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Commentationes Mathematicae Universitatis Carolinae 

14,1(1973) 

NONLINEAR EIGENVALUE PROBLEMS 

Walter PETRY, Dtisseldorf 

Abstract: Let $> be a continuously differentiable func
tional on a real Banaoh space V and £' - in one sense - the 
limit of continuously differentiable functionals on Y with 
domain 3 Cf'); « AAJL S V: £'C*fc> € Y* * . 
The existence of a solution of the nonlinear eigenvalue pro
blem 

with X eX'1 and AJL e J) (€') n &c(fy) is proved, nhere 
the level surface is defined by Jlic (fy): « iu, c Vj ^ C ^ } * * c >. • 
Application to a nonlinear elliptic eigenvalue problem is gi
ven. 

Key words: Variational problem, nonlinear eigenvalue pro
blem, """reguTarTzation method, elliptic differential equation, 
boundary condition. 

AMS, Primary: 58E05, 47H15, 35J60 Ref. Z. 7.956, 

Secondary: 35D05 7.978.5 

Let V be a real Banach space, f and O- two functio

nals defined on Y which are once continuously differentiab

le with the derivatives f' and g/ respectively. Let c be 

a real number and define the level surface Jlic Cty) t isuu € 

€ YJ $.(Ut):s ci .Then the critical points of £ with respect 

to ilc (fy) are (under suitable restrictions) solutions 

of the eigenvalue problem 

(1) t'(jUr) • X$'(JU>) 
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with some X € JL* « This reduction of the eigenvalue pro

blem (1) to the problem of extremizing a functional £ on 

the level surface M^ (<fr) is used to prove the existence 

of a solution for (1) (see e.g, t5 - 8]). 

It is the purpose of the present note to prove the exis

tence of a solution /i,0 for (1) with AJL0 e M*e((fr) (Theorem 

1) under the assumption that, f# is the limit of the deriva

tives of 8 sequence of functionals on Y • In particular* 

£'Ca>) must not be defined for all AA, of Jtc($>) • The proof 

of the theorem is based on regularization methods, recently 

used by the author in studying nonlinear integral equations 

C93 and nonlinear elliptic boundary value problems tlO]# Theo

rem 1 generalizes results of Browder t5, 6] and Hess [8]. 

As an application of Theorem 1 we obtain a result (Theorem 2) 

on nonlinear elliptic eigenvalue problems which strengthens 

the corresponding statements in tlf2,4 - 61 (see also [31)« 

1# Lei Y be a real separable reflexive Banach space 

with dual V* . The pairing between V and Y* shall be . 

denoted by ('•,.) • By —> and—-* we will denote 

strong and weak convergence respectively. 

A mapping T i V —* V * is said to satisfy Condition 

(S): if 4 .UvnJ c V is weakly convergent in V" t© AJU0 and 

if C TAJUH, - T-u.0,^^ - u>0) —* 0 , then juu^ converges 

strongly to XL0 . 

A mapping Ti Y—• V * is said to satisfy Condition 

(S+): if <*a./n.i c V is weakly convergent to n0 in Y and 
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i f XJJTYL *>*ufi, ( TJUL^ - TAJL0 , i t * , - ju>0 ) & 0 , t h e n i t * , 
fñø 

converges strongly to AJL0 . 

To prove an existence theorem for the eigenvalue problem 

iX) we use regularization methods* Therefore we introduce 

Assumption 1» Let e 0 s» 0 . For each & € 3 0, €»* 1 

suppose that £j f. £ 2 C e $ • ) , 9, are functionals on Y 

satisfying the following conditions: (al £- , fa C £, , • ) and 

~a#- -are C -functions on V with the derivatives £* , 

.£gjC& , • ) and £,' respectively* (b) ̂  is weakly conti

nuous and 9/ is a compact mapping from Y to V * • (c) Set 

f C €,,*(,) ; •f^C .Kf.y + f i C i , ^ ) with the derivative 

&liS.9A4,)m £jj (M,) + fjj Ce , M, ) . Suppose that l| and 

f^Ce, • ) map bounded sets into bounded sets* that fj{ 

satisfies Condition (S+) and £'Cc , • ) Condition (S) and 

that £C£f>u*) —> 00 as H JU, II —• 00 uniformly with respect 

to £ e 3d, %0 3 . (d) Let there exist a constant c -> 0 

such that for all JU, in iieC9-):.m iju, e Vt Q-(M,) -» C ? f 

C^'Cu,),^) >* C and for each & -> 0 , there exists cCJt)-a» 

-> 0 such that C$/C.aO, <«•) -£ C CR ) for -u, in 

M e C ^ ) with KAPI -t* Jl . By a theorem of Browder (C6]; Theo

rem 15) it follows 

Proposition 1» Suppose that Assumption 1 holds. Then for 

each e e JO, £ 0 1 , £ Ce, • ) assumes its minimum on the 

set M c C9-) at a point <a.t which is a solution of the 

eigenvalue equation 

(2) f'Ce,^) m ij <«,) + ££ Cefx*> -A^'C,*,) 

for some real number X% • 
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We define for a l l e e 3 0 , c , 1 , AJL, nr e V f 

B ( e f AJL , or ) : =r C ££ C e , -a,), AT ) . 

The problem to be studied i s obtained by the l imi t ing pro

ces s e —*>... 0 . Hence we formulate 

Assumption 2» (a) Let there ex i s t a constant ^ > 0 

and an element /tr0 « i i c C ^ ) such that for each & 6 l O , e 0 J 

f f e . , / 1 - , ) * <£,. . 

(b) Suppose that there e x i s t s a constant c0 -*» 0 such that 

for a l l X4, e i l c C9,) and each e e J O , &„] 

0 £ C£^ Ce,-u.) ,-a,) * c 0 f 2 (tf*A.) . 

(c) Suppose that any sequences "C^l and ^ i ^ l c V sa

tisfying ê n. -—• 0 , JU,g —--> 4ji0 in V and 

0 *-» B CSV*., <*-Vg I^S-I.^ ̂  *̂ a w^31 some constant ^ >» 0 im

ply the existence of B CO, .44-0, y ) for all 9 c V } where 

It is a dense subset of V 5 furthermore there exists a 

subsequence Am,'} such that 

BCS.'»*i-k,.»
>-*'*CO»'a-'»*) + 

for a l l 9 f i f . I f in addition B C 0 , -O-0 , AL0 ) e x i s t s , 

then i t e x i s t s a subsequence (also denoted by mS ) such 

that 

%CQ,*of*Q) * Mp%Cin, , AL%^ , u>%^) . 

We set 

D(f): »-C^ e V: B (0 l .<i , , .): IT-* X 4 is linear and continuous}. 

(+) The referee has remarked, that under this assumption, it 
then follows that the whole sequence converges. 
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Then for JUL e 3 (£') there exists i'% (OfJU>) m Y * 

such that for all or e V 

3(0,u.fAr) - « i (0,M.)9nt ) . 

The eigenvalue equation to be studied may then be written 

in the form 

(3) i \ (4JU) + f̂  (Q,JU,) m h%'(M.) 

with some real number X and JLU e Jlc Cg.) n D Cf') • 

We now state our main theorem: 

Theorem 1» Suppose that the assumptions 1,2 are true. 

Then there exist at least one real number h0 and one 

A4.0 c Jic C9,) A D Cf' ) satisfying (3)* 

Proof. By Proposition 1 and Assumption 2(a) it follows 

f Ce, jiLt) £ f Ce, nr0 ) * ^ 

from which by Assumption 1(c) there exists a constant % >. 

> 0 suck that for each e in 3 0 , ^ ] , l^ e lY * J> , 

Therefore there exists a sequence £/* , such that 

(4) t^ _> 0 , -u^'—-* *L0 in Y . 

Further we obtain by Assumptions 2(b), 1(c) 

(5) 0 £ Cf^ C c , . i t E ) , u . e ) * C o f * f * , ^ e ) * C0Cf Cs,ite) + 

+ 1*^^)1) £ e 0 C ^ + * s ) - « * a 

with some constant ^ > 0 . Hence i t fol lows by Assump

t i o n 1(d) 

« 4 * Hf;c.4te)iUix4efl + C*;Cf. ,* . c ) , .44.^) * »Cf 'Ce, .4t e ) , . i i , £ ) | 

• lA.eIC^'C.u..^),^ lv) * U s l c CX) 
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with some constant tCii > 0 , i*e* I XB I m, t^ /o <\) . 

Therefore by virtue of Assumptions l(bfc) and 2(o)» (4) and 

(5) there exists a subsequence_/w/ such that 

x^y~* xa, ijc*^) -* «... in v*, $uin/) --»vj. m r* 

and 

B ^ V » V . y 5 - > 3 C 0 . ^ o , 9 > 

for a l l y e ¥ . Prom 

C.f' Ce^ , i i . ^ ) , 9 ) - J l ^ , Cfr 'C-t^.) , 9 > 

it therefore follows for each 9 in ¥ 

<*Ki,q>) + 3<Q, 4t0,y) » X9<wA9g>) . 

Hence — 

B CO,,*0,9) - U , ^ - 4x5 ,9) 

for eaoh 9 in If, Since V is dense in V and X0<&% — 
- *Cl € 7* it follows therefore that B (0, ̂  , 9 ) can 

be defined for all 9 e Y and B C 0., 44,9 , 9 ) -* 

m.ii'iC1>9At,0)y 9) , i.e. 

and u,9 6 B Cf') , Further we obtain by Assumption 2(c) 

•ttttv ~*ufi, C£' C^tf ),<** ) * 
m* * *<*/ *«%' 

• X9 (<ur%, 4L0) .- i£m B C t ^ , ̂ # f > u ^ , ) 

* *i<^,**>-3(0,4^ f*,)-{A o^ 
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Therefore by Assumption 1(c)r M,~ , converges strongly to 

u0 • Hence we obtain by the continuity of £ij and tyf that 

AI0 m Jlc (q,) and 

proving Theorem 1# 

Remark. (1) Assumption 2(c) is also used in [103, whe

re nonlinear boundary value problems are studied. 

(2) Theorem 1 is a generalization of a theorem of Browder 

([6]f Theorem 15)• It shall be remarked that the domain of 

Definition 3)Cf) of the operator f'% ( 0 , • ) is a sub

set of V . 

2. To apply Theorem 1 to nonlinear elliptic eigenvalue 

problems we make the following assumptions. 

Let SL be an open bounded subset of X*1* with suffi

ciently smooth boundary dSL such that the imbedding theo

rems of Sobolev hold (see e#g# C63)• We consider the Sobolev 
o 

space Vt « yt«tLfjfi, with i < jp, <, oo and denote by 

Zu>,/vl t * $ AJL(x)nr(x)dLx . In the following we shall use 

the notations of Browder tG}0 

Assumptions 3 (see C6J): (a) Suppose that P t SL x 

x X5""'-* X4 , fi i SL K Xf'm-H _ > X* . For each fixed 

f in XS*1' , F C • , f ) is measurable on SL and for 

almost all x in jOL f FCx, • ) is once continuously diffe-

rentiable on H*"* . For each fixed ^ in X m"m4 , 

K C • , % ) is measurable on SL and for almost all x in 
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il , H (x , • ) is once continuously differentiate 

on ft*"*-* # The functions F and G satisfy the fol

lowing inequalities: 

' * **" 1 '^ ,*n-/»v/f*-í fofr .-*"»* 

•*л !ec*,^)u cc^c*)* c,c<̂  ) s kAi " , 

where s^. « /ft"'1-- /rf'V/ni- let, I ) , s ^ ^ oo, t ^ -< S/j , i r i s the 

g r e a t e s t i n t e g e r l e s s than mi- m,/<fi f ^ i " i^dC% \cc\ 6 Ar 3 f 

c ^ i s a cont inuous funct ion from Ji ** t o II , and C 

i s a continuous f u n c t i o n from JL * t o L 

(b) Set F ^ ; * dF/d f ^ for \<t\ £ mv and 

G$ ; = 3<? / S T J ^ for 1/31 -£ trn. - \ • Suppose t h a t 

where CK a re continuous func t ions from % t o L and 

the exponents 41^ and 4 1 ^ * s a t i s f y the i n e q u a l i t i e s 

^ » 41/ (jfi^+q!^ xx A ) fo r Iccl » im. 9 

'ft* > soc ^St* * V 4 ** 4 * f o r ^ ~ ̂  ^ * ' * ' ^ ^ > 

-fir^ « 4 f o r I ofr I -«- an, - m, / * f i , 

and 

t^A* ^ - ^ f 0 r • * l • l / l l a« rtH , 

f i ^ д ^ Sл $ £ * f o * л г - л /<fi* é I oc I , I / l I 4 (ГYL ., 
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totl + Ij&l --? 2 <m, , 

-ft-,. i S. for | cC I «< <*n, - /yt / f t f /nt - m, /.fv -6 1 /i I 4 /tn • 

(c) If £ 9 Cii , % ^ ) is the division of f into its 

mt -th order components tym, QXi^i *he corresponding 

Cmt-'O-st order jet ̂  y then for each « in il and each 

^ in X W ^ 

(d) There exist two continuous functions C^ and Cj from 

R** to i? with c a C-r̂ĵ,"> 2 C a > 0 for each ̂ ^ , 

and two constants C<v 5* 0 and c- such that for all X , 

$n, and ^ 

\*L\шă 

i - c » l 1* > .»j/ ł . . i iм«—l'
ţ» 

l ł» 

(e) Let there exist a constant cc T> 0 auch that for each 

x € Jl and each ^ e X*"*1""1 the following inequality 

holda: 

Assumption 4« (a) Let H ? JI K X "*** — • "k* be a 

nonnegative continuous function such that for all x in SL f 

X (tf .> • ) is once continuously diff erentiable on X m"m'* . 
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(b) Set—H^ \ m d*ft / 8%^ and 

I....,,,,... ( 4 ^ ' ^ , ) 1 -X«.*.J»,0 

and 1 «c I -4 tm, - 4 # Suppose that for each e in 3 0, 4] , 

each * in H and each ̂  in ft*"*-4 the following ine

qualities holds 

K&I .# •Wt—'l . 

with some constant CQ > 0 * 

(c) Suppose that there exist a constant. C$ *2? 0 and a 

function R s il x a*'1*"" x H
5'"1"'1 _* J." such that for 

each .<ri 9 *i' in K /WI""f and each K in il 

V,f̂  v**^' * c« ,3.^ v * * ^ + * < « ^ » v > • 
Further suppose that for each w in "W^*^ with /m* > 

> mv+ /ny^v the mapping X C ^ C - ) , <*2,C/Kr.)) defined by 

'&(%(&) ,11 (<ur)) (*) I * JtC*, % (M,) CX ) ., ̂  fitr) Ca) ) , 

is bounded and continuous from TV/m,.^f^ to L* . 

We define 
0 (k 

Di m iA*,e l L ^ % such that the form £ C HnC%^C^-)). D .ir!J 

is continuous with respect to or in Tf/m.,4* 3 , 

JiflC^) - * < ^ € W * m * s J^GC*,<^C4*)C*))cU - c> . 

Let c > Cf , then we ask for elements A p m. JC1 , xi*0 « 

€ ilc C a ) n ]) which satisfy the condition 
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(6) 

^".^.fťV^-^î^-K^^n^A-

,/». 

for each *r in W/mr ^ 

Theorem 2« Suppose that e > 0 and that Assumptions 

3,4 hold. Let exist an element ny0 e Nlc(fy) such that 

J^H (tf ,47,(/ir0) (* ))d«x < CD . Then Problem (6) has at least 

one solution Jl0 e B/1 , 44>0 € M c C9-) A J) . 

Proof • (a) For e € 3 0, 4 3 and ^,,/ir e W ^ , ^ we 

define 
f^Co.); « jFC*,fC44,)C*))<iK, 9 ,C4 t ) ?«^ f fCd( , ^C^)Cx) )^ , 

f 2 C s , ^ ) : m j U(x,^(*)U))S<4+ tH<x9<iC*»(x»)dLx , 

a,(*u,/irU m S C F ^ C . , 5 ( ^ ) ) j V ] , 

JVC-*,*-) . - £ C G- (. , n (AJL ) ) , j r V ] , 

c ( £ , 4 i , v ) i c £ t H . ( . , ^ U ) ) / C > f + 6HC.,72C^))) 2 , ] )V3 . 

By a theorem of Browder (see £63, Lemma 7 and 3'• ) i t fo l 

lows; Coc) 1^ , and 9* are once different iable functio-
o 

nals on W/m,|/jV and the i r derivat ives f̂  and $, s a t i s 
fy the equations 

Cf̂  C^), / i r) » o . C ^ t A ' ) , C ^ ' C ^ ) , ^ ) 9 ,€r C.-a-,/ir) 

o 
for a l l .44.., nt e W ^ , ^ • 

( (I ) a, is weakly continuous and £,' is a continuous 
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compact mapping from W^,,^ to W X , ^ • 

o 
C y ) iA i s a continuous mapping of Hfm,9 f* into 
o A 

Vf/m9<fi. i which maps bounded s e t s into bounded s e t s and sa

t i s f i e s Condition (S+). 

CcT) f̂  (M>) —• oo as 144, II —• CD . 

Along the l i n e s of the theorem of Browder It a l so f o l 

lows for each e € 1 0 , A 3 : 
(oc) £ & ( £ , * ) -^ a o n c e d i f f erent iab le functional on 
o / ' 

"Cm.,^ a n d i t s der ivat ive £ a C e 9 • ) s a t i s f i e s for a l l 
o 

AL9nr e K/^-fi, 

( £ £ , ( € , 44, ),*>-) » c ( £ , .44,,/ir ; . 

((h) £ft Ce. , • ) i s a continuous mapping of lf<m9& into 

^/m- <tt, which maps bounded s e t s into bounded s e t s . 

C y ) £' Ce , • ) : « fiJJCO+f^ ( e , • ) s a t i s f i e s Condi

t i o n (S+) and hence Condition ( S ) t t o o . 

Further by the assumption on li and by ((f) we have 

for each e e 3 0 , 4 3 

f C e , M . ) m £^ (M,) -»• £%(Z9AA,) Jfc £i Co,) -+ oo 

as 144- II —> a? . Therefore it easily follows - by virtue 

of the above remarks - that Assumptions l(a,b,c) hold. 

(b) Let M* € itc Cfy) , then we obtain by Assumption 3(e) 

Ca/(44,),*,) *r Z tGAC*f*l(AL»93*«,l 2 

Z <*, [ (S(X9«I(M,)(X))CL* m &a(AJu) m etc > 0 
XX 

which implies Assumption 1(d). 
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(c) By the assumption of Theorem 2 it follows for all 

e « 30, 4 3 

£(i,nr0) * £-, (ir0) + i1 Cc,*^) & i^ (tr0) * 

t4H(x,^(ir0)(o())clo< * ^^ 

with some constant ?̂j , proving Assumption 2(a). 

(d) For each e c 3 0 ., 4 3 and each AA* « "<m,4i- we fur

ther have by Assumption 4(b) 

0*(f '<e ,>*) , .*)- % CHA^^f44))/^+eH(^^f^)))
a,5Vl 

which proves Assumption 2(b)# 

(e) Assumption 2(c) follows along the lines of the proof of 

Theorem 2(c) in C103 and shall therefore be omitted. Hence 

Theorem 2 follows from Theorem 1. 

Remark, (a) Assumption 4(c) can be replaced by a condi

tion which is more useful in applications (see [10] , Propo

sition 3). 

(b) fx ( 0 ,/tc ) is by Assumption not necessarily defined 

for all AL in M e ( ^ ) . 

(c) Theorem 2 generalizes in one sense a theorem of Browder 

£63 (Theorem 17), who assumes MCx,^) * 0 . 

R e f e r e n c e s 

Il3 BERGER M.S.: An eigenvalue problem for quasi-linear, 

elliptic partial differential equations, Bull. 

Amer.Math.Soc.71(1965),171-175. 

- 125 -



[2] BERGER M.S.: An eigenvalue problem for nonlinear ellip

tic partial differential equations, Trans.Amer. 

Math.Soc.120(1965),145-184. 

[31 BERGER M.S.: Orlicz spaces and nonlinear elliptic eigen

value problems, Bull.Amer. Math.Soc.II(1965),898-
902. 

[4] BROWDER P.E.: Variational methods for nonlinear elliptic 

eigenvalue problems, Bull.Amer.Math.Soc71(1965)> 
176-183. 

[5] BROWDER F.E.: Nonlinear eigenvalue problems and Galerkin 

Approximations, Bull.Amer.Math.Soc.74(1968),651-

656. 

[6] BROWDER P.E.: Existence theorems for nonlinear partial 

differential equations, Global Analysis-Proc.Symp.. 

Pure Math.XVI(held at University of California,Ber

keley, July 1-26,1968),pp.1-60.Amer.Math.Soc.pro

vidence,Rhode island 1970. 

[71 HESS,T.: Nonlinear functional equations and eigenvalue 

problems, Commentarii Math.Helvetici 46, 3(1971), 

314-323. 

[81 HESS P.: A variational approach to a class of nonlinear 

eigenvalue problems, Proc.Amer.Math.Soc .29(1971), 

272-276. 

[9] PETRY W.: Generalized Hammerstein equation and integral 

equations of Hammerstein type, Math.Nachr. (in 

print). 

[101 PETRY W.: Existence theorems for operator equations and 

. nonlinear elliptic boundary value problems, Com

ment .Math.Univ.Carolinae 14(1973),27-46. 

Mathematisches Institut 

der Universitat 

4 Dtisseldorf 1, Haroldstrasse 19 

West Germany 

(Oblatum 27.10.1972) . 

- 126 -


		webmaster@dml.cz
	2012-04-27T21:28:16+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




