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Commentationes Mathematicae Universitatis Caroclinae

14,2 (1973)

PURE MEASURES
Zdendk FROLTK, Jan PACHL, Praha

Abstract: Pure measures (introduced by M.M. Rao [5]),
and related classes of i, -compact (E., Marczewski [21) and

purely x, -compact (introduced below) measures are studied.

All properties are equivalent for countably generated measu-
res, every pure measure is perfect, and any indirect product
of pure measures is a pure measure., Most of the natural gue-
stions are open.

Key words: Compact measure, perfect measure, pure mea-
sure, purely compact measure, indirect product of measures,

Stone space.
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l, Definitionsg arxd notationsge

1.1, Definition. {a) <X, A,w? is a measure gpace

if X is a non-empty set, AceepX is a & -algebra and
@ is a (positive finite @ ~-additive) measure on A .

(b) Given a measure space <X, f,u7, Ye A eand Bc
c A then B/ Y=4EnY|Ee B3. w/Y is the re-
striction of @ to AY

(¢c) A measure space <X, A, @) (and measure w )
is countably-generated if there exists a countable algebra
fg e A such that wE = M{n§4@BnIBme.ﬂ,&
&”94:Bm 5E} forany F e A .



1.2, Definition ([2))s (a) A class ¥ c e X is
&, =compact if for any countable ¢, ¢ € with N€, =
= f there is a finite F c €, with NF =70 .

(b) A measure @ on A is &, =-compact if there is
an X, -compact class < c A such that

wE =mup {f@wC|Ce€ & CcE} forany Ee A

1.3. Definition ([5]). (a) Given a measure space
(X,A,«) thenaring R c A is @« -pure if
(1) WE=inf{% wBn/Boe®,UB,oE} forany Ee A
and (i) B, e B for m =1,2,..., B @ imply
wB, =0 for some & .

(b) Measure @ is pure if there exists a ¢ =-pure al-
gebra,

1.4, Remarks. (a) It suffices to suppose the existence
of a w ~pure ring (instead of algebra) in 1.3 (b), see Pro-
position 2,5,

(b) There is a measure that is not pure (see [4] or [3]

or 3.2 and [1], 49.3).

2. Basice Propérties
2.1, Lemma, (a) Any strictly positive measure w (i.e,

wE>0 for Ee A, E+/ ) is pure.

(b) Let <X, A, w? be a measure space, X=X, v X, ,
XynX,=0, X4, X, A ;1et w/X, and «/X, be pure.
Then @ 1is pure,

(¢) Let <X, A, «? be a measure space. If a ring
RcA 1is (u, -pure and B € R  then the algebra R/B
is (@/B) -pure,
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Proof. (a) It suffices to consider a measure space
(N,een N, w> vhere N=4{4,2,...7. Put H={EcN|
E 4s finite and { ¢ E 3 ; then the algebra & u D¢ 1is

@ -pure.

(b) Let B; be (@ /Xy) -pure algebras, 4 = 1, 2
Then the algebra {E; UE, |E eB;, for i=12%1s -
pure,

(¢) Obvious.

2.2, Lemma, Let <X, A, w? be a measure space, X =
=m§o Xm vwhere X, € A are mutually disjoint; let
4 (X)=0 and Xo % 7 .

If w /X,  are pure measures for m = 1,2,... then
@ is a pure measure.

Proof. There exist (w /X, ) -pure algebras R, . Put
B=4{E e A)Xo cE & there is an & such that X, n
NEeBy tor 14€m £ ed XpcE for m > hi
then the algebra B u RS is « -pure.

2.3, Proposition, Let < X, A, w ? be a measure space,

0
X=U X, where X, € A are mutually disjoint. If

mEa
@ /X are pure measures for m = 41,2,,,. then « is a
pure measure.

Proof. There exist (w /X, ) -pure algebras B, .One
may and shall assume that there is an T in A such that
wE =0 and E & f (this follows from 2.1 (a)); then
En Xy + 0 for some 4 . Pick up 4o € E n X, .Since Con-
dition (1) in 1.3 (a) holds (for R = 73, ) there exist
By € By, for m = 4,2,.,. suoh that o € B, and

‘a.B,w<J— . Put
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YO =xh\B4,

o

Y’”'=LO4B‘.’\B'“+4 for m,'=4,2,...
<«

Xo= Y B s

Obviously w X, = 0, X, + # | and all the measires @ /Ym
(m = 0,4,2,... ) are pure by 2.1 (¢). Hence Lemma 2.2, ap-

0 oo
plies to X = U,  Xn v U Vm -
m$h

2.4, Proposition. Let <X, A, w? be a pure measure
space, and let £ € A, Then «w/E is a pure measure.

Proof., Let B < A be a w -pure algebra, Since any
E € A can be written as E = N, um@4 B, where wN, =

=0 and B, € By are mutually disjoint (from 1.3
(a)(1)) one may suppose E € By  (in view of 2.3); it will
be proved that if this is the case then the algebra B /E

is @ ~pure.

Let D, € B/E for m=41,2,... and Dm0 .
There are E,, ,F, e B for m =4,2,... such that D, =
F,. nE and E, NV E .

Put A, = E, A F;

; then D, c A, € B , and

Ao,V @ . Hence @wlDgel & wlAyl=0 for some h .

2.5, Proposition. Let ¢ X, A, w? be a measure space,
If there exists a @ -pure ring R then ¢ 1s =@ pure mea-
sure,

oo
Proof. One has X = U Xn, where X, e R  are mu-

tually disjoint., Hence the proposition follows from 2,1 (c¢)
and 2,3,
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2,6, Lemma ({4]). Let (X, A, w) be a measure space,

let 3 be a @ ~pure algebra. Then for any countable class
€, ¢ A there exists a countable algebra B, c B such
that

@wE =inf{3 wB, |B,c® & U, B, >E}

for any E e ¢, -

Proof, For E € ¢, ,m,h = 1,2,.., there are
B(E,m,,)eB such that

- 4 .4
Ec UB(E,m, ) and wE+4 > S B(E,m, n).
The algebra 3, apanned by

iBCE,m, )| E ebim,m=1,2,...%
has the required properties.

2.7. Propogition, Let <X, A, «« > be a countably-gene-
rated measure space, Then the measure w is pure if and only
if it is #,-compact .

Proof. (a) Let w be pure. It follows from 2,6 (with
€y = A, from 1.1 (¢)) that there exists a countable @ -pu-
re algebra B, ; let N,,N,,... be all null-sets of B, .Put

€=8,/(x\ 0N, .
Then wE =sup{uC/Cedy X CcE? for any E e
< A.

Thus it suffices to show that the class € 1is x, -com-
pact (then, obviously, ‘Cd— is 4w, -compact as well). Assume

4
Cn €€ for m=4,2,..., and () Cn = f . There are

B, e B, such that C, = B,\\J, N; . Por



m "
D =, B\ Y, N, one has Dy N\ and D, e
€ B, ; oconsequently w Dy =0 for some h and Dy =

=N, for aome x and D, = # for s=max (h,x) .Hence
néq Cn = F - ‘

(b) Let w Dbe %, ;-compact and R, be a countable
algebra from 1.1 (¢). Then @ 1is perfect (= quasi-compact,
see [6]1, Th,II); hence there exist mutually disjoint E,, €
eA, m=1,2,... , such that A, /E, are x,-com-
pact classes and [&L:‘); E;1> wX - "ib . Hence

all the measures w /E,  are pure, and

[
(L[X\&L'J‘E_;J =0

Proposition 2,3 can be applied,

2.8, Corollary. Any pure measure 1s perfect,

Proof. Let (X, A, «? be a measure space, let B be
a  -pure algebra, It is enough to show that the restric-
tion w, of w toa & -algebra A, c A is perfect
vwhenever the space < X, A,, @4,? 1is countably-generated
((6], Th,III), If this is the case there exists a countable
algebra B, ¢ B  such that (2.6)

WE = inf {“3::4 @By /B, e B, & O B, 5}

forany E € A, . Let A4 be the & -algebra spanned by
Ao u B, and w, be the restriction of w te A, ;then
<X, R4, o) 1is countably-generated and the measure @4
is pure (since the algebra 5B, 4is @« -pure). By Proposi-
tion 2,7 the measure w, is ., -compact. Hence «, and
@o are perfect (I6], Th.ITI).
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2.9. Proposition, Let <X, A, w ? be a measure space,
and let the set of values of the measure «w be finite, Then
“ is pure. '

Prqof. One can immediately see that the algebra A it~
self is w -pure.

3. Indirect products

3.1, Notation, Let <X;, A;, s >, 4 €1 , be mea-
sure spaces such that «; X; =1 . Put X =4'l;l'1 X; . Let

Acep X be the smalleat algebra such that a3'fA;1c A
for each canonical projection sr;: X—> X; . Let « be any
positive finitely additive set function on A such that
(w(:rcj;(E))s&,",E forany ©+ €l , andany Ee A; (u
is often called an indirect product of w; ’s).

3.2, Proposition, Let all the measures (. be pure.
Then w is @ -additive and its (unique) € -additive exten-
sion to the 6 -algebra spanned by A is pure,

Proof. There are i -pure algebras B; ; let B c
cesp X be the smalleat algebra such that o' LBy ] c B
for any 4 € I . We shall show that B is « -pure in (a),
and conclude the proof in part (b),

(a) Let BpeB for m =41,2,...,Bp g . Assume
“Bn >0 for all m = 4,2,... . We derive a contra-
diction as follows, Put P = iT,E. ] E, e By, & there

exists a finite set P c I such that E; = X; for 4 €
eINFT3 . ‘
Clearly any set in B 1is a finite union of sets in P . By
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induction we shall define sete Pn € P, m = 0,4,2, ...
such that forany m = 1,2, ... the following three

eonditions hold:
1) §, ,°>F, ,
2) P, ¢ B, ,
3) @(P, nBy,) >0 for all S > m .
Pat P, =X . It P, ,4i £ m are defined, then

Pp N By, € B , and hence we may write
e
Yo nBayy = Y, R,

with R, in &P . We chall show that w (R, A By) >0
for some b, and all & > m ; then we put Pnyq = Rs, ,
and Conditions (1) - (3) will be obviously satisfied. If the-
re were no A, , then there would exist integers % (5) > m ,
A<p £ n , such that
@ (Ry "By ) =0,
and hence, for m = max {Sf ()l 1 <25 21}
@ (P nBp) =@ (P, nBpoyNn..nBp) =0,

which would contradict Condition (3).

Now let {P,? ©be any sequence in 5 which satisfies

Conditions (1) ~ (3) above,
It follows that #;L[P,I " f for some i €I eand

@i (%, [Py 1)= 0 for some 4 Dbecause x; [Pp 1 e B, .
But @ (B) £ @ (o) (n,[B1)) = @, (x [By,]) =0 which

is the required contradiction.
(b) Por any E c X put
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@*E = ime{ % wB, /B e B &3, 51
In the part (a) of the proof it was shown that « is 6 -ad-
ditive on B (and so wE=w*E forany E e & ).
In order to finish the proof it is only to show that
wE=w*E forany E e A ([1]1, 12.0).

Pirstly, let E = Tl' E; x T X

ili¢ X+ , vhere Fc I

is finite and E; € A, for + € F, Let € be any po~
gitive real number, For any 4 € F there exist mutually dis-
Joint B(4{,m) eB,; such that

@
E, .angl,'BCo,m«)
00
and m§4 o, (Ble,m)) < @i B, + €
00,

PFurther, UNF (&TTFB(o 2z (1)) x, TTI\Fx )>E and

ZZGIN,Mc_;T.rFB(L,xu))x LX) =

= Z wl (T, B(»vz(»v))xTT X.)AnE) +
2e eI\F  *

+ Z e @M B, z(2)) < T X INE) <
<« o E +“Z,NF @Eéta)F(Btg',zq))\};é, ) x

X T Bz (e T X, 1 2

< «E +z§NF ?ZF @ L(B(G, 2 (30N Ey) x
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x T B(»tz"‘v))xTTFX-]=

PefFN{gy LTel\NF *

€F m31 xe

(.
z(wE-o-%_Z P z~=\<,'; @ L(B(3,mINE;) x

x";eF\{é;B(L,x(&)) e Xi 1 £ @i +
«©
+ ég‘F 54 «wl(B(G,m )\Eé-) x, \{*;x ] =

€

=@k +1ZF Z (u.af.B(g.,m,)\E V< wE+¢e-cardF

because @ is finitely additive,
(-iEFB("’ 2 (1)) "LTcrx\F XNE =

(B(é’x(j))\E )x e Fris }B('L’Z('(’/ )) X“,‘ITI\FX,L

and

zLeJNF“5'3 (B(g.,m,)\E s) x. ;ITF\{“BH« 2(1)) x, EI\FX c

C(BG,m)NEY x T X, .

This shows that «*E £ « E for any E = E;, x

msF 4

x_.L'I;TI\F X; . But any set in A is a disjoint finite union

of such sets; hence «*E < wE forall Ee A and
WE= uX- w(X\E) £ @w*X~@uw*(X \E) < u*E

forall T € A .
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4, Purely .+, =compact measures

4,1, Definition, (a) If < X, A, w ) 1is a measure
grace thena ring R c A is W zpurely s, _-compact
i (1) wEminfi3 wBp/Boe R&UB,5E}  for any
fe€A and (1) Bo,e R for m=4,2,..., B, J
4mply By = f  for some b .

(b) Measure w 1is purely +, -compact if there exists
& @ -purely ., -compact algebra.

4,2, Remarks, (a) The condition (ii) in 4,1 shows that
the ring R 1is &, -compact (in the sense of 1.2), hence

ﬁ,d.. is ¥, -compact as well; moreover, Condition (i) gives
“E= sup {wR/Re Ry &RcEt forany Ee A

Consequently, every purely 4, -compact measure is «, -Cpm-
pact,

(b) Obviously, every purely ., -compact measure is
pure, We do not know whether every pure measure is purely
X, ~compact and whether every «, -compact measure is pure-
1y Ko -compact, even for two-valued measures,

(e) All propositions but one of Sections 2,3 hold if pu-
re is replased by purely 4, -compact.

The proofs work without any essential change. The only
exception is Proposition 2.9, We conjecture that it does not
holg for purely &, -compact measures, i.e. that there is a
two-valued measure that is not purely ., -eompact.

This problem is closely related to those in (b) sinece
any two-valued measure is A, -compact.

(d) Assume that < X, A, «? is a complete measure
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space, and let Y c X support « ,i.e. wdA= @ (AANY)
for each A in A . Let A’ be the collectionof AnY ,
A e A ,and let w’ be the measure on A' defined by .
@ARY)= A . If <Y, A’, «’) 1is pure then so is

<X, A, «> .Indeed, it B’ 1is «' -pure algebra, let 73
be the collection of all B € A such that BAnY e B’ .
The idea of this remark will be developed elsewhere,

§ 5. Stone spaces
- In this short paragraph &, -compact and ( -pure al-

gebras will be characterized by means of the topological and
measure properties of the remainder in the Stone space.,

Let <X, 3> be a measurable space, i.e, a set X en-
dowed with an algebra B of subsets of X . For simplicity
we shall assume that the elements of B separate the points
of X . Then X may be regarded to be a subset of the Stone
space K of the Boolean algebra 4 . Recall that X d4s uni-
quely determined (up to an isomorphism having fixed the points
of X ) by the following properties:

8. X 4is a compact Hausdorff space such that the clopen
sets (the sets which are simultaneously closed and open) form
a basis for open sets,

be X is a dense subset of X .

co Aget B c X  belongs to 3 if and only if B =
=XAG for scme clopen sat G in X (and then G 1is the

closure of B in X ).
A subset Y of a topological space Z 4is G, —dense if
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Z\Y contains no non-void G, -set. Evidently, if Y
is Gy -dense in Z , then Y 4is dense in 7 (end the con-

verse need not be true),

5.1, Theorem. J3 1is &, -compaot if and only if X is
G4 ~dense in the Stone space X of B .

Proof. If B is mot %, -oompact, then B, N g for
some non-void B, in 53 , and then

6 = NiB, 3
is a non-void Gy set in XN\ X .

Conversely, assume that G is a non-void Gy in
XN X .Piock any x in 6 , and choosse B, in B such
that % € By < Gn , where Gn are open in K and G
is the interseotion of fGn 3 . Then N{B,}=/ , however

Ce = N4B, /m £ R }

is non-void for each A4 because
Cp=NiBp/m £ %1
is a neighborhood of x 4im X , and X 4s dense in X .

It may be of certain interest to look on 4w, -compact
algebras from the point of view of uniform spaces. Every al-
gebra B on X defines a presompact uniformity Ay, 55_
which has finite partitions of X by elements of 3 for a
basis for uniform covers. In fact, the.Stone space of B3 is
a completion of Ayt J3 . ‘The following result is easy to

prove,

502, Iheorem. The following properties of a uniform spa-

ce are equivalent:
l. Z precompact and G, -dense in its completion.
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2, It Z, are zero sets in Z, NZ, =/ , then
N{Zp/m £ Ry =g for scme t .

3. Every gni.fomly continuous function on Z assumes
its infimum (end supremum),

4, Z is a precompact inversion-closed uniform space.

Perhaps the uniform spaces with the properties in the
preceding theorem should be called pseudocompact. Thus =B
is %, -comﬁact if and only it Ay, A3 is pseudocompact.

5.3+ Remark, For uniform methods in measurable spaces
see "Topologicel methods in measure and measurable spaces",
Proc.Third Prague Topological Symposium,Academia (Prague
1972) or Academic Press (1972), For a development of the theo-
ry of uniform spaces relevant to measure and measurable spa-
ces we refer to 2, Frolik, A, Hager: "Maps of uniform spa-
ces", in preparation.

If ¢« 1is & measure on $B , then one can d efine a mea-

sure (3, on clopen sets in X by setting
@3 s>(b (BnX) .

Then (Q. extends to a regular Borel measure on X , and @
is ¢’ -additive if and only if the inner (3, -measure of
X\NX is zero (that means, if C ¢ X\ X is compact
then @C =0. ),

5.4, Theorem. f 1s @ -pure if and only if the fol-
lowing condition is satisfied:

it C c X\ X is compact (G, then there exists an
open set G o C such that 625 =0 (or equivalently,

there exists a clopen set G, @ C  guch that @6’, =0 ),
/ - 292 o



Proof. Assume that B, NP, By, € B and o B, > 0
for esch m . Put C=N{B,3; C 1is compact Gy . Each
open G o C contains aome jﬂw and the oconditiom is not
satisfied,

Conversely, assume that B is (4 -pure and let Ce
cX\NX bea compact Gd- get, Choose a decreasing sequen-
ce {C, ¥ of clopen sets such that C, NV C . Then C, n

NnXNf . Hence @Cp = w(CnX)=0 for same % .This
concludes the proof.
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