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NONLINEAR EIGENVALUE PROBLEMS
Walter PETRY, Dusseldorf

Abstract: Let ¢ be a continuously differentiable func-
tional on a real Banach space ¥ and £ - in one sense - the
limit of continuously differentiable functionals on ¥ with

domain JD(f):={ww €V: £ () e V¥*3 .
The existence of a solution of the nonlinear eigenvalue pro-

blem
£(w) = Ag/(w)

with A eR' and w e D(£)n Mo (g) is proved, where
the level surface is defined by M. (gli={ueV; glul= e?.

Application to a nonlinear elliptic eigenvalue problem is gi-
ven.

Key words: Variational problem, nonlinear eigenvalue pro-
blem, regularization method, elliptic differential equation,

boundary condition,
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-

Let ¥V be a real Banach space, £ and [ 4 two functio- ’
nals defined on ¥ which are once continuously differentiab-
le with the derivatives £’  and ¢’ respectively. Let ¢ be
a real number and define the level surface Mg (gl:{fu €
eV: g.(.u.).-.- ¢3 .Then the critical points of £ with respect
to Mo(q) are (under suitable restrictions) solutions

of the eigenvalue problem

(1) £ lu)=nrg' (w)
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with some A € X1 . This reduction of the eigenvalue pro-
blem (1) to the problem of extremizing a functional £ on
the level surface Mg (g ) is used to prove the existence

of a solution for (1) (see e.g. [5 - 8]).

It is the purpose of the_present note to prove the exis~
tence of a solution Ay for (1) with u, € M (g ) (Theorem
1) under the assumption that. £.-‘ is the limit of the deriva-
tives of a sequence of functionals on VY , In particular,
£ (w) must not be defined for all 4 of My (g) . The proof
of the theorem is based on regularization methods, recently
used by the author in studying nonlinear integral eguati,ona
(9] and nonlinear elliptic boundary value problems [10]. Theo=
rem 1 generalizes results of Browder [5, 6] and Hess (8],

As an application of Theorem 1 we obtain a re_sult (Theorem 2)
on nonlinear elliptic eigenvalue problems wh.ich strengthens
the corresponding statements in [1;2,4 Z 61 (see also 3.

1, Let ¥ be a real separable reflexive Banach space '
with dual V*. The pairing between V and V* shall be .
denoted by (., .) . By — and — " we will denote
strong and weak convergence respectively.

A mapping T:V—> V*  is said to satisfy Condition
(S): if fupltcV is weakly convergent in V to «, and
It (Tum - Tug,sem = 449) — 0, then u, converges
strongly to 4, .

A mapping Ts VY — V* 1is said to satisfy Condition
(S+): if {umd cV  is weakly convergent to u, inV and



if Mmm (T - Ty, Mgy — o) & 0 , then iy
converges strongly to 4w, .

To prove an existence theorem for the eigenvalue problem
’(;i.) we use regularization methods. Therefore we introduce

Assumption 1. Let €, > 0 . For each € € J 0, €01
suppose that £, , £, (e,), ¢ are functionals on V¥
satisfying the following conditions: (a) £,,%9 (e, ) and
g are C'-functions on ¥ with the derivatives £, ,
fé_.(i , ) and 9.' respectively. (b) @ is weakly conti-
nuous and ¢’ 1s a compact mapping from V to V™ . (c) Set
$Ce, ) =f () + £ (e, ) with the derivative

(e, u)= f.; (w)+£5Ce,m) ., Suppose that £; end
ia (e, ) map bounded sets into bounded sets, that £]
satisfies Condition (S.+y) and £°Ce, ) Condition (S) and
that £(e, ) —> 00 as lawll— 00 uniformly with respect
to © el 0,€0] . (d) Let there exist a constant ¢ > 0
such that for all a in Me(gli=fueViglw)=c},
,‘9"(“),“) > 0 and for each R > 0 , there exists ¢(R)>
>0 such that (@'Cw),«) = ¢ (R) for 4 in
Mc(g) with lwl € R . By a theorem of Browder ([6]s Theo-
rem 15) it follows

Proposition 1. Suppose that Assumption 1 holds. Then for
esch ¢ €J]0,€,1, £(g, ) assumes its minimum on the
set M, (@) at a point 4¢ which is a solution of the

eigenvalue equation

for some real number A‘ .
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We define for all e € 10,€,1, #,vr 6V,
Ble,m,wr):=(f (e,u),n)
The problem to be studied is obtained by the limiting pro-
cess ¢ —» (0 . Hence we formulate

Assumption 2, (a) Let there exist a constant ¢4 > 0
end an element &, € M (@) such that for each £ €10,€,]

fCe,w,) = €, .

(b) Suppose that there exists a constant ¢, > 0 such that

for all w eM.(g) andeach e €10,¢€,]

0 e (£2'Ce,u),w) € c,f,(e,a) .

(c) Suppose that any sequences { g, } and {.w,_“! cV sa-
tisfying £, — 0, wg, — 4o in ¥ and
06B(ep,sg, ,45,) € €, with some constant €p >0 im-
ply the existence of B (0, #,, ) for all ¢ € W , where
L 4 is a dense subset of ¥ ; furthermore there exists a

subsequence {m’#% such that

(+)
B(e,, » g, , @)= B(0,u,,p)

for all ¢ € W . If in addition B(0,4,, o) exists,
then it exists a subsequence (also denoted by .m’ ) such

that
B(O,u,,u,) %B(e‘,‘, ) Mg, ’“"..') .
We sget

D(£)im{uweV:B(0,4,:): V= R* is linear and continuous}.

(+) The referee has remarked, that under this assumption, it
then follows that the whole sequence converges.
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Then for 4 € D(£7) there exists f; (O,u)cv*
such that for all aw € V
B0, ) =(£, (0, ), ar) .
The eigenvalue equation to be studied may then be written

in the form
(3) £ (w) + £,(0,u) = 1g (w)
with some real number A and w € Mo (g)n D (£)

We now state our main theorem:

Theorem 1, Suppose that the assumptions 1,2 are true.

Then there exist at least one real number A, and one
Mo € Me (@) ADC(£) satisfying (3).
Proof. By Proposition 1 and Assumption 2(a) it follows

fle,u,) £ £(e,w,) & €,

from which by Assumption 1(c) there exists a constant R >
> 0 such that for each ¢ in 10,€,1, lugly, € X .

Therefore there exists a sequence €, , such that

. . v
(4) n > 0, we — 4, in
Further we obtain by Assumptions 2(b), 1(c)

(5) 0 € (f5 (e, mg),mg) & Cufy (€, ug) & colfle,ug)+
+ 1 (u) & co (€ + €)=z €,
with some comstant ‘f, > 0 . Hence it follows by Assump=
tion 1(d)
Cp Z NE Cg Mg+ C£7 (e, i), g) = 10£°Ce, i), gl
= (A 1(@ (ug),auy) 2 12gl e (R)
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with some constant €, > 0 , i.e. [2g1 & €, /c (R) .
Therefore by virtue of Assumptions 1(b,c) and 2(¢)» (4) and

(5) there exists a subsequence .m’ such that
Aﬁﬁ,,-,—»ﬂ.o,f.,'(u%,)—'w,, in V*, lug,,) — wy in Y*
and
B(e,, s e L @)= B0,u,,p)
for a1l @ e W . From
(£ Ceqe, g )@= 2 , (@' (e ) @)
it therefore follows for each ¢¢ in W

(w,,@) +B(0,w,, @)= A, (w,, ) .

Hence
B, up, @) = (A - w; , @)

for each ¢ in W, Since W is dense in V and A wy —
-w, € V* it follows therefore that B (0, u,, ) can
be defined for all @ €V and B(0, wp, @)=
’,(f;,(o,uuo), q) ’ i.e.

£200,u,) = Ayw, -
end &, € D(£°) , Further we obtain by Assumption 2(c)

M;,M (£ (u.e“'), me ) =

m’

= Mn‘w{as“. (g,‘(u.‘” Yy, ) - (£; (s,n,,u.ew) y g )3

mi

= A, (w,,u,) - 2:;» Blep , &g, 44, ,)

& Ny Cary, aty) =B OO, aty, sty ) m (Ao = £ (0,0 ), i) m (ag, i) «
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Therasfore by Assumption 1(c), “g,, converges strongly to
Aty + Hence we obtain by the continuity of £7 and ¢’ that
Mo & Me (¢g) and
’ /’ ’
£, (upy) + £, (0, u.,) = .?Lo ¢ (u,)
proving Theorem 1,

Remark, (1) Assumption 2(c) is also used in [10], whe-
re nonlinear boundary value problems are studied.
(2) Theorem 1 is a generalization of a theorem of Browder
([6]1, Theorem 15). It shall be remarked that the domain of
Definition D (£’) of the operator £5 (0, ) is a sub-
set of V .

2. To apply Theorem 1 to nonlinear elliptic eigenvalue
problems we make the following assumptions.

Let £ be an open bounded subset of R™ with suffi-
ciently smooth boundary &ML such that the imbedding theo-
rems of Sobolev hold (see e.ge. [6]). We consider the Sobolev
space Vi = ﬁm,” with 1 < p <0 and denote by

[u,nr]::,_‘;a.(x)ar(x)dx . In the following we shall use
the notations of Browder [6],

Assumptions 3 (see [6)): (a) Suppose that F: £ x
xX™ - R* , G131 0 x R*™-% — R' . For each fixed

§ in ) S , F(+,§) is measurable on SL and for
almost all x in Q ,F(x,.) is once continuousl& diffe-
rentiable on R®™ . TFor each fixed M in R°™1 |
H(e,m) is measureble on £ end for almost all X in
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)

L, Hix, ) is once continuously differentiable

RSM-»i

on . The functions F and G  satisfy the fol-

lowing mequaiit ies:

Soc

\F(x, §)1€ c(f)a) 4 (g 5 TE!
t
16(x, ))& ¢ (9, )(x)+ ¢, (n,) b lm g™,

m-m/p€iBlém-1
where sy = 4 l~m(m-lal), Sg<®,ty < sp , & 1is the
greatest integer less than m-m /g, §ps={§eslxl &£ &7,
¢, 1is a continuous function from 2% o R? , and ¢
is a continuous function from R°¢ to L™
(b) Set F:=9F /0 € for lxl £ m and
Gp:=06G /dn, for l[&lém-’l . Suppose that

3
%
'?ﬂl )

s

IR (x, §)1 £ ¢ (§p)(x)+ ¢ (§p)

pA
m-m/n4iflem

’

1Go(x,m) & e (p) () + C(ny) Z, 0 Img

$
where ¢, are continuous functions from ¥ 4o L™ ama

the exponents fo, and 4"0‘{3 satisfy the inequalities

g = p nlep'=24) for lxl= m ,

- 1-1 a
P >80 (s +5. =1) for m-m/pélal<m,

e = 4 for lwl<m-m/n

and

Mgp$ n-1 tor lxl = Ipfl=m ,

1»\,‘[5‘5”9:4 for m-m/pn £lxl  Ifl& m ,
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lxl+Ipl<2m ,
Pup & Sp for lal<m-m/pn,m-m/pn &liplem .

() If § = (m ,Ym) is the division of § into its
m -th order components ¢, and the corresponding
(m -4) -st order jet 7 , then for each X in f) eand each
”l i'n R‘m-of

’ ’,
l‘Em[F‘(x,q,VmFFc‘ (x,m, LIS, -1 >0

for &, + ¥, .

(d) There exist two continuous functions ¢y and cq from

1 3 to R7 with ¢, (m,) 2 &, > 0 for each 7, ,
and two constants Cy > 0 and Cs such that for all x ,
34» and m
n
n
‘&,z.mpu("‘vg)gea Z ¢y (g IV -
fg. 1P
= Ca (nb)m-m/ﬂﬁl(sl£0n-4 gﬂ ‘
(e) Let there exist a constant « = 0 such that for each

Sman

x €l andeach n eR
holds:

the following inequality

Assumption 4. (a) Let H: fI x R*™" — k" vea
nonnegative continuous function such that for all x in £ ,

H(x ,*) 1s once continrously differentiable on 1‘“"4 .
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(b) Set . H, := 8H /37, and
Hy (x,m)

(4+eH (x,n))2

and let| & m - 1 ., Suppose that for each € 4in ]'0,4]‘,

each x in f) and each  in R5m-1  ihe following ine-

qualities hold: )

Lo(e,x,m):= with ¢ € 10,11

s fep

IL (e, x,m) £ c (mp)X)+c, (n”)m-mmﬂpum-a Im g ’

coH(x,m) zw?m_" H“ (x,mIm o =0

with some constamt ¢, > 0 .

(c) Suppose that there exist a constant cg = 0 and a
function R: Q2 = R*™ 7" » R*™*"" — R’  such that for
each m,n’ in R*™7 and each x in 0

’ ‘ / .
‘Iﬂl§m-4 Hyx,mInjp 1 £ ¢ lplzt“m-'i Hp(x,mIny + R (xy, 27)

Further suppose that for each a in 'Wm,’@ with m* >
>m4+mpn ‘the mapping R (n(-), m (w)) defined by
Rig(w)ym(w))(x) s = R(x, n () (x),m(w)(x)) ,

is bounded and continuous from Wm-,,,,,, to L7 .

We define
o n
Di=du eW, , such that the formw‘Z [HyCoym (), D]

me-1

o
is continuous with respect to & in Wmm,pn 3 ,

Mo(@):i=due ﬁm,,,,, : &G(«,q(u)(x))dx =c¥ .

Let ¢ > 0", then we ask for elements A, e x1 , Mg €

« M, (g)n)D which satisfy the condition
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n
!d.lzimt Fule,§ ‘“a))rba"’] +lpl22m-4 L Hﬂ (eym (y), D720 ]

(6)

s p
= % E LG, ), D ]

for each 2 in ﬁm,'ﬂ.

Theorem 2. Suppose that ¢ > 0 and that Assumptions
3,4 hold. Let exist an element ar, € Mg (9,) such that
LH(x,n(nro)(xnaLx < @ . Then Problem (6) has at least

one solution A, € R , M, € M, (g)nD .

Proof., (a) For € € 10,1) and & ,w € V?m,,,, we
define ’
£ (w): =fnrcx,§m)m>d.x, gw):i= [ GCx,mu)xNdx

£(e,u): = J;H(x,ol(uﬂx))/”-f eH(x,muN(xMdx ,
alw,nr); =|“Em[P¢(‘,§(w)),D¢VJ )

1’( )3- G . p
L,y m'ézm-"[ a (comw)),Dr ],

2 _f
°<€,u,v>=Tp|‘zm_4tn,,c.,qmn/m»fenc-,nmm ,D ] .

By a theorem of Browder (see [6]), Lemma 7 and 3" ) it fol~

lows: () £, , and @ are once differentiable functio-
(-]

nals on W, ,n and their derivatives £4 and 9’ satis-

fy the equations

(& (w),w) = alu,v), (§w),v) = & (u,r)

o
for all w,” € Wpp, n -

((5) 9, is weakly continuous and 9’ is a continuous
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] (-]
compact mapping from Wm,p to Wh . n -

(-}
() £, is a continuous mapping of Wm,pn into

R .
Vl,,‘.".,¢ s which maps bounded sets into bounded sets and sa-

tisfies Condition (S+).
() £,(u) > as lul—= o .
Along the lines of the theorem of Browder it also Iol-
lows for each € € 10,11 ¢
() £, (e ,+) 1is a once differentiable functional on
[-]

W, 1

M,V € w‘m,;n,

and its derivative £;_ (e, ) satisfies for all
o

(g(e,u) ) = cle,u ).
0
(p) £, (e, ) 1is a continuous mapping of Wam into
2 ? » N

ﬁ,,’:,’,” which maps bounded sets into bounded sets.

() £(Ce, ) :i=£10)+8p (e, ) satisfies Condi-
tion (S+) and hence Condition (S), too.

Further by the assumption on X and by (J°) we have
for each ¢ € 10,41

fle,m)=£ (u)+ £,(e,u) 2 £ (W—> ®

as lall = 00 . Therefore it easily follows - by virtue
of the above remarks - that Assumptions 1l(a,b,c) hold,

(b) Let & € Mo (@) , then we obtain by Assumption 3(e)
, ) p

(@'(w),u) mE'm-q[G”( ’Q(“”,’D wl z

z chG(x,nz(u,)(x))da =owgu)=xe >0

which implies Assumption 1(d).
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(c) By the apsumption of Theorem 2 it follows for all

eel0,1]

£(e,wo)= £, (v,) + £, (2,v,) & £,(2p)
+JoH(x,m (o) (k) dx & €5
with some constant <%s , proving Assumption 2(a),
(d) For each e €10,1] and each 4 € Wom,p we fur-

ther have by Assumption 4(b)

tmea

2 0
Oé(f;(e,u),.u.)-'mz SR Com W) /(e eH ey m (), D]

“c, _(;H(x,ol(u.)(x))/(‘l-t eH (x,m () (x)dx=c, £, (€, 4)

which proves Assumption 2(b),
(e) Assumption 2(c) follows along the lines of the proof of
Theorem 2(c) in [10) and shall therefore be omitted. Hence

Theorem 2 follows from Theorem 1.

Remark. (&) Assumption 4(c) can be replaced by a condi-
tion which is more useful in applications (see [10] , Propo-
sition 3).

() £,(0,«) is by Assumption not necessarily defined
for all 4 in M. (g) .
(¢) Theorem 2 generalizes in one gense a theorem of Browder

61 (Theorem 17), who assumes H(x,m) =0 .
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