,2,4-61$ (see also [3]).

1. Let \boldsymbol{V} be a real separable reflexive Banach space with dual V^{*}. The pairing between V and V^{*} shall be denoted by (., .) By \rightarrow and \rightarrow we will denote strong and weak convergence respectively.

A mapping $T: V \rightarrow V^{*} \quad$ is said to satisfy Condition (S): if $\left\{\mu_{m}{ }^{\}} \subset V\right.$ is weakly convergent in V to μ_{0} and if $\left(T \mu_{n}-T \mu_{0}, \mu_{n}-\mu_{0}\right) \rightarrow 0$, then μ_{n} converges strongly to μ_{0}.

A mapping $T: V \rightarrow V^{*} \quad$ is said to satisfy Condition (S+): if $\left\{\mu_{m}\right\} \subset V$ is weakly convergent to μ_{0} in V and
if $\lim _{n} \sup \left(T \mu_{n}-T \mu_{0}, \mu_{n}-\mu_{0}\right) \leqslant 0$, then μ_{n} converges strongly to μ_{0}.

To prove an existence theorem for the eigenvalue problem (2) we use regularization methods. Therefore we introduce

Assumption 1. Let $\varepsilon_{0}>0$. For each $\left.\varepsilon \in J 0, \varepsilon_{0}\right]$ suppose that $f_{1}, f_{2}(\varepsilon, \cdot), g$ are functionals on γ satisfying the following conditions: (a) $\varepsilon_{1}, f_{2}(\varepsilon, \cdot)$ and g are C^{1}-functions on V with the derivatives f_{1}^{\prime}, $\varepsilon_{2}^{\prime}(\varepsilon, \cdot)$ and g^{\prime} respectively. (b) g is weakly continuous and g^{\prime} is a compact mapping from V to V^{*}. (c) Set $\varepsilon(\varepsilon, \mu):=f_{1}(\mu)+f_{2}(\varepsilon, \mu)$ with the derivative $\varepsilon^{\prime}(\varepsilon, \mu)=f_{1}^{\prime}(\mu)+f_{2}^{\prime}(\varepsilon, \mu)$. Suppose that f_{1}^{\prime} and $\varepsilon_{2}^{\prime}(\varepsilon, \cdot)$ map bounded sets into bounded sets, that f_{q}^{\prime} satisfies Condition ($S+$) and $f^{\prime}(\varepsilon, \cdot) \quad$ Condition ((S) and that $f(\varepsilon, \mu) \rightarrow \infty$ as $\|\mu\| \rightarrow \infty$ uniformly with respect to $\left.\varepsilon \in] D, \varepsilon_{0}\right]$. (d) Let there exist a constant $c>0$ such that for all μ in $M_{c}(g):=\{\mu \in V: g(\mu)=c\}$, $\left(g^{\prime}(\mu), \mu\right)>\sigma$ and for each $R>0$, there exists $c(R)>$ ≥ 0 such that $\left(g^{\prime}(\mu), \mu\right) \geq c(\mathbb{R})$ for μ in $M_{c}(q)$ with $\|u\| \leqslant \mathbb{R}$. By a theorem of Browder ([6]; Theorem 15) it follows

Proposition 1. Suppose that Assumption 1 holds. Then for each $\left.\varepsilon \in J 0, \varepsilon_{0}\right], f(\varepsilon, \cdot)$ assumes its minimum on the set $M_{c}(g)$ at a point u_{ε} which is a solution of the eigenvalue equation

$$
\begin{equation*}
f^{\prime}(\varepsilon, \mu)=f_{1}^{\prime}(\mu)+f_{2}^{\prime}(\varepsilon, \mu)=\lambda_{\varepsilon} g^{\prime}(\mu) \tag{2}
\end{equation*}
$$

for some real number λ_{8}.

We define for all $\left.\varepsilon \in \beth 0, \varepsilon_{0}\right], \mu, v \in V$, $B(\varepsilon, \mu, \sim):=\left(f_{2}^{\prime}(\varepsilon, \mu), \sim\right)$.

The problem to be studied is obtained by the limiting process $\varepsilon \rightarrow 0$. Hence we formulate

Assumption 2. (a) Let there exist a constant $\mathscr{\varphi}_{1}>0$ and an element $v_{0} \in M_{c}(g)$ such that for each $\left.\varepsilon \in \mathcal{I} O, \varepsilon_{0}\right]$

$$
f\left(\varepsilon, v_{0}\right) \leq \varepsilon_{1} .
$$

(b) Suppose that there exists a constant $c_{0}>0$ such that for all $\mu \in M_{c}(g)$ and each $\left.\varepsilon \in\right] 0, \varepsilon_{0} J$

$$
0 \leq\left(f_{2}^{\prime}(\varepsilon, \mu), \mu\right) \leq c_{0} f_{2}(\varepsilon, \mu) .
$$

(c) Suppose that any sequences $\left\{\varepsilon_{m}\right\}$ and $\left\{\mu_{\varepsilon_{n}}\right\} \subset V$ satisfying $\quad \varepsilon_{m} \rightarrow 0, \mu_{\varepsilon_{n}} \rightarrow \mu_{0} \quad$ in V and $0 \leqslant B\left(\varepsilon_{m}, \mu_{\varepsilon_{n}}, \mu_{\varepsilon_{n}}\right) \leqslant \mathcal{C}_{2}$ with some constant $\mathcal{C}_{2}>0$ imply the existence of $B\left(0, \mu_{0}, \varphi\right)$ for all $\varphi \in W$, where \boldsymbol{V} is a dense subset of V; furthermore there exists a subsequence $\left\{m^{\prime}\right\}$ such that

$$
B\left(\varepsilon_{m^{\prime}}, \mu_{\varepsilon_{m},}, \varphi\right) \rightarrow B\left(0, \mu_{0}, \varphi\right)^{(t)}
$$

for all $\varphi \in W$. If in addition $B\left(0, \mu_{0}, \mu_{0}\right)$ exists, then it exists a subsequence (also denoted by m^{\prime}) such that

$$
B\left(0, \mu_{0}, \mu_{0}\right) \leqslant \lim _{m^{\prime}} B\left(\varepsilon_{m^{\prime}}, \mu_{\varepsilon_{m^{0}}}, \mu_{\varepsilon_{m^{\prime}}}\right) .
$$

We set
$D\left(f^{\prime}\right):=\left\{\mu \in V: B(0, \mu, \cdot): V \rightarrow \mathbb{R}^{1}\right.$ is linear and continuous $\}$.
(+) The referee has remarked, that under this assumption, it then follows that the whole sequence converges.

Then for $\mu \in D\left(f^{\prime}\right)$ there exists $f_{2}^{\prime}(0, \mu) \in V *$ such that for all $v \in V$

$$
B(0, u, v)=\left(f_{2}^{\prime}(0, u), v\right) .
$$

The eigenvalue equation to be studied may then be written in the form

$$
\begin{equation*}
f_{1}^{\prime}(\mu)+f_{2}^{\prime}(0, \mu)=\lambda g^{\prime}(\mu) \tag{3}
\end{equation*}
$$

with some real number λ and $\mu \in \mu_{c}(g) \cap D\left(f^{\prime}\right)$.
We now state our main theorem:
Theorem 1. Suppose that the assumptions 1,2 are true. Then there exist at least one real number $\boldsymbol{\lambda}_{0}$ and one $\mu_{0} \in M_{c}(g) \cap D\left(f^{\prime}\right)$ satisfying (3).

Proof. By Proposition 1 and Assumption 2(a) it follows

$$
f\left(\varepsilon, \mu_{\varepsilon}\right) \leqslant f\left(\varepsilon, v_{0}\right) \leqslant \varphi_{1}
$$

from which by Assumption $I(c)$ there exists a constant $\Omega>$ >0 such that for each ε in $\left.] 0, \varepsilon_{0}\right],\left\|\mu_{\varepsilon}\right\|_{V} \leqslant \Omega$. Therefore there exists a sequence ε_{m}, such that

$$
\begin{equation*}
\varepsilon_{n} \rightarrow 0, \mu_{\varepsilon_{n}} \rightarrow \mu_{0} \text { in } V \text {. } \tag{4}
\end{equation*}
$$

Further we obtain by Assumptions 2(b), l(c)
(5) $0 \leqslant\left(f_{2}^{\prime}\left(\varepsilon, \mu_{\varepsilon}\right), \mu_{\varepsilon}\right) \leqslant c_{0} f_{2}\left(\varepsilon, \mu_{\varepsilon}\right) \leqslant c_{0}\left(f\left(\varepsilon, \mu_{\varepsilon}\right)+\right.$

$$
\left.+\left|f_{1}\left(\mu_{8}\right)\right|\right) \leqslant c_{0}\left(\varphi_{1}+\varphi_{3}\right)=: \varphi_{2}
$$

with some constant $\boldsymbol{\varphi}_{3}>0$. Hence it follows by Assumption 1(d)

$$
\begin{gathered}
\mathscr{\varepsilon}_{4} \geq\left\|f_{1}^{\prime}\left(\mu_{\varepsilon}\right)\right\|\left\|\mu_{\varepsilon}\right\|+\left(f_{2}^{\prime}\left(\varepsilon, \mu_{\varepsilon}\right), \mu_{\varepsilon}\right) \geq\left|\left(f^{\prime}\left(\varepsilon, \mu_{\varepsilon}\right), \mu_{\varepsilon}\right)\right| \\
=\left|\lambda_{\varepsilon}\right|\left(g^{\prime}\left(\mu_{\varepsilon}\right), \mu_{\varepsilon}\right) \geq\left|\lambda_{\varepsilon}\right| c(R) \\
-117-
\end{gathered}
$$

with some constant $\varphi_{4}>0$, i.e. $\left|\lambda_{\varepsilon}\right| \leqslant \varphi_{4} / c(\Omega)$. Therefore by virtue of Assumptions $1(b, c)$ and 2(c), (4) and
(5) there exists a subsequence m^{\prime} such that
$\lambda_{\varepsilon_{m^{\prime}}} \rightarrow \lambda_{0}, f_{1}^{\prime}\left(\mu_{\varepsilon_{n^{\prime}}}\right) \rightarrow u_{1} \quad$ in $V^{*}, g^{\prime}\left(\mu_{\varepsilon_{m^{\prime}}}\right) \rightarrow v_{2} \quad$ in V^{*} and

$$
B\left(\varepsilon_{n^{\prime}}, \mu_{\varepsilon_{n^{\prime}}}, \varphi\right) \rightarrow B\left(0, \mu_{0}, \varphi\right)
$$

for all $\varphi \in W$. From

$$
\left(\varepsilon^{\prime}\left(\varepsilon_{n^{\prime}}, \mu_{\varepsilon_{n}}\right), \varphi\right)=\lambda_{\varepsilon_{n}}\left(g^{\prime}\left(\mu_{\varepsilon_{n}}\right), \varphi\right)
$$

it therefore follows for each φ in W

Hence

$$
\left(w_{1}, \varphi\right)+B\left(0, \mu_{0}, \varphi\right)=\lambda_{0}\left(w_{2}, \varphi\right)
$$

$$
B\left(0, \mu_{0}, \varphi\right)=\left(\lambda_{0} w_{2}-w_{1}, \varphi\right)
$$

for each φ in W. Since W is dense in V and $\lambda_{0} w_{2}-$ $-w_{1} \in V^{*}$ it follows therefore that $B\left(0, \mu_{0}, \varphi\right)$ can be defined for all $\varphi \in V$ and $B\left(0, \mu_{0}, \varphi\right)=$ $=\left(\varepsilon_{2}^{\prime}\left(0, \mu_{0}\right), \varphi\right)$, i.e.

$$
f_{2}^{\prime}\left(0, \mu_{0}\right)=\lambda_{0} w_{2}-w_{1}
$$

and $\mu_{0} \in D\left(£^{\prime}\right)$. Further we obtain by Assumption 2(c)
$\lim _{n^{\prime}} \operatorname{sun}\left(\varepsilon_{1}^{\prime}\left(\mu_{\varepsilon_{n^{\prime}}}\right), \mu_{\varepsilon_{n^{\prime}}}\right)=$
$=\lim _{m^{\prime}} \sup \left\{\lambda_{\varepsilon_{m^{\prime}}}\left(q^{\prime}\left(\mu_{\varepsilon_{m^{\prime}}}\right), \mu_{\varepsilon_{m^{\prime}}}\right)-\left(f_{2}^{\prime}\left(\varepsilon_{n^{\prime}}, \mu_{\varepsilon_{n}}\right), \mu_{\varepsilon_{n^{\prime}}}\right)\right\}$
$=\lambda_{0}\left(w_{2}, \mu_{0}\right)-\lim _{n^{\prime}} B\left(\varepsilon_{m^{0}}, \mu_{\varepsilon_{n^{\prime}}}, \mu_{\varepsilon_{n}}\right)$
$\leqslant \lambda_{0}\left(\omega_{2}, \mu_{0}\right)-B\left(0, \mu_{0}, \mu_{0}\right)=\left(\lambda_{0} w_{2}-f_{2}^{\prime}\left(0, \mu_{0}\right), \mu_{0}\right)=\left(w_{1}, \mu_{0}\right)$.

There $\mathrm{f}_{\text {fore }}$ by Assumption $1(\mathrm{c}), \mu_{\varepsilon_{n}}$, converges strongly to μ_{0}. Hence we obtain by the continuity of f_{1}^{\prime} and g^{\prime} that $\mu_{0} \in M_{c}(g)$ and

$$
f_{1}^{\prime}\left(\mu_{0}\right)+f_{2}^{\prime}\left(0, \mu_{0}\right)=\lambda_{0} g^{\prime}\left(\mu_{0}\right)
$$

proving Theorem 1 .
Remark. (1) Assumption 2(c) is also used in [10], where nonlinear boundary value problems are studied.
(2) Theorem 1 is a generalization of a theorem of Browder ([6], Theorem 15). It shall be remarked that the domain of Definition $D\left(f^{\prime}\right)$ of the operator $f_{2}^{\prime}(0$, .) is a subset of V.
2. To apply Theorem 1 to nonlinear elliptic eigenvalue problems we make the following assumptions.

Let Ω be an open bounded subset of R^{n} with sufficiently smooth boundary $\partial \Omega$ such that the imbedding theorems of Sobolev hold (see e.g. [6]). We consider the Sobolev space $V:=\stackrel{\circ}{W}_{m, n}$ with $1<\uparrow<\infty$ and denote by $[\mu, v]:=\int_{\Omega} \mu(x) v(x) d x$. In the following we shall use the notations of Browder [6].

Assumptions 3 (see [6]): (a) Suppose that $F: \Omega \times$ $\times \mathbb{R}^{S_{m}} \rightarrow \Omega^{1}, G: \Omega \times R^{S_{m}-1} \rightarrow R^{1}$. For each fixed ξ in $R^{s_{m}}, F(\cdot, \xi)$ is measurable on Ω and for almost all x in $\Omega, F(x, \cdot)$ is once continuously differrentable on $R^{s m}$. For each fixed η in $R^{s_{m-1}}$, $H(\cdot, \eta)$ is measurable on Ω and for almost all x in
$\Omega, H(x$, , $) \quad$ is once continuously differentiable on $R^{S_{m-1}}$. The functions F and G satisfy the following inequalities:

$$
\begin{aligned}
& |F(x, \xi)| \leqslant c\left(\xi_{b}\right)(x)+c_{1}\left(\xi_{b}\right) \sum_{m-n|n \in| \propto \mid \leqslant m}\left|\xi_{\alpha}\right|^{s_{\alpha}}, \\
& |G(x, \eta)| \leqslant c\left(\eta_{f}\right)(x)+c_{1}\left(\eta_{f b}\right) \sum_{m-m / p \in|\beta| \leqslant m-1}\left|\eta_{\beta}\right|^{t_{n}},
\end{aligned}
$$

where $s_{\alpha}^{-1}=\Re^{-1}-n^{-1}(m-|\alpha|), s_{\alpha}<\infty, t_{\beta}<s_{\beta}$, b is the greatest integer less than $m-m / \neq, \xi_{b}:=\left\{\xi_{\alpha}:|\alpha| \leqslant b\right\}$, c_{1} is a continuous function from $\Omega^{s_{\ell}}$ to R^{1}, and c is a continuous function from $R^{s} \boldsymbol{b}$ to L^{12}.
(b) Set $F_{\alpha}:=\partial F / \partial \xi_{\alpha}$ for $|\alpha| \leq m$ and
$G_{\beta}:=\partial G / \partial \eta_{\beta}$ for $|\beta| \leqslant m-1$. Suppose that

$$
\begin{aligned}
& \left|F_{\alpha}(x, \xi)\right| \leqslant c_{\alpha}\left(\xi_{b}\right)(x)+c_{1}\left(\xi_{b}\right)_{m-m / n \leq|\beta| \leq m}\left|\xi_{\beta}\right|^{n \alpha \beta}, \\
& \left|G_{\alpha}(x, \eta)\right| \leqslant c_{\alpha}\left(\eta_{b}\right)(x)+c_{1}\left(\eta_{b r}\right) \sum_{m-m / n=|\beta| \leqslant m-1}\left|\eta_{\beta}\right|^{n<\beta},
\end{aligned}
$$

where c_{α} are continuous functions from $R^{\text {s\& }}$ to $L^{1_{\alpha}}$ and the exponents \Re_{α} and $\Re_{\alpha \beta}$ satisfy the inequalities

$$
\begin{array}{ll}
n_{\alpha}=p^{\prime}\left(n^{-1}+p^{\prime-1}=1\right) & \text { for }|\propto|=m, \\
p_{\alpha}>s_{\alpha}^{\prime}\left(s_{\alpha}^{-1}+s_{\alpha}^{\prime-1}=1\right) & \text { for } m-n / n \leq|\propto|<m, \\
p_{\alpha}=1 & \text { for }|\propto|<m-n / n
\end{array}
$$

and

$$
\begin{aligned}
& r_{\alpha \beta} \leqslant p-1 \text { for }|\alpha|=|\beta|=m, \\
& r_{\alpha \beta} \leqslant s_{\beta} s_{\alpha}^{\prime-1} \text { for } m-m / n \leqslant|\alpha|,|\beta| \leq m,
\end{aligned}
$$

$|\alpha|+|\beta|<2 m$,
$\eta_{\alpha \beta} \leq s_{\beta} \quad$ for $|\alpha|<m-n / n, m-n / \eta \leq|\beta| \leq m$.
(c) If $\xi=\left(\eta, Y_{m}\right)$ is the division of ξ into its
m-th order components \mathscr{Y}_{m} and the corresponding
$(m-1)$-st order jet η, then for each X in Ω and each η in $R^{5 m-1}$

$$
\sum_{|\alpha|=m}\left[F_{\alpha}\left(x, \eta, \mathscr{S}_{m}\right)-F_{\propto}\left(x, \eta, \mathscr{S}_{m}^{\prime}\right)\right]\left[\mathscr{S}_{\alpha}-\mathscr{S}_{\alpha}^{\prime}\right]>0
$$

$$
\text { for } \mathscr{S}_{m} \neq \varphi_{m}^{\prime}
$$

(d) There exist two continuous functions c_{2} and c_{3} from $\mathbb{R}^{S \&}$ to \mathbb{R}^{1} with $c_{2}\left(\eta_{e r}\right) \geq \tilde{c}_{2}>0$ for each $\eta_{\ell-}$, and t wo constants $c_{4}>0$ and c_{5} such that for all \times, \mathscr{S}_{m} and η

$$
\sum_{|\alpha| \neq m} F_{\alpha}(x, \xi) \xi_{\alpha} \geq c_{4}|\xi|^{12}-c_{5},
$$

$\sum_{|\alpha|=m} F_{\alpha}(x, \xi) \xi_{\alpha} \geq c_{2}\left(\eta_{b}\right)\left|\varphi_{m}\right|^{12}-$

$$
1-c_{3}\left(\eta_{b-}\right) \sum_{m-m / \eta \leqslant|\beta| \leqslant m-1}\left|\xi_{n}\right|^{t_{\beta}}
$$

(e) Let there exist a constant $\propto>0$ such that for each $x \in \Omega$ and each $\eta \in \mathbb{R}^{s m-1}$ the following inequality holds:

$$
\mid \sum_{|p|=m-1} G_{\beta}(x, \eta) \eta_{\beta} \geq \alpha G(x, \eta) \text {. }
$$

Assumption 4. (a) Let $H: \Omega \times R^{\mathrm{sm}} \boldsymbol{\mathrm { m }} \mathrm{I} \rightarrow \mathrm{R}^{1}$ be a nonnegative continuous function such that for all x in Ω, $H(x, \cdot)$ is once continuously differentiable on $R^{8 m-1}$.
(b) Set $H_{\alpha}:=\partial H / \partial \eta_{\alpha} \quad$ and
$L_{\alpha}(\varepsilon, x, \eta):=\frac{H_{\infty}(x, \eta)}{(1+\varepsilon H(x, \eta))^{2}}$ with $\left.\left.\varepsilon \in\right] 0,1\right]$
and $|\alpha| \leqslant m-1$. Suppose that for each ε in $] 0,1]$, each x in Ω and each η in $R^{S_{m-1}}$ the following inequalities hold:
$\left|I_{\alpha}(\varepsilon, x, \eta)\right| \leq c_{\alpha}\left(\eta_{b}\right)(x)+c_{1}\left(\eta_{b}\right) \sum_{m-m / \beta \&|\beta| \leqslant m-1}\left|\eta_{\beta}\right|^{\eta_{\alpha \beta}}$,

$$
c_{0} H(x, \eta) \geq \sum_{|x| \leqslant m-1} H_{x}(x, \eta) \eta \propto \geq 0
$$

with some constant $c_{0}>0$.
(c) Suppose that there exist a constant $C_{6} \geq 0$ and a function $R: \Omega \times R^{S_{m-1}} \times R^{S_{m-1}} \rightarrow R^{1} \quad$ such that for each $\eta, \eta^{\prime} \quad$ in $\Omega^{S_{m-1}}$ and each x in Ω
$\left.\right|_{|\beta| \in m-1} H_{\beta}(x, \eta) \eta_{\beta}^{\prime} \mid \leqslant c_{6} \sum_{|\beta| \in m-1} H_{\beta}(x, \eta) \eta_{\beta}+R\left(x, \eta, \eta^{\prime}\right)$. Further suppose that for each wr in $W_{m *, \neq}$ with $m^{*}>$ $>m+n / \eta$ the mapping $R(\eta(0), \eta(\omega))$ defined by $R(\eta(\mu), \eta(\omega))(x):=R(x, \eta(\mu)(x), \eta(w)(x))$, is bounded and continuous from $W_{m-1, i}$ to L^{1}. We define
$D:=f \mu \in \stackrel{\circ}{W}_{m, \uparrow}$: such that the form $\sum_{|\beta| \& m-1}\left[H_{\beta}(\cdot, \eta(\mu)), D^{\beta} v\right]$ is continuous with respect to v in $\stackrel{\circ}{W}_{m, \neq}{ }^{3}$,

$$
M_{c}(q):=\left\{u \in \stackrel{\circ}{W}_{m, \eta}: \int_{\Omega} G(x, \eta(\mu)(x)) d x=c\right\} .
$$

Let $c>\sigma$, then we ask for elements $\lambda_{0} \in \mathbb{R}^{1}$, $\mu_{0} \in$ $\in M_{c}(g) \cap D \quad$ which satisfy the condition
(6) $\left\{\begin{array}{c}\sum_{|\alpha| \& m}\left[F_{\alpha}\left(\cdot, \xi\left(\mu_{0}\right)\right), D^{\alpha} v\right]+\sum_{|\beta| \neq m-1}\left[H_{\beta}\left(\cdot, \eta\left(\mu_{0}\right)\right), D^{\beta} v\right] \\ =\lambda_{0} \sum_{|\beta| \neq m-1}\left[G_{\beta}\left(\cdot, \eta\left(\mu_{0}\right)\right), D^{\beta} v\right]\end{array}\right.$
for each v in $\dot{W}_{m, \eta}$.
Theorem 2. Suppose that $c>0$ and that Assumptions 3,4 hold. Let exist an element $v_{0} \in M_{c}(g)$ such that $\int_{\Omega} H\left(x, \eta\left(v_{0}\right)(x)\right) d x<\infty$. Then Problem (6) has at least one solution $\lambda_{0} \in \mathbb{R}^{1}, \mu_{0} \in M_{c}(g) \cap D$.

Proof. (a) For $\varepsilon \in J 0,1 J$ and $\mu, v \in \dot{W}_{m, \ell}$ we define
$f_{1}(\mu):=\int_{\Omega} F(x, \xi(\mu)(x)) d x, g(\mu):=\int_{\Omega} G(x, \eta(\mu)(x)) d x$, $\left.f_{2}(\varepsilon, \mu):=\int_{\Omega} H(x, \eta(\mu)(x)) /(1+\varepsilon H(x, \eta(\mu))(x))\right) d x$, $a(u, v):=\sum_{|\alpha| \leq m}\left[F_{\alpha}(\cdot, \xi(u)), D^{\alpha} v\right]$,
$b(\mu, v):=\sum_{|\beta| \in m-1}\left[G_{\beta}(\cdot, \eta(\mu)), D^{\beta} v\right]$,
$c(\varepsilon, \mu, v):=\sum_{i \beta 1 \leq m-1}\left[H_{\beta}(\cdot, \eta(\mu)) /(1+\varepsilon H(\cdot, \eta(u)))^{2}, D^{\beta} v\right]$.
By a theorem of Browder (see [6], Lemma 7 and 3°.) it follows: (α) f_{1}, and g are once differentiable functionnails on $\dot{W}_{m, \uparrow}$ and their derivatives f_{1}^{\prime} and g^{\prime} satisfy the equations

$$
\left(f_{1}^{\prime}(u), v\right)=a(u, v),\left(g^{\prime}(u), v\right)=b(\mu, v)
$$

for all

$$
\mu, v \in \stackrel{\circ}{W}_{m, \eta}
$$

$(\beta) g$ is weakly continuous and g^{\prime} is a continuous
compact mapping from $\stackrel{\circ}{W}_{m, \uparrow}$ to $\stackrel{\circ}{W}_{m}^{*}, \notin$. (γ) ε_{1}^{\prime} is a continuous mapping of $\dot{W}_{m, \neq}$ into $\stackrel{i}{W}_{m, p}^{*}$, which maps bounded sets into bounded sets and satisfies Condition (S+).
$\left(0^{2}\right) f_{1}(\mu) \rightarrow \infty \quad$ as $\|\mu\| \rightarrow \infty$.
Along the lines of the theorem of Browner it also follows for each $\in \in] 0,1]$:
(\propto) $f_{2}(\varepsilon, \cdot)$ is a once differentiable functional on $\stackrel{W}{\top}_{m, \uparrow}$ and its derivative $f_{2}^{\prime}(\varepsilon$, .) satisfies for all $\mu, v \in \stackrel{\circ}{\mathrm{~W}}_{m, \uparrow}$

$$
\left(\varepsilon_{2}^{\prime}(\varepsilon, \mu), v\right)=c(\varepsilon, \mu, v) .
$$

(ß) $£_{2}^{\prime}\left(\varepsilon\right.$, , is a continuous mapping of $\stackrel{\circ}{W}_{m, \uparrow}$ into Wi on $_{m}^{*}$ which maps bounded sets into bounded sets.
(γ) $£^{\prime}(\varepsilon, \cdot):=£_{1}^{\prime}(\cdot)+£_{2}^{\prime}(\varepsilon, \cdot) \quad$ satisfies Condition ($\mathrm{S}+$) and hence Condition (S), too.

Further by the assumption on H and by (σ°) we have for each $\varepsilon \in] 0,1 J$

$$
f(\varepsilon, \mu)=f_{1}(\mu)+f_{2}(\varepsilon, \mu) \geq f_{1}(\mu) \rightarrow \infty
$$

as $\|\mu\| \rightarrow \infty$. Therefore it easily follows - by virtue of the above remarks - that Assumptions $1(a, b, c)$ hold.
(b) Let $\dot{\mu} \in M_{c}(g)$, then we obtain by Assumption 3(e)
$\left(g^{\prime}(\mu), \mu\right)=\sum_{|\beta| \leq m-1}\left[G_{\beta}(\cdot, \eta(\mu)), D^{\beta} \mu\right] \geq$
$\geq \alpha \int_{\Omega} G(x, \eta(\mu)(x)) d x=\alpha g(\mu)=\alpha c>0$
which implies Assumption 1(d).
(c) By the assumption of Theorem 2 it follows for all
$\varepsilon \in J 0,1]$

$$
£\left(\varepsilon, v_{0}\right)=f_{1}\left(v_{0}\right)+f_{2}\left(\varepsilon, v_{0}\right) \leqslant f_{1}\left(v_{0}\right)+
$$

$+\int_{\Omega} H\left(x, \eta\left(v_{0}\right)(x)\right) d x \leq \varphi_{5}$
with some constant $\boldsymbol{\mathcal { C }}_{5}$, proving Assumption 2(a).
(d) For each $\varepsilon \in 10,1]$ and each $\mu \in \dot{W}_{m}$, \mathfrak{w} we further have by Assumption 4(b)

$$
\begin{aligned}
0 & \leqslant\left(f_{2}^{\prime}(\varepsilon, \mu), \mu\right)=\sum_{|\beta| \in m-1}\left[\mathcal{H}_{\beta}(\cdot, \eta(\mu)) /(1+\varepsilon H(0, \eta(\mu)))^{2}, D^{\beta} \mu\right] \\
& \leqslant c_{0} \int_{\Omega} H(x, \eta(\mu)(x)) /(1+\varepsilon H(x, \eta(\mu)(x))) d x=c_{0} f_{2}(\varepsilon, \mu)
\end{aligned}
$$

which proves Assumption 2(b).
(e) Assumption 2(c) follows along the lines of the proof of Theorem 2(c) in [10] and shall therefore be omitted. Hence Theorem 2 follows from Theorem 1.

Remark. (a) Assumption 4 (c) can be replaced by a condition which is more useful in applications (see [10], Proposition 3).
(b) $f_{2}(0, \mu)$ is by Assumption not necessarily defined for all μ in $M_{c}(g)$.
(c) Theorem 2 generalizes in one sense a theorem of Browder [6] (Theorem 17), who assumes $\mathcal{H}(x, \eta)=0$.
References
[1] BERGER M.S.: An eigenvalue problem for quasi-linear. elliptic partial differential equations, Bull. Amer.Math.Soc.71(1965),171-175.

$$
\text { - } 125 \text { - }
$$

[2] BERGER M.S.: An eigenvalue problem for nonlinear eliptic partial differential equations, Trans.Amer. Math.Soc.120(1965),145-184.
[3] BERGER M.S.: Orlicz spaces and nonlinear elliptic eigenvalue problems, Bull.Amer. Math.Soc.71(1965),898902.
[4] BROWDER F.E.: Variational methods for nonlinear elliptic eigenvalue problems, Bull.Amer.Math.Soc.71(1965), 176-183.
[5] BROWDER F.E.: Nonlinear eigenvalue problems and Galerkin Approximations, Bull.Amer.Math.Soc.74(1968),651656.
[6] BROWDER F.E.: Existence theorems for nonlinear partial differential equations, Global Analysis,Proc.Symp. Pure Math.XVI(held at University of California,Berkeley,July 1-26,1968),pp.1-60.Amer.Math.Soc., Providence, Rhode Island 1970.
[7] HESS,-.: Nonlinear functional equations and eigenvalue problems, Commentarii Math.Helvetici 46, 3(1971), 314-323.
[8] HESS P.: A variational approach to a class of nonlinear eigenvalue problems; Proc.Amer.Math.Scc.29(1971), 272-276.
[9] PETRY W.: Generalized Hammerstein equation and integral equations of Hammerstein type, Math.Nachr. (in print).
[10] PETRY W.: Existence theorems for operator equations and nonlinear elliptic boundary value problems, Comment.Math.Univ.Carolinae 14(1973),27-46.

Mathematisches Institut
der Universität
4 Düsseldorf 1, Haroldstrasse 19
West Germany
(Oblatum 27.10.1972)

