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SMOOTHABILITY VERSUS DENTABILITY 

M. EDELSTEIN, Halifax 

Abstracts A subset X of a Banach space X is smooth-
able if for every e- > 0 there is an £ e JC* , with 
^ ^ C ^ ) : , u . f i X U 4 , such that some closed ball 3 contains 
the set <^fiX;fCi.)< 4-eJ and AHJLA, <£(M,) : u, c £ J -* A . This 
notion is shown to have properties which parallel, in a sen-
set those possessed by dentability. 

Key words; Smoothability, dentability, Fr^ohet differen-
tlability. 

AMSf Primary! 46B99 Ref. I. 7.972.22 

1. Introduction. 

1.1. A subset X of a Banach space X will be' said to be 

smoothable, if, for every e >» 0 9 there is an £ e X* with 

*ttfvi£Ca); w 6 X\m \ such that some closed ball contains the 

set 

and is disjoint from the hyperplane \u*\ £ (u,) m 4 i . 

1.2. A subset X of a Banach space is called dentable 

if for every C > 0 9 there is an x € X such that some hy

perplane separates X from the set 
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where B C# ? e ) i s the bal l of radius £ about X . 

The notion of dentabil ity was introduced by Rieffel and 

used by him to prove a variant of the Radon-Mkodym theorem 

t 6 ] . Among other things he proved that every bounded subset 

of Z ( 1) , I an arbitrary s e t , i s dentable and raised the 

question whether a dentable set must have a strongly exposed 

point. This question was answered in [ 2 ] where we showed that 

C0 contains a c losed and bounded convex body without any 

extreme points which nevertheless i s dentable. 

The de f in i t ion of smoothability 1.1 p a r a l l e l s that of 

dentabi l i ty i n the sense that while in the l a t t e r X& i s 

the complement of a closed ba l l and X S X i s separated 

from X$ by a hyperplane, in the former X s i s the comple

ment of a part cut off by a hyperplane and f ~ * t A 1 i s se 

parated from X e by a c losed b a l l . I t should be of i n t e 

r e s t to find out how the symmetry in d e f i n i t i o n i s r e f l ec t ed 

i n corresponding propert ies . I t i s the purpose of t h i s note 

to bring oat a number of p a r a l l e l s between smoothabil i ty and 

dentabi l i ty* for example• the property of Z ( 1 ) with r e s 

pect to d e n t a b i l i t y i s duplicated by C 0 ( I ) with regard 

t o smoothahi l i tyj conversely Z contains a nonsmoothable 

subset while C 0 contains a nondentable one. f i n a l l y , the 

term emoothabil i ty used here i s s trongly suggested by the 

f a e t that fr^ohet d i f f e r e n t i a b i l i t y of the norm impl i e s 

smoothabi l i ty of every bounded subset i n the g iven space* 

- 128 -



2. Smoothability properties of Z* and m. ( I ) . 

2*1* Proposit ion. The unit ba l l in Zi i s not smooth-

able . 

Proof. Let 0 «< € < 4- be given and suppose f « 

= (A,-, Jt^•>...)Stm, with II £ 11 » 4 ( U . >teuft |3L.j,l - 4 )* 

Suppose, for a contradict ion, that a b a l l "&(xpK,) centered 

at x m Cx. , X* , . . . ) and of radius Jt, e x i s t s such that 

(1) B c B f p « , * ) ' 

where B e = <u,t HA* II * 1 , f C u . ) - £ 4 - e ? , and 

«2) 2(X,H,) r\£-Am m <|> . 

*rom (1) and (2) i t c l ear ly fol lows that , for some cT with 

0 <*> cf * e , 

(3) ^ p , { £ f ^ ) } i t e B ( ^ , / i ) } B i - ^ . 

Since B e is of diameter two,. H> &.A is necessary to sa

tisfy (1). 

Hence, because of (2), d « £ Cx ) ̂  0 and 

It now suffices to show that a /y, exists such that 

H 4, II * 4 , £ (ty) * - j and II x - ^ H » tt . Let then H 

be such that 25 l x ^ I •< — # If f for some v 2* JN + 4 

we have ^.4 m 0 then ^ • (^hf$ tyz »* • • ' i s c h oeen by 

s e t t i n g ^4, • 4 and ^ a* 0 for £ 4* * # Otherwise, 

choose any pair of indices 4/ 9 £ with K + 4 .6 <t> < i 
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and set ^ * J , * * , and ^ - - ± , , / . „ w«h 

/ ^ •» 0 for other coordinates. In both cases II ^ II m 4 

and, clearly, f C ^ - ) < -— . Hence 

K S l x K - /^Kl » « x l + l ^ - ^ l + l ^ - X ^ I - U 4 l - U^l 

fc 1 x 1 + 4 - 2 C U . I + U J I > > l x « - i - 4 -oT . 

Since l\ x li £ I £ Cx ) I * - d we get ilx-^ll > 4-d-cT» «, . 

2.2. Proposition. Every bounded subset X of m*fl) , 

the space of all bounded real valued functions on the set I 

taken in the sup norm, is smoothable. 

Proof. Let J be the diameter of X and choose a con

tinuous linear functional £ on mi ( I) with fC-tc)- 4JL(<1) 

for some i e I and all AJL 6 mx ( I) . Since a translation 

and magnification has no effect on smoothability we may as

sume that 0 e X and 

JbUAV <f (AJL.) : AJ, e X I m 4 . 

Thus \AJL>($.)\ -s* ]) for all j e I and all ^ E H ; and 

^ C4/) -6 4 for all AX, e X . Let x 6/»nCI) be chosen so 

that x Ct> ) * - P and x C£ ) » 0 for £ 4» -i> , If 

4 e 
-T > e > 0 and /|,e)C then 

IU-/y.ll - hAjjp,\ U C £ ) - ^ C £ ) h £ e I J - £ . T ) + 4 - e -

Thus X* c B U , 3) +4 - 6) and, clearly BCx,3)-t-4 - e ) 

is disjoint from f 1 t 4 3 . 

2.3. As mentioned earlier, Rieffel showed in £6] that 

every subset of Z C I ) is dent able and in [2] it was 

shown that the unit ball of m I** mn(ti)) fails to be 

dentable. Propositions 2.1 and 2.2 then exhibit the parallel 
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behaviour of smoothability in that the unit ball of 

£ (« t (JO)) fails to be smoothable whereas all subsets 

of m ( I) are. 

3. Conditions implying smoothability. 

3.1. Proposition. Let X be a Banach space whose norm 

is Frechet differentiable at some X e X with llxll m \ • 

Then every bounded subset of X is smoothable. 

Proof. Suppose X c X is bounded and e > 0 • Choose 

f e X * such that II £ It m £ (x) «• A . We may assume that 

A>up,i£ (AL)IAL E X I st \ .Each ball of the form B(-fcX,/t4-4- j ) 

with H, z» Q is disjoint from f"*'1 C A ] . A construction of 

Mazur C4, p. 1313 shows that, for a suitably larger ft 9 such 

a ball contains X 6 . Thus X is smoothable. 

3.2. By a result of Asplund El], a Banach space has a 

Frechet differentiable norm on a set of second category if it 

has an equivalent norm whose dual norm is locally uniformly 

convex. All Banach spaces with a separable dual were shown by 

him to have this property. More recently, Troyanski [7] has 

shown that reflexive spaces too belong to the above class. 

Thus, the conclusion of the last proposition holds for all 

reflexive spaces and those having a separable dual. 

3»3. As observed by Rieffel t6, p. 72] each compact sub

set of a Banach space is dentable. The next proposition shows 

that such sets also have the smoothability property. This is 

preceded by a simple lemma. 

3*4. Lemma. Let Y be a closed subspace of a Banach 

space X • Suppose X cz Y is smoothable in y , Then X 
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is smoothable (in DC )• 

Proof. Let e > 0 and suppose f e y * is such that 

>bUft,4£ C/u,);i^eXJ»/f .Suppose B-» 4 <̂  eYs llx-<jjJ * * l o K L 

for some K > Q and x e y witk B n f ' ^ M l - ^ • 

By the Hahn-Banach theorem, f extends to X with preser

vation of norm and obviously, <AJL e X; \\X~AA*1 *& H, } separa

tes X from the closed hyperplane determined by f . 

3»5. Proposition. If K is a compact subset of a Banach 

space JC then X is smoothable. 

Proof. Let y by the closed subspace spanned by X .By 

the preceding lemma, it suffices to show that X is smooth-

able in y , By a result of Mazur t51, the unit sphere of 7 

contains a point <y, at which the norm is Gateaux differen-

tiable. Let f e Y * be such that 11 f 11 « £ (y,) ** A and 

let £ > 0 . We may clearly assume that hujfi \%(AX*)\ M, €X$*4 

and, as in the proof of 3.1, we note that each member of the 

family < B (- Kty, K + A - -%•) % x, -> 0 } is disjoint from 

f*^ [ O « As observed by Klee t33, the above family forms 

an open cover of the compact set X 6 • It readily follows 

that this last set is contained in some member of that fami

ly. 

^ 3.6# In closing we note that the class of Banach spaces 

consisting of all conjugate spaces whose dual is separable 

and ©f all reflexive spaces has the property that each boun

ded subset of any of its members is both smoothable and den-

table. For smoothability this follows from the remarks made 

in 3»2. As for dentability any member of the above class is 

known t# have the property that every bounded set in it has 
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a strongly exposed point, and this last property is easily 

seen to imply dentability. 
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