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Commentationes Mathematicae Universitatis Carolinae 

14,2 (1973) 

PURS MEASURES 

Zdeněk FROLÍK, Jan PÁCHL, Praha 

Abstract: Pure measures (introduced by M„M. Rao [51)f 
and related classes of .x0 -compact (E* Marczewskri £21) and 

purely tf0 -compact (introduced below) measures are studied* 

All properties are equivalent for countably generated measu
res, every pure measure is perfect, and any indirect product 
of pure measures is a pure measure. Most of the natural que
stions are open* 

Key words? Compact measure, perfect measure, pure mea
sure t""pureT3r"compact measure, indirect product of measures, 
Stone space* 

AMS. Primary: 28A10 Ref. Z. 7.518.117 

Secondary: 54H99 

1* Definitions and notations* 

1.1* Definition* (a) < X. A 9 (U^ ) is a measure space 

if X is a non-empty set, A c 4xp.- X is a (T -algebra and 

<uv is a (positive finite <o -additive) measure on A . 

(b) Given a measure space <X? i l , ^ ) , Y & A and B e 

c A then CPs/Y -* i E n Y j E e :B J . ^/Y is the re

striction of ^ to A / Y • 

(c) A measure space < X , A} <u>) (and measure <us ) 

is countably-generated if there exists a countable algebra 
a? 

A0 c A such that (cu E =r invf i S^ <o, 3^ \ 3^ e A0 A 

i U J ^ o E l for any E e A • 
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i*2* Definition (C2])# (a) A class % c *.*ft J is 

-&o -compact if for any countable i£0 c *£ with O € 0 -= 

= 0 there is a finite f c 10 with O f * / . 

(b) A measure t̂ on A is K 0 -compact if there is 

an #0 -compact class <£ c A such that 

(juE = /iiu î/ { ^ C l C e f U c E i for any E e A . 

1«3# Definition ([5.1). (a) Given a measure space 

< X, A , (O.) then a ring % c A is (O. --pure if 

(i) ^ E « , W { I &3m./3m,e £ , U B # ^ E } for any E e A 

and (ii) 3^ e % for /n. =- 4, 2,..., B ^ N I? imply 

(O/B^ « 0 for some ^ . 

(b) Measure ^ is pure if there exists a <LL -pure al

gebra. 

^•4* Remarks, (a) It suffices to suppose the existence 

of a <a,-pure ring (instead of algebra) in 1.3 (b)f see Pro

position 2.5. 

(b) There is a measure that is not pure (see [4] or L3l 

or 3.2 and [1]f 49.3). 

2. Basic Properties 

2.1. Lemma, (a) Any strictly positive measure (to (i.e. 

(*,L >OtarEeA,'E*0 )is pure. 

(b) Let < X, A 9 (to> be a measure space,. X « X^ u X 2 , 

X ^ n X ^ s ^ X ^ , X 2 e Jl - let (^/Xi and #,IX% be pure. 

Then (tx ia pure. 

(c) Let <X, A , (U-> be a measure space. If a ring 

% c A is (U, -pure and B e A then the algebra 31 / B 

is f^/B'i -pure* 
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Proof, (a) It suffices to consider a measure space 

<N9exp>H, (u, > where JT * -£ 4, 2 , . . . } . Put i r f E c l i l 

E i s f i n i t e and 4 # £ } • then the algebra .# u «0C i s 

^t, -pure. 

(b) Let S .t be ((L /X±) -pure algebras, -i, » 4, .2 . 

Then the algebra i E^ u B^ ( E^€ % for i ». 4,2 } i s /im

pure. 

(c) Obvious. 

2«2* Lemma. Let < X, Jt, (W* > be a measure space, X =• 
CO 

85 M, X/n, where Xm, € A are mutually disjoint; let 

<o,(X0) = 0 and X 0 4= # • 

If ^ /X/n, are pure measures for /rt- -- 4, 2,#-» then 

6̂ is a pure measure. 

Proof. There exist ( (JL /X^) -pure algebras 53^ . Pat 

fls-(E e A l i o c E St there is an M> such that X ^ n 

n E e iQ^ for 4 -£ m, £ %x* and X ^ c E for /n, .» >fe 1 

then the algebra % u & c is ô, -pure. 

2.3. Proposition. Let < X, .Jl̂  ̂  ) be a measure space, 

% - ̂  /̂n, where X ^ 6 A are mutually disjoint* If 

fJu/Xtn, are pure measures for m, = 4,2,.,. then ^ is a 

pure measure. 

Proof. There exist Cf^/X^) -pure algebras fl-v -One-

may and shall assume that there is an E in A such that 

jtcE » 0 and E * ^ (this follows from 2.1 (a)); then 

E a X ^ # ^ for some /fe . Pick up ty e E n Xu . Since Con-

dition (i) in 1.3 (a) holds (for & * fij^ ) there exist 

%m, € (B^ for m, « 4, 2,... such that ^ c IB,-*, a»d 

(«- Bm, < ~ • **t 
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^•Ä1-4^ foг m- = > , » 2 ' 

Obviously ^ X0 « 0, X0 4s .0 , and a l l the measures $t /Y^ 

( na. as 0 , 4 , 2 , . . . ) are pure by 2.1 ( c ) . Hence Lemma 2.2. ap

p l i e s to X - J J 0 X ^ uJjQY^ -

2.4. Proposi t ion. Let < X , A, ^ ) be a pure measure 

space, and l e t E € A . Then (tc/E i s a pure measure. 

Proof. Let tf& c JL be a <tc -pure algebra. Since any 

E € A can be wri t ten as E = $$0 u^Uj 3^ where (O/.N0 =? 

s 0 and B ^ € &</* are mutually d i s j o in t (from 1.3 

( a ) ( i ) ) one may suppose E € %<? ( in view of 2.3)s i t wi l l 

be proved tha t i f t h i s i s the case then the algebra $ / E 

i s rtt -pure . 

Let D^ e S / E for m, =- 4, 2 , . . . and D^ ^4 i? . 

There are E ^ , F^ £ % for no, * 4, 2 , . . . such tha t 3U ~ 

E^ A E and Em. \ E . 

Put A^ m E ^ n / H . P^ j then D^ c A^ e ®> , and 

A ^ V jZf . Hence ^ £ 3)^3 £ (U. C A ^ l = 0 for some Sh~ . 

2.5» Proposition. Let < X, Jt, £*• > be a measure space. 

If there exists a <t4> -pure ring % then (tt is a pure mea

sure. 
O0 

Proof* One has X -= U, X ^ where X- e % are mu-

tually disjoint. Hence the proposition follows from 2.1 (c) 

and 2.3. 
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2*6* -kemma ([43)» Let < X, A , #0 > be a measure space, 

let 53 be a (tc -pure algebra. Then for any countable class 

tp c A there exists a countable algebra J3a c .3 such 

that 

<!,£ . -U* <J4 ^ 3 ^ I B^ e fc0 tjj4 B . D E ? 

for any E € <d0 . 

Proof. POT E e <£0 ,(n,fHm 4,2,... there are 

B(E,/rv,>^) c B such that 

£ c U , B ( £ , л ъ , iv ) and /tcE + x > S , B ( £ , m , , A, ) . 

The algebra $ 0 spanned by 

4B(E,/n,,^) I E c ^ l a t , * , - 4, 2,... J 

has the required properties. 

2.7. Proposition. Let < X , Jl, <u. > be a count ably-gene

rated measure space. Then the measure <vo is pure if and only 

if it is .w0~ compact . 

Proof, (a) Let (JU be pure* It follows from 2.6 (with 

<£0 ss Jl0 from 1.1 (c)) that there exists a countable <u, -pu

re algebra %0 • let J[i , Ma» ... be all null-sets of tB0 .Put 

^«50X(X \,UJ.) . 

Then <u, E « *ufi- •( <o, C / C c <f 5c C c E ) for any E € 

€ A . 

Thus it suffices to show that the class *€ is jff0 -com

pact (then, obviously, *tf is -i-r0 -compact as well). Assume 

C*, * £ for m. » 4, 2., ... , and A, C*., « 0 . fhere are 

B^ € fl0 such that C^ * B ^ v ^ K^ . Per 
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* * ~-iOi B ^ N *V<i S± o a e h a f l ^ ^ 0 and 3W e 

c &0 • consequently <u< D^ = 0 * o r a o m e ^ an<i PJH. = 

«- N*, for sons K and 3^*0 for >&» /rrux*, ( 4 , * ) .Hence 

(b) Let (JL be 4tr0 -compact and A 0 be a countable 

algebra from 1.1 (o ) . Then (tu i s perfect (• quasi-compact, 

see [61 f Th.II)j hence there exist mutually disjoint E ^ £ 

c Jl , m . s . 4 , 2 , . . . , such that A0 I E/n, are *c0 -com-

pact c lasses and AJL C O E . 3 > / t f , X ~ —- • Hence 

a l l the measures («^/£ m , are pure, and 

AJL C X \ .G, E . 1 m 0 . 

Proposition 2.3 can be applied. 

2*8* Corollary. Any pure measure i s perfect. 

Proof* Let < X t At (c"> be a measure space, l e t & be 

a (a -pure algebra. I t i s enough to show that the r e s t r i c 

t ion (L0 of <a> to a 6* -algebra AQ c: A i s perfect 

whenever the space < X , Jl0 , <a,0 > i s count ably-generated 

(£631 Th.III ) . If th is i s the case there ex i s t s a countable 

algebra S0 c % such that (2.6) 

(t, E . 4m,f -M^ (juB^lB^e 5b0 SLJJ^ B^ D E ? 

for any E e Jt0 . Let A 4 be the 6* -algebra spanned by 

A 0 u (B0 and ̂  be the restriction of ^ to .A^ 'then 

<X, A A , qc^y is count ably-generated and the measure <u,A 

is pure (since the algebra 330 Is ^ -pure). By Proposi

tion 2.7 the measure ^ is -K0 -compact. Hence $LA and 

(c*0 are perfect ([6]t Th.III). 
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2.9. Pronoaition. Let < X, A , p , > be a meaaure space, 

and let the set of values of the meaaure (A, be finite. Then 

(U, is pure0 

Proof. One can immediately see that the algebra A it

self is fjt, -pure. 

3# Indirect nroduota 

3»I» Hotation. Let < X± , A±,, <«£.£ > , -i* e I , be mea

sure spaces such that AL± XJ^ » 4 . Put X s.lT X L . Let 

A c etfv X be the amalleat algebra auch that *t£ I A± 1 c A 

for each canonical projection trz^ : X — > X4. . Let (i> be any 

positive finitely additive set function on A such that 

(b (ot\ C E )) « ^4, E for any £ * I , and any E e A ^ ( ̂ 4, 

is often called an indirect product of ^ ^ # a ) . 

3*2. Propoaition. Let all the measures (*>4, be pure. 

Then (L is <S -additive and its (unique) & -additive exten-

aion to the 6 -algebra spanned by A is pure. 

Proof. There are (JLJ, -pure algebras Sbj, • let 3S c 

cejefiX be the smallest algebra such that <x± Lfi>4,l c Sb 

for any i e l , We shall shew that & is <«x -pure in (a), 

and conclude the proof in part (b). 

(a) Let JB,̂  e & for m, * 4, 0.,... , B ^ \* 1? . Assume 

(t̂ B*-, > 0 for all m- « 4, 2 ,... • We derive a contra

diction aa follows. Put 9 »-CTT.-BJ / E4, C BJ, t there 

exists a finite set F c I such that E ^ » X 4 for <£ e 

€ I \ F J . 

Clearly any set in S is a finite union of seta in & # By 
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induction we shall define sets P,n. € &9 m - 0,4, 2, ... 

suoh that for any m, ** 4 , 2 , ... the following three 

conditions hold: 

2) P^ c B ^ , 

3) ^ ( P ^ n \ ) > 0 for all to, > m, . 

Put P0 » X . If ?^ , i -B /»v are defined, then 

En, r\ Jin.4.4 6 iR , «ad henoe we may write 

**«, ^ %m,+4 m ^4 * * 

with 5.^ in & . We shall show that <a C H*0 A B^) > 0 

for some A>0 and all ̂  > m, $ then we put P„I.-M » K A 0 f 

and Conditions (1) - (3) will be obviously satisfied* If the

re were no fc0 , then there would exist integers AtCfe) > rn. , 

4 .£ & -£ *• , suoh that 

and hence f for <m, » mta*. {jfe/C/fe)M-=:/£> -£-*,£ 

^CP^ n B ^ ) « (O. CP^ n 3^ + 4 n ...n*fr>) m 0 , 

which would contradict Condition (3)* 

How let iBn.1 be any sequence in !P which satisfies 

Conditions (1) * (3) above* 

It follows that st^ZV^l Ni** 0 for some l e i and 

(fc-fc Ca?£ t Tfr, 1)** 0 for some Av because x± I f ^ l c B ^ . 

Bnt ^ C P ^ ) -̂  ̂ C ^ C ^ T P ^ ] ) ) * (^^C^fP^J)- 0 which 

is the required contradiction* 

(b) For any E c X P**t 
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«c*E -. « * i£4 ^ /B^s £ * j}«-W -» B J • 

In the part (a) of the proof i t was shown that ft is 6* -ad

ditive on 45 (and so ^ E » (0,*E for any E c ft )• 

In order to finish the proof it is only to show that 

{frE»{fr*£ for any E e A (Cl]t 12.o). 

Firstly, let £ « .TT E^ XJJ 3 N F * i , where F c I 

is finite and E4, e A^ for i e P , Let e he any po

sitive real number. For any i e P there exist mutually dis

joint B (<£, (tv ) e !B^ such that 

E-t, c J&A B (* , /*> 
^0 **! s I ' 

«0 
and 25, <-*£ CB (^,/n,)) < <u,̂  E^ + e 
( i . e . ^ ^ (O^^CBCi, m , ) \ E t ) < e ) . 

Further, U - C.TT. B U9 x U)) x.TTTV. XJ ) 3 E and 
X e NF * « F » .4,cI\F * 

» 2 r <u, C (/AT. B (* ,*(*)) x# IT X.) n E) + 

+ 2 r ^ r r i r ^ B ( * , * ( * ) ) X.TT X . ) \ E ) * 
x c NF l ^«F ' *eI\F * 

-* ^ E + ^ F < * C J J F ( B ( £ , * ( £ ) ) N E ^ ) x 

x - ^ v . . - B U , * U ) ) * IT X , ] -* 
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x TГ 3( + ,%U)) x "ïï X-l -

w 
* /O-E + . 12 22 2! Łiřr\<ii (U- C CB Г^, лг.)\ E* ) x 

x 7Г B « , * a ) ) x.TГ X. 3 À <a,E + 

4- . £ ! A Г ( Î ( ^ Л ) N E І ) X , T 1 ; ] . 

. * £ + 2 S ^ i f í Ц , * ) ^ ) * Ѓ-.E + e • cвл^Г 

because *c is finitely additive, 

C . T T f , B C i > * C ^ ) ) x . T l s F I i ) S E -

and 

cCBC^,m.)sE
f
) x.TT^.jX^ . 

This shows that <<fc*E --* <o> E for any E »/TTpE^ x 

X'TTTVC 3C* • B**t any set in A i s a disjoint f in i te union 

of such se ts ; hence p.* E .£ ft E for a l l E c JL and 

^ E « <o,X- <u,(X\E) .4 p * X - ^ * C X \ E ) £ <<->*E 

for a l l E e JL . 
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4. Porely -#0 -compact measures 

*•!• Def ini t ion, (a) I f < X , A , <«, > i s a measure 

*pace then a r ing % c A i s (O, -purely ,#0 -compact 

i f ( i ) ftZm iAvfi^ j t cB^ /B^c 31 A U B ^ s £ J for any 

£ € A and ( i i ) B,* e & for r i i « 4, 2 , . . . , B ^ ^ 0 

is-ply Bjjt » 0 for some Jh* . 

(b) Measure (t, i s purely ~&Q -compact i f there e x i s t s 

& (t£ -purely tf0 -compact a lgebra , 

4»2« Remarks* (a) The condition ( i i ) in 4*1 shows t h a t 

the r i n g & i s -K0 -compact ( in the sense of 1.2), hence 

&><$> i s 4C0-compact as well; moreover, Condition ( i ) gives 

(oE s kA*j(i • f ^ R / . H e A ^ f c X c E l for any E e A . 

Consequently, every purely M 0 -compact measure is x0 ~cpm-

pact# 

(b) Obviously, every purely -#0 -compact measure is 

pure* We do not know whether every pure measure is purely 

j&0 -eompaot and whether every 4C0 -compact measure is pure

ly -KT0 -compact, even for two-valued measures. 

(c) All propositions but one of Sections 2,3 hold if pu

re is replaced by purely #0 -compact* 

The proofs work without any essential change* The only 

exception is Proposition 2.9. We conjecture that it does not 

hold for purely -K0-compact measures, i.e. that there is a 

two-valued measure that is not purely 4t0 -compact* 

This problem is closely related to those in (b) since 

any two-valued measure is X0 -compact* 

(d) Assume that < X , A , <u* > is a complete measure 
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space, and let Y c X support (L , i.e« pA « (Z (A r\Y) 

for eaoh A in A . Let .A' be the collection of A r> Y , 

A € Jl j and let <a/ be the measure on A defined by 

l<*'(Ac\Y) » ^LA . It < Y, A\ (u/> is pure then BO is 

< X , A% (Ct> .Indeed, if £' is ^a/-pure algebra, let Si 

be the collection of all B e A suoh that B r\ Y 6 CB' . 

The idea of this remark will be developed elsewhere* 

§ 5« Stone spaces 

In this short paragraph -tf0 -compact and (U* -pure al

gebras will be characterized by means of the topological and 

measure properties of the remainder in the Stone space. 

Let < X , Sh > be a measurable space, i.e. a set X en

dowed with an algebra Hi of subsets of X * -For simplicity 

we shall assume that the elements of Hi separate the points 

of X • Then X may be regarded to be a subset of the Stone 

space X of the Boolean algebra & . Recall that X is uni

quely determined (up to an isomorphism having fixed the points 

of X ) by the following properties: 

a. X is a compact Hausdorff space suoh that the clopen 

sets (the sets which are simultaneously closed and open) form 

a basis for open sets* 

b. X is a dense subset of X « 

c# A set B c X belongs to & if and only if J s 

- I n S for some clopen set G in X (and then 6 is the 

closure of 3 in X }« 

A subset Y of a topological space Z is 6^ -dense if 
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Z \ Y" contains no non-void 6^ -set* Evidently* if T 

is Gj- -dense in 2 , then Y is dense in 2 (and the con

verse need not be true). 

5*1* Theorem. 3b is x0 -compact if and only if X is 

G<r ~&*nae in the Stone space X of .53 . 

Proof. If & is not *0 -compact . then B^ \ 0 for 

some non-void B ^ in i3 , and then 

is a non-void G«-r «•* in X \ X . 

Conversely» assume that (J is a non-void (?</ in 

X V. X . Pick any x in fir , and choose B ^ in & such 

that x € B„v c <£n, , where Gm, are open in K and 6 

is the intersection of i fin, ? . Then H < B ^ ? * ^ , however 

C* » H C B ^ / m , * * > * 

is non-void for each M, because 

is a neighborhood of * in X , and X is dense in X . 

It may be of certain interest to look on -K0 -compact 

algebras from the point of view of uniform spaces* Every al

gebra ft on X defines a precompact uniformity AJ^^0 3b 

which has finite partitions of X by elements of 33 for a 

basis for uniform covers. In fact, the Stone space of Hi is 

a completion of AJL# 33 • The following result is easy to 

prove. 

5*2* Theorem. The following properties of a uniform spa

ce are equivalents 

1# 2 precompact and G& -dense in its completion. 
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2. If Z/w, are zero seta in Z, D Z ^ * ^ , then 

H { 2/n / /n, -6 Jt 1 * 0 for some Jc . 

3. Every uniformly continuous function on Z assumes 

its infimum (and supremum)* 

4. Z is a precompact inversion-closed uniform space. 

Perhaps the unifoxm spaces with the properties in the 

preceding theorem should be called pseudocompact. Thus $ 

is 4T0 -compact if and only if JUL$ fo is pseud©compact. 

5»3. Remark. For uniform methods in measurable spaces 

see "Topological methods in measure and measurable spaces"f 

Proc.Third Prague Topological SymposiumtAcademia (Prague 

1972) or Academic Press (1972). For a deTelopment of the theo

ry of uniform spaces releTant to measure and measurable spa

ces we refer to Z# Frol£kt A9 Hager: "Maps of uniform spa

ces" t in preparation. 

It (A> is a measure on 33 , then one can d ef ine a mea

sure (tx on clopen sets in X by setting 

£B m (L (3 n X) . 

Then ft, extends to a regular Borel measure on X , and p , 

is 0* -additiTe if and only if the inner (I -measure of 

X \ X is zero (that meanst if C c X \ X is compact 

then {cc C » 0 ) # 

5.4. Theorem. ^ is ^ -pure if and only if the fol

lowing condition is satisfiedJ 

if C c X \ X is compact Q^ *&«» there exists an 

open set S s* C such that (*G a Q (or equiTalently, 

there exists a clopen set G0 ^ C sueh that (LG0 « 0 ). 
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Proof. Assume that %^\ 0, %„, e & and ftB^ > 0 

for *ach /n . Put C « O -C 5n. 1 ; C is eompaet <?<.r • Baeh 

open G D C contains some B ^ and the condition is not 

satisfied. 

Conversely, assume that & is p * -pure and let C c 

c X \ -X he a eompaet 6^ set. Choose a decreasing sequen

ce iC^l of elopen sets such that Ĉ , \ C . Then C^ n 

n X \ J0f . Hence ^ Cj,, a ^ ( C ^ n l ) . * 0 for some Jit . This 

concludes the proof. 
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