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Comnentationes Mathematicae Universitatis Carolinae 

14,2 (1973) 

NODAL FILTERS IN SEMILATTICES 

J.C. VARLET, Liege 

Abstracti A filter of a semilattice S is said to be 
nodal if it is comparable with any filter of & in the set 
of all filters of S ordered by inclusion. The nodal fil
ters of 5 form a chain and induce a partition of 5 to which 
an interesting congruence is associated. Moreover-, the Bede-
kind cut of a nodal filter is again a nodal filter. 

Nodal filters have especially nice properties in impli
cative semilattices, i.e. semilattices on which a second bi
nary operation * is defined. We characterize nodal filters 
solely by means of the latter operation. We also determine 
the sublagebras which are in direct connection with nodal fil
ters and9 by the way, we focus our attention on the irreducib
le elements of the semilattice* Finally we obtain a characte
rization of the nodal filters in terms of congruences. 

Key wordsi congruence, endoraorphism, filter, implicati
ve semilaitice, irreducible, lower semilattice, node* 

AMS:06A20 Ref. 2. 2*724.81 

§ 0. Preliminaries 

The word semilattice will always mean lower semillatice, 

i.e. a commutative idempotent semigroup or, equivalently, a 

partially ordered set (abbreviated poset) in which any two 

elements a, and Jbr have a greatest lower bound, denoted by 

a, • Jbr or simply cuJb , the partial ordering being defined by 

a & Jbr if and only if a,Jbr » cu . The least and greatest ele

ments of a semilattice S , when they exist, will be denoted 

by 0 and A respectively. When 5 is a lattice, the second 

binary operation will be denoted by + • 
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The symbols fl , U , - , c and c will be used in 

their usual set-theoretical meaning: intersection, union, dif

ference, inclusion and strict inclusion* 
A filter of a semilattice S is a non-empty subset F 

of S such that, xnfr e F if and only if x e F and y,e 

e F . The principal filter generated by an element a, of 5 9 

i#e* the set ix ' x e S f x 2- <x } , will be denoted by 

f a ) . 

When ordered by inclusion, the set & (£ ) of all fil

ters of an up-directed semilattice S is a lattice in which, 

for any F, <5 € J(£) , F • 6 =- F (\ 6 and P+ff is the 

filter generated by F U G . Of course, if S is not direc

ted above, F O G is a filter only if non-empty. 

An element a, of a semilattice is irreducible if O/* <&-£ 

implies a, x £r or a/ ** c . 

A semilattice 5 is implicative if, for any a, #r e S , 

there exists in. S a (unique) element O/ X Jir such that 

ax s-s J&- if and only if x & cu * Jtr . Hence any implicative 

semilattice can be considered as an algebra tf =? < S •, • , * > 

of type < 2 , 2 > . An implicative semilattice is distributi

ve and always has a greatest element 4 . 

Terminology and notations are mainly borrowed from C4 3, 

§ 1, Nodal filters in arbitrary semilattices 

In C11 R, Balbes and A. Horn have introduced the notion 

of node in the context of a lattice but it makes sense in any 

poset# A node of a poset S is an element which is comparab

le with every element of S . We are going to generalize this 
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concept but we f i r s t need a lemma. 

Lemma 1 .1 . For a f i l t e r F of a semi la t t i ce S , the 

following condit ions are equivalent: 

(1) for every x e. F and every nfr $ F , the r e l a t i o n 

x >• tty i s s a t i s f i e d ; 

(2) for any f i l t e r G of S , e i the r G £ P or G 3 F ; 

(3) P i s a node of VCS) . 

Proof. (1) =-=-> (2). Let us suppose ther« exists a filter 

6 incomparable with P . Then there are elements x and ($* 

such that o < e F - C , /#. e (? - F and x & <#. . 

(2) ===> (3). Immediate by the definition of a node. 

(3) =-> (i)# if F is a node of #(&) , then for every 

x € F and every ^ ^ F we have £/#.) .$ F , hence £<y,)3 

D F D C.x ) and x > ̂  . 

Definition 1.2. A filter satisfying one of the conditions 

(1) - (3) will be called a nodal filter. 

Trivially the whole semilattice £ is an improper nodal 

filter. A principal filter Lx ) is nodal if and only if x 

is a node. Two nodal filters are always comparable. These ob

servations are summarized in the following statement. 

Lemma 1.3. The set JfCS) of all nodal filters of a 

semilattice S > ordered by inclusion, is a chain ufaose grea

test element is £ . It has not necessarily a least element; 

nevertheless, if S has an element A , then X(S) has the 

least element E4 ) . 

Hote that Jf(S) can have a least element even when S 

is not bounded above. In a chain all filters are nodal; on 
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the contrary, some semilattices have no proper nodal filters 

(take for instance the direct product of two chains isomorph

ic to the set of integers). 

In a lattice, any proper non-principal nodal filter is 

prime. 

In a 8emilattice S with 0 , any proper nodal filter 

is contained in DCS) , the dense set of S . In fact, let 

us suppose that the proper nodal filter F of S contains a 

non-dense element a . Hence there is tor s# 0 such that ah*** 

as 0 and Sy £ F , an impossibility since a, > Jbr . 

If, in a semilattice S with 0 , J) (S) is a principal 

filter, we can form DCJCS))-=]) 1CS) . Let us now consi

der a semilattice S with 0 in which J C S ) , ])aCS),--

.#•, J)/tv(S) form a finite sequence of principal filters. 

We can claim that all proper principal nodal filters of S be

long to this sequence; their generating elements are exactly 

the nodes of S . 

Definition 1#4. We say that two elements x and /y, of a 

semilattice S are connected (in symbols* Cx ,$ . ) € R ) if 

there is no nodal filter which separates them. Let us notioe 

that (u%<y,) 4 -R. implies either x > <y- or x <• <#. . 

Theorem l.§* In any semilattice S , the relation X. en

joys the following properties: 

(1) R. is a congruence of if sr < S ; • > • 

(2) any Jfc -class contains at most one node; 

(3) an R -class is totally ordered if and only if it is a 

singleton; 

(4) S/Jt is a chain dually isomorphic to JfCS) • 
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Proof. (1) Cx, r y ^ e X , Gy. ,* )e X and C x , * ) e > X are 

incompatible since, by the l a t t e r , there i s a nodal f i l t e r 

F such that , for instance, x € F and % # F • We than 

have (% e F and C ^ . ^ ) ei X , a contradiction* Thus X 

i s an equivalence relation on S . Moreover, i f Cx,>^) e X 

then Cx*, ^-/t>) G X for every 4> e S since otherwise 

XA> 6 F and /#-/4> $ F for acta* nodal f i l t e r F , hence 

x e F , A» € F and /y. £ F , which contradicts Cv.,*f.) e 

e X . 

(2) Let a and ir be connected nodes of 5 . We have either 

a <' £r or J2r *< a* . In the f i r s t case , for instance, a, and 

9r are separated by the nodal f i l t e r L J& ) • 

(3) Let Ca*]X , the X -c lasa of ou , be to ta l ly ordered and 

( *r, a ) € X , J2r #= a, . Any .x e S i s comparable with cu 

and JZr . Hence both O/ and 4r are nodes, which contradicts 

(2 ) . 

(4) Let us define the mapping oc : S / X — * X(S) by Cot * 

a Fc , where Fc i s the nodal f i l t e r generated by the X -

c lass C . In fact* Fc = 4* x € S ; x £ ^ , f e C V Obvious

ly **, i s bijeot ive and C -4 C in S / X i f and only i f 

Fc 2 Fc, in JfCS) . 

In [81 we defined, for any element cu of the semi lat t i -

ce S , the subset Do, as follows* I ^ s ^ e S i K ^ ^ 

implies ty £ cu\ . I t i s clear that Do, i s a f i l t e r i f non

empty. The following theorem provides us with a new characte

rization of nodal f i l t e r s . 

Theorem 1.6. A non-empty subset F of a semilattiee S 

i s a nodal f i l t e r i f and only If F • fM J* : x 4- F 3 . 
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Proof. 1°) if: since the set-intersection of filters is 

a filter if non-empty* we just have to prove that F ia no

dal. If nott there exist ty e F and % $ T with %-

and % incomparable, henee n^x m x -< x . Since â  e J>y , 

n^x = *x implies % ^ o< , a contradiction. 

2®) only ift let F be a nodal filter of 5 . For every 

(y. € F and every x a* F - we have <y, > x and /̂ *z ̂  x im

plies % & x , henee ^ e D y and F £ D x . Since x ** ID̂  

for any x + 4 , the proof is complete. 

How we direct our attention to the Mae Neille completion 

of the semilattiee j£ or* more precisely, to the dual of the 

latter. It means that to every subset A of S we associate 

its "Dedekind cut" CA )44' , i.e. all uper bounds to the set 

of lower bounds of A • 

We call a filter F of £ normal if F m CF4)"* . Obvi

ously any principal filter is normal. The normality of a non-

prineipal nodal filter can be characterized as follows. 

Theorem 1.7. In a semilattiee S , for a non-principal 

nodal filter F , the following aonditions are equivalents 

(1) F is normal; 

(2) 5 - F is not a principal ideal; 

(3) vn£ F does not exist. 

Proof. (1) =•=£• (2). .First* let us observe that for any 

non-prineipal nodal filter F holds <S-F~F / f.IfS-F-r 

- Co, 3 , then CT4)4^ m [ a ) 3 F and F is not normal. 

(2)-=-> (3). If <i/*vf F * a, , then a £ F , cu is the grea

test element of 5 - F , henoe S - F is a principal ideal. 
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(3) «==> (1). If F is not normal, then (?*)* 3 F and the

re is an element a, 4 F which is an upper bound of S - F . 

This element obviously constitutes the greatest element of 

S ~ F . It is also the inf imum of F . 

Corollary 1*S* In a semilattice S , if a filter F is 

nodal, then its Dedekind cut (F'1)"' is also nodal. 

Proof* Since the case F principal is trivial, by vir

tue of the preceding theorem we may restrict ourselves to the 

consideration of a non-principal nodal filter F for which 

lYif F exists* Let a, « vn# F , thus a, # F . For any x e 

€ S - F we have x & a- , cu is a node whence Co, )ssCF/,)4C 

is nodal* 

§ 2* Nodal filters in implicative semilattloea 

First of all we characterize the nodes and the nodal fil

ters of an implicative semilattice by means of the only bina

ry operation * • 

Theorem 2*1* Each of the following two conditions is ne

cessary and sufficient for an element a of an implicative 

semilattice S to be a nodes 

(1) for every x e. S , either o> * x =. 4 or x * cu m 4 • 

(2) for every x e S , a> * x • x or 4 . 

Proof, It is obvious for (1) since x * ^ -» 4 if and 

only if x --= nf . 

How if a/ is a node, then x *£ Q* implies a, * x ** 

a i and x < a» gives ci/ * x = x . If a, is not a node, 

there exists ix not comparable with a, . Then a*Xr <*• a, and 
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a * air 4* 4 *, moreover a * air S jZr t hence a .* a,JGr # ajr, 

We remind the reader (C53t p«63) that a subset F of 

an implicative semilattice S i s a f i l t e r i f and only i f 

( i ) 4 € F -, 

( i i ) a, e F and a * #- e F imply Jtr e F . 

The proof is given for implicative lattices but no use 

is made of the second lattice-operation. 

Theorem 2.2. A subset F of an implicative semilatti

ce S is a nodal filter if and only if 

(i#) 4 € F ; 

(ii') a *&** 4 and a e F Imply ir e F . 

(iii') a x ir 4- 4 and a * ir e Y imply a., ir e F . 

Proofs 1°) if; since the system (i') - (iii') is obvi

ously stronger than (i) - (ii)* F is a filter* It remains 

to prove that F is nodal* If not* there exist a $ F and 

if e F such that a -£ ir . Then a x Jo* + 4 and a, * ir e F 

(owing to a x ir 2? Jbr ). By (iii') a- e F , which is a 

contradict ion. 

2°) only ift since F 4- 0 , V 3 4 . Since a x ir =* 4 

is equivalent to a -£ ir , (ii#) holds in any filter. To 

prove (iii')f let us assume a x ir 4F 4 together with 

a X if e F and oonaider three cases* 

Case 1. a £ F and ir $ F . Then a X ir,» 4 If a & ir 

^ F otherwise. 

Case 2. a e. F and Jbr £ F . Then a, * ir » -£r . 

Case 3* a/ 4 F and J2r e F , Then a % ir ^ 4 . 

In all these cases one of the premises is violated, hence 
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the only possibility is a, « F and tr e F . 

Our next concern will be the determination of same sub-

algebras of the implicative algebra SP » < & $ • , * > • 

Clearly any filter of S is a subalgebra. Less obvious is 

the following proposition, in which K has the same mean

ing as in 1.4. 

Theorem 2.3» In an implicative algebra £?-= < £ $ *, * > , 

for any subset A of S,B= CIM LxlR j xe AS) IH4J is a 

subalgebra* 

Proof. For any ^ z € B , /^» e B and ^ .* * -» 4 

if /̂  .6 « , whereas / # * # x € C x . ] . R . if ^ -£ cs . Only 

the laet assertion is worth explaining. If (/%.,%,) $ K 

and <fy > x , then /^*it a r , Let us suppose now C^f,^)€ 

e R and ^ ^ * • Since ^ * * £ x always holds, if 

T^ * «.x) £ Jl , then there exists a nodal filter F con

taining ^ * x but not x . As (n^,x) e ft , F i ^ 

hence ^ * x > ̂  and /#.(/#** x ) -« ̂ .. But, by definition 

of ^ * x , we have ^ ( / ^ * x ) - s . z . This leads to the 

contradiction <ty .£ x , q.e.d. 

If J2r > cu and Co,, Jlr) $ & , then clearly ir * a * a • 

But we can have 8r # a, -s a, even when # -£ a> and Co/, J6T)S 

€ Jl . Before giving a necessary and sufficient condition en

suring the previous equality, we introduce a definition. 

Definition 2.4. An element a- of the semilattioe S will 

be said irreducible with respect to Sr ( ir > cu ) if ir\x • <*• 

implies # » a, . Then a> is also irreducible with respect 

to any c e S such that c >. Hr , Let us notice that an 
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element a, is irreducible if and only if it is irreducible 

with respect to any Jbr > a, . 

Theorem 2»!i. In an implicative semilattiee S , Hr .* a, » 

=• a- if and only if O/ is irreducible with respect to any 

upper bound of i a,, Jbr } . 

Proof > 1°) if i we have to show that Str * a, -* a, , i#e.» 

& # & a> if and only if x 4 «/ , Only the direct implica

tion is not trivial* By virtue of the distributivity of .S , 

Jtrx & a, implies the existence of elements Jd^ and x^ 

satisfying Jfcj > Jbr, x^ -£ x and Jlr^ x^ m a, . The element 

Jbr^ is an upper bound of i a/,J2r} , hence x.t * cu and 

x .6 a, . 

2°) only if t let a be an upper bound of <a,>M * We have to 

show that xy. m at implies a^ m a, . Clearly it suffices 

to prove that n^ £ a, . Since x & Jlr , one has x * a, £ Xr*.a,* 

= a,, hence y * ^ = a (.* * a/ -£ a< always holds) * and 

xty- s» O/ implies y , £ a, . 

Corollary 2«6« Let o< and .#" be two elements of the im

plicative semilattioe S such that Jbr >• a . , Then Jlr * a, *= 

* a* if and only if a> is irreducible with respect to .£* . 

Corollary 2ml. In an implicative lattice L , Jbr* a> -= a, 

if and only if a, is irreducible with respect to a, + >Cr* . 

(C73, Theorem 4) 

Theorem 2f8« In an implicative semilattioe S , a chain 

C is a subalgebra if and only if 

(1) C 3 4 5 

(2) any * e C is irreducible with respect to its succes-
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sors in C . 

Proof. 1°) if 2 let x , ^ (x < %> ) be any two ele

ments of the chain C , Since x*;<--/^*ty-«x*<ff-» 4 e C 

and ty. * x m x by Corollary 2.6f C is a aubalgebra. 

2°) only if: let C be a totally ordered subalgebra of 5 . 

Clearly C has to contain 4 • If x 6 C . f 6 C and 

x < <ty ;thea ty * x = x since ty * x has to belong to C 

and nfr * x -£ X . 

Remark 2.9. In an implicative semilattice 5 , a chain 

C is a subalgebra if * for any x7ty e C (x < fl^ )» either 

Cx,^)iH o r * is irreducible. For instance, the set of all 

nodes of S is a subalgebra. So it is interesting to charac

terize irreducible elements of an implicative semilattice. 

Such a wort was done in [61 and [7l» but in the context of 

lattices. 

Theorem 2.10. In an implicative semilattice S , an ele

ment a is irreducible if and only if x -£ & implies 

x * a> -a cu . 

Proof. 1°) if: we have to show that %% a a, implies 

ty, =c a/ or %, a. a, . Prom ty-x » a> follows x & >y> # a* . 

Let us suppose ty #s au . Since /̂  ̂  a, is impossible, the 

condition /̂  ̂  <x» is satisfied and the hypothesis yields 

(% * a*m a, , hence sx, a a* . 

2°) only if 2 let a be irreducible. Por any .x .£ a* , a, is 

irreducible with respect to any upper bound of i. x, cu ? , hen-

cef by Theorem 2.5, X * <*/ -= a, . 

To end with we shall characterize nodal filters in 
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terms of congruences. But here also we need some prelimina

ries* 

Hereafter hm*L(&) will mean the endomorphism monoid 

of the implicative algebra Sf » < S • • , * > . To every 

endomorphism oG of if is associated a congruence ®<x de

fined by 

(x,ty>) » 6^ if and only if xoc -» nfoc , 

Let us recall that an endomorphism ©c of an algebra 

A m < A •, F > is said to be a left vector endomorphism 133 

if there exists a subalgebra & » < B j F ) of Jl satis

fying the following two conditions; 

(1) U4 Cal©^: ^ 3 0,* H B * # , x € A J =* A , i.e. the 

uniton of the 0^, -classes which meet B is A j 

(2) ©^ I B » o>B ; where <i>B is the equality on B (in 

Conn's terminology (C23, p.59)* B is a transversal for 

A/®^ in Jl ). 

We finally remind the reader that, for any congruence 

6 of the implicative semilattice if , L41G is a filter 

of S •, we shall denote it by T& . Moreover C-x,^) 6 ® 

if and only if x d » n^cL for a suitable ot € Fd . Conver

sely, if F is any filter of S , then the relation ©F de

fined by 

<*,^) € €>F if and only if xoL = n^cL for 

some ct c F 

is a congruence* In other words, the correspondence between 

filters and congruences is one-to-one. 
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When H 3 © is a nodal filter, the corresponding 

congruence is rather special, as shown by the following theo

rem. 

Theorem 2«11« In an implicative semilattice 

V.» < S • . y * > for any congruence 9 , the following three 

conditions are equivalent: 

(1) M l © is a nodal filter; 

(2) 0 is a node of C<m, ( tf ) , the congruence lattice 

of y ., 

(3) for every x # C 43 8 , C x 3 0 = «tx 5 . 

Moreover, for any congruence 0 of tf satisfying these 

conditions, there exists cc e "EmcLCif) such that 0^ = ® . 

Proof• First let us observe that the equivalence of (1) 

and (2), is obvious: the mapping <3> —> TQ of Carv ( if ) 

onto ?(-S) is an isomorphism and T$ is a nodal filter 

if and only if it is a node of 3 K 5 ) . 

(1) implies (3) since, for every x 4 C43 0 and every 

afr e Z13 0 , we have x^ = x , hence Zxl® ** ix I . 

(3) implies (1}« Let us suppose there exist £ € Fe 

and a. ̂  F @ such that £ + a , Then fa* =# a and, how

ever, since (£a/)f = a f , (fa, a ) e @ ; C aJ 8 would no 

longer be a singleton* 

Finally, if 0 is a congruence such that C A 1 @ is 

a nodal filter F , the mapping cc of S into £> defined 

by 

x H if x T , 

*oc otherwise 
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is an endoaorphiem and © ^ = ® . In fact, it is routine 

to check that oc preserves the two binary operations in all 

possible cases as in the proof of .Theorem 2.2. 

Corollary 2.12. In an implicative algebra 

tf» < 5 •, • , * > , all endomorphisms «o for whieh C4J6,*, 

is a nodal filter, are left veetor endomorphisms* 

Proof* Thanks to Theorems 2*3 and 2.11, we can claim 

that ( S - [ 1 ] 6 e 6 ) U { 4 l is the required subalgebra* 
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