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Commentstiones Mathematicae Universitatis Carolinae 

14,3 (1973) 

FULL EMBEDDINGS WITH A GIVEN RESTRICTION 

J i H ROSICKf, Brno 

Abstract: Let A , C be categories, JH a full subca-
tegory of C , X: .M —* C the inclusion functor and T; M — * 
— > A a full and faithful functor. Denote by 9^ CI) the 
category of all full and faithful functors Ss C —• A with 
SX = T , arrows of which are natural transformations G 
between two such functors having the property that ffK is 
the identity natural transformation. There are studied con­
ditions under which &K (T ) has an initial object. If 

ii is small, cogenerates C and is dense in C,A is cocom­
plete and co-well-powered, this initial object exists. 

Key-words: Category, faithful functor, natural trans­
formation, initial object, realization, Kan extension. 

AMS, Primary: 18A25, 18A40 Ref. 2. 2.726 

Secondary: 54A05, 06A20 

Let A 5 C be categories, Jit a subcategory of C , 

X :Jt —> C the inclusion functor and T : .M.—-* A a func­

tor. Denote by 5S^ (T) the category of all functors 

6 j C —*• A with S K * T , arrows of which are natural 

transformations G between two such functors having the 

property that cK is the identity natural transformation. 

We shall consider some full subcategories of ^ C T ) espe­

cially the full subcategory consisting of all full embed-

dings and the existence of initial or terminal objects of 

these subcategories. More precisely, we shall construct a 
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functor from <£K CT) which turns out to be initial or 

terminal in A £ <£K CT) when A is non-empty. There­

fore, these considerations can help us in recognizing whe­

ther a full embedding S : C —* A extending T really 

exists* Further| we shall be interested in the existence 

of full embedding© having a right or left adjoint. Concer­

ning concepts of the theory of categories see [41. 

The Kqn ex^gnjirQna 

A left Kan extension of T along X is a pair con­

sisting of a functor L - C—~» A and a natural transfor­

mation 11 % T-2-* L X such that for each pair 5 s C — > 

-H• A,ot: T-Z+SK there is a unique natural transformation 

e'; L-1-^ S such that oo «- <TX "£• L is denoted by 

hartvu T • In most cases L can be defined pointwise, for 

instance when M. is small and A cocomplete. Then Lc for 

C « C is a colimit of the functor 

(X4,c)-^Jl-£*A 

where C X I c ) i s the comma category having 

m € -* m *. <m/ 
objects: arrows: 

f f \ IV 

F is the projection m,—* o i—* /m. . LCtj,) is a unique 

arrow commuting with the limiting cones for any arrow <fr 
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of C . In this case L is called a pointwise left Kan ex­

tension. If M is a full subcategory of C and the point-

wise left Kan extension La/nK T exists-. % can be cho­

sen as the identity natural transformation* Detail informa­

tion concerning Kan extensions can be found in C4J* 

The last result implies that if M is full, the point-

wise left Kan extension La/n>K T is an initial object of 

VT>. 
Definition* A functor P: C — > A is called left 

M -faithful when to every /rrt e M. , c e C and every pair 

£ , fy % (tn — > c of parallel arrows of C the equality 

P(f ) ~ FCar) implies £ = < £ - . 

Proposition 1* Let the left Kan extension L » La/n.K T, ̂  

of T along X exist. Let there exist a left JH -faithful 

functor S : C —>• A and a pointwise epi natural transfor­

mation oc : T-1-> SK . Then L is left JH -faithful* If Jl 

generates C, L is faithful* 

Proof: Let fm-eil, c e C and f 4* 9,; mv—* c be a 

parallel pair of arrows of C - There is a natural trans­

formation 6*: L —---#- £ such that oc « e'X. ̂  . Therefo­

re o^LCS) m S C O a ^ and 0c L(g.) - SCa-)^ . Since 

oô v is epi, 6 ^ is epi and therefore LCf) 4-»LCo-) be­

cause £ is left .M -faithful* 

Let c , d e C and f 4* a-: c —*• d, be arrows of C . 

Since JA. generates C , there is an m e Jll and an arrow 

Jh,: mv —*- a with fJh. -*a& .We have LCfJfc) 4= L(q,M,) and 

therefore LCf) 4s LCo.) -
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M l eaifeefldjngff 

Fro* now till the end of this paper we shall suppose 

that M is a full subcategory of C . 

Definition* A functor F; C —*- A ia called left 

M -full when to every mt e it and to every arrow 9.. : 

• Ttm, — * Pc of A , there ia an arrow f: tnv — • c of C 

with TC£) - 9. • 

Let ^ K C T ) ; ^ K ( T ) a n d ^K <T> be the full subcate­

gories of S5M (T) consisting of all left JA. -full and 

left M -faithful functors, full and faithful functors and 

of all full embedding8. 

&ejrai&JL« Let M cogenerate C . Let L e *C^ (T) , 

S e ̂ H(T) and r . L - ^ S be an arrow of <eK (T) . Let 

tm c M , c e C and f, 9.: L/m, — > Lc be a parallel 

pair of arrows of A . The following conditions are equiva­

lent: 

(i) * c* - %<* 1 

(ii) LOMf »L0k-)9- for every arrow Jh,; c—*.% of C 

and every to, e it * 

Proof: Let ( i) hold, Jfe e It and Jh,: c—*>Jfc . I t i s 

Llh,) m ej^LCJIt) - -SCfcOe'e . By ( i ) L ( W f - LCI*) 9, . 

Let ( i i ) hold and suppose that 6^£ 4= &c <%> • Since 

S i s le f t i t - f u l l , there exist arrows f W - (i**—* c 

with <TC£ * SCf*) , 6^9. » S c V ) . Since £'4-9,* 

and id cogenerates C , we can find a ^ e l and an ar­

row Jh, J c —+ Jk, of C such that Jh/ff 4» ^19, . Hence 
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£(Jh,£') 4*S(Hg?) and therefore S(Jk,)60£ + SCM,)^ <j, . 

It implies LCMf 4= h(M,)<^ , which i s a contradiction* 

The proof can be visualized on the following commutative 

diagram. m , % 
f LOk) 

L/m/ *""" L c 3m L.fe 

ЄL 

SOTt 
Síffl 

5(9-') 

Sc 
SCЛt) 

°*/ 

SJfc 

Let L : C—*A be a functor and c e C . Let us ha­

ve the following diagram in A . 

Lc 

L 
« <m,f 

Arrows of this diagram are all arrows of A with the domain 

in LM and the codomain Lc . Arrows £,<^:L<nv—>Lc have 

the same domain in this diagram if and only if h(Jh,)£ m 

s» h(to,)ty for every arrow Jh : e — > to, and every jfc-c 

e <m, . We denote this diagram by D k c • 

Let J& be small and C cocomplete* Let L 0 be a 

pointwise left Kan extension of T along X . Suppose that 

we have functors L* : C —s* A for each ordinal /3 < cc . 
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Let tc be isolated* Define L^c m ^o^umj)^^^ for 

every e « C . Let X^*'* be the component of the 

limiting cone with the domain L«.^ c . Let K: C—*•» cf 

and Jh,: c?~-*> to, , where c.c'eC, «tcJ- , Let f,f s 

sL«, 4 * m — • L ^ c be a parallel pair of arrows of 

D L ^ , c • xt i8 **.4<*l') W* ) f- W^* ) £" W ^ * * 

« Loc-dC*v) k*-*****' a n d *-*•*•*•*• A^ ,* L« M U)f * 

~ A£1'*L^C*>9. • Hence C ' " ^ ^ de-

termines a cone from D L m , e •
 Le* L^C/th L^c—-fr-I^c1 

be a unique arrow of A with LaCC/c-)Ac * « &c,' L«mj (H,) . 

Then L* - C — * A is a functor and tif"i'"i i^ -i-#* L^ a 

natural transformation. 

Let oc be limit* Let L^Cc) be a colimit of the 

diagram having objects L^c end arrows X^1*** for 

ft < c*> with the limiting cone-CAc sL^c—^L^cl .Each ar­

row Kt c—** c' of C induces a unique arrow L^Ct) : 

sL^c—*» L^c* commuting with the limiting cones. Hence 

L t C — > A is a functor and Xp'*: Lp~z--> L^ a na­

tural transformation for any |3 -< <a& . 

In both cases if L^ c is isomorphic to some L^c , 

(3 < <c we choose L^ c to be equal to this L^ c . 

\fW\ ?tt L«t « 12K C T) for any *- and for any 

/3< cc there exists a pointwise epi natural transforma­

tion A?'*: L/i-^-^ L* which is an arrow ©f UK. CT) . 

For any P u ^ K CT) and for any ordinal oc there is at 
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most one arrow tf.'L^-1-* F of S£K CT) . 

Proof: Since M is a full subcategory of C , L 0X =. 

• T . Clearly D L %tm, has no parallel arrows for any mm 

c .M . Therefore L,,<m* -* L0mt. , i.e. L^X *• T . Hence 

L«-c,X -» T for any ©o « Clearly X1*9* exists for any 

£ -c cc and X*9*Xr'* - XTt9C for any r < £ < «* -By 

the transfinite induction it can be easily shown that 

X^*06 is epi for any /3 <: 06 , c * C . 

Let F c <€K CT) and ef̂ e-*; L ^ -̂ -> F be arrows 

of " E K C T ) . Since L 0 is a left Kan extension, we ha­

ve 0X09* m e9 X0,tc . Therefore t y . e ' because 

X°9t* is pointwise epi. 

• Lp+4 c . By Lemma 2 tfj*9* A*'r*4 -= 4L c and 

Л c Л c * Л C Л «4, 

Let LyCarL^c for some #"< /3 . Then L r M c 

L ^ c and therefore L^c-r L ^ c . 

Thus in this case L^c -x L^c for any f & <f . Suppo­

se that for every c c C there exists an ordinal ¥ Co) 

such that L .y^c «- L^c for any /S 2: #* Cc) . Put 

LfcC » Ly<o) c . Let it* : c — > c* . Suppose that 

XCc*) m ^ (c ) . Put L*CK) *:Lrcc)C>i)iLMc—*L*c . 

In this way we obtain a functor L* € <£K CT) , Let 

^ c j L « c — ^ L * c be equal to &*''r<'o) for 

oc < *y (c ) and to the identity for c t a y ( c ) . Clear­

ly A" t Lfi6-
1*> L# i s an arrow of <£K CT ) . 

Proposition 2. .Let JVL be small and cogenerate C • 

Let A be cocomplete and co-well-powered. Let &K CT) 4s 0 • 
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Then L# is an initial object in £&K (T) . 

.proof: Let c e. C . Since A is co-well-powered 
. 0,«c 

and any &<? is epi, there exists ir (&) 

L^ is defined. 

Therefore, 

Let S e £CKCT) . There exists a unique natural 

transformation e"° : L0 such that 6"°X is the 

identity. Suppose that such G& exists for each p> < oc 

Let oc be Isolated and c e C . By Lemma 1 there exists 

5 c of A with a unique arrow 6**: L^c 

в<> лЄř—^»Oű 

c л c » r< 
«c-4 Take any f : c in C 

and consider the diagram 

-w-и<-' 
aoť.<ť,ee. 

L<-/£> Ł.«> 

в
c 

ji 

S(£) 

W *eŕ-'f
 э
 oc L

л
c -*•» Sc 

The left hand square and the outer rectangle commute and 

therefore SCf )S~A*~
1,ec

« e~ L^C*) ̂ » * . Since this 

composed arrow factors uniquely through A
e
~ * i -SCf )e

r

c
 » 

«- $£? L^Cf) and ff** is natural. By Lemma 2 #** 

is unique* 

Let oc be limit and fi --c oc • Since (r'3 is unique, 

it must hold cr'1 m **+A X13**** . Hence for any c e 

% C thare exists a unique arrow 0 ^ J L ^ C — * Sc with 
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&c ^ J * m c£ • Tlae naturality of (5** can be pro­

ved similarly as in the previous case* 

Put cr* - 6*fa) . Evidently e*t hm -=--• S is a 

natural transformation which is the only arrow from L * to 

S in <£KCT) . 

It remains to show that L* is left M -full and left 

M -faithful* Let m, c il, c G C and /t: L*<m, — a * L*c . 

Since L*<m = Smv , 6*/t: &<m,—>> &c and S is left M -

full, there exists x! t m,—>c with -3(*.') = 0* *- • It 

holds e*x, =. £>(«,•).-* er* L* ( V ) . By Lemma 1 L*(JH)Ji.* 

« L*(*v) L* (*.') for every arrow M, t c—* • . % and tvt-

ry M> e M . Since L* c is a colimit of the diagram 

$ L c , it holds *,» L^C/t') . Thus L * is left Jfl -

full. The proof of the fact that L * is left M -faithful 

is the same as the first part of the proof of Proposition 1. 

The assumption that M. is small and A cocomplete 

can be replaced by the supposition that all used colimits 

exist in A . The supposition that M generates C is ne­

cessary as follows from the following example* 

Let C be a full subcategory of the category of orde­

red sets and isotone maps consisting of a one-point set m, 

and a two-element chain c , Ji of a one-point set mt .Let 

A be a category of upper semilattices and homomorphisms* 

Let TTTV be a one-element upper semilattice. Denote 

mm (<**, *& ), CmC<n+9zl, * ) , where n^, .6 % . Let 

nf i an, — > c be the constant arrow with the value %, , ana­

logous fc . Let a, m C{ t, u,\9 v ) , t v JUL, as JUL, be a two-
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element upper aemilattice and t,f ; Ton.—*- a, aa before* 

Put Sc — a,, S(j^) •=. t , S(£> *• .u, and S*c » a . , SV31-) *» & , 

S,(^:)=.jt . Theae equalitiea determine S, 5*€ £6K(T) and 

an arbitrary element of i£ K (T) is naturally isomorphic 

with one of them* But there is no natural transformation 

between S and 5' . Hence # K (T) has not an initial ob­

ject* 

Proposition 3* Let all suppositions of Proposition 2 

be fulfilled and in addition it be dense in C (left ade­

quate in the sense of Isbell). Then L* is an initial ob­

ject in yK (T) . 

Proof: Since the density of M implies that .M gene­

rates C , .L is proved to be faithful in the same way aa 

in Proposition 1. 

Let >ts LfcC — * » -hfrC1 he an arrow of A . Let rm-c J4 . 

We assign to each arrow £: mv — > c of C a unique ar­

row %^Ci)nm.—**c with L#(1W<-:)) *• *LmC£) . We shall 

show that this assignment gives a natural transformation 

K \ C(K-,c) *'"» C (K- , c*) of contravariant functors 

J4—>Zm*> C C CK/m,, c ) is the set of all arrows 

fm —>. c of C ) . Let 9.: cm?—»» rm be an arrow of 11 and 

form the following diagram in E/n* 

C(X**,c) - 2 — * * C(Kmt,c») 

ca»,c) C(Kв-,c'J 

C(Km',c) m' > C(Xm.W> 
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Let f c CCX.m,c) . It is CCX^c^t^Cf) »t^Cf)<^ and 

t^CCKc^cKf) . r^Cfo^) . Since L^Ct^Cf) 9.) -

sL^C^Cf^L^Co^K^Cf^^ re 

get tmtC£)<^svm%C£9.) and therefore our diagram commutes. 

Hence r is natural and the density of il implies the 

existence of n? : c —*• c1 with v =• CCX-, .*,*) . There­

fore L^C^,)L*Cf)^L*C^,f )-L^Cr^Cf))« ^.L^Cf ) for 

any nm, e M and £ \ cm,—.*c . Hence L* CH.') A C L0 Cf) « 

*= /t,AcL0Cf) • Since L0 c is a colimit of the functor 

TPi CJUc) —*• A with the components L0Cf):TPf—**L0c 

of the limiting cone, one gets that L^C/t')^ * ^ A j . Sin­

ce Xc is epi, L^C/c1) -= n, and thus L* is full. 

Corollary 1. Let X be small, dense in C and coge-

nerate C . Let A be cocomplete and co-well-powered• Then 

the existence of a left .M. -full and left M -faithful func­

tor C—**A implies the existence of a full and faithful 

one. 

Corollary 2. Let all suppositions of Proposition 3 be 

fulfilled, T be a full embedding and in addition for eve­

ry ou 6 A there exist a proper class of objects of A iso­

morphic with a, . Then L* is an initial object in *EKCT). 

Proof: Since L# is full and faithful, L* c » L^c' 

implies that c is isomorphic with c* * Since for every 

object a/ of A there is a proper class of objects iso­

morphic with a, f the colimits in the construction of L* 

can be chosen such that L^c ssL^c* for isomorphic c 4-c . 
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A concrete category C C , o ) is a pair consisting 

of a category C and a faithful functor o : C—**E/n4> . 

If (C, D ) is a concrete category, we shall denote the 

restriction of o on JH again by D .We say that M in­

ductively generates C if for any c, ,d e C and any ar­

row f; oc — > ad of Em* f a* D Cf̂ ) , for an arrow 

fA : c — > d of C if and only if for any OTL e M. and 

any arrow %i: mv —*• c of C there exists an arrow Jh^ : 

;ma,—>cL of C with D ( V ) = fo(lv) (see £2]). We 

say that a concrete category C C, o ) has constants if for 

any c , c* e C and any constant function f s D C — > D C ' 

there exists an arrow £' s c — > c* with a(£*) =- f . If 

x e ac* and f; oc *-* oc' is a constant function 

with f<y, « x for any q, a ae , we shall denote this f' 

by >c . 

Tifimr71̂  IT Let C C t o ) be a concrete category having 

constants. Then .M. is dense if and only if it inductively 

generates C • 

Proof: Let M be dense. Let c, & e C and f: D C ~ * 

— > D <t . Let for any frrue.HL and any M - /m, — > c the­

re exist an arrow M': tm,—*~ cL of C with a(Jh')a f a (h>). 

If we put t^C^fv) » -ft/ for any Ait mu—-* c.,*rtc M, , we ob­

tain a natural transformation * * C CK-, c)-1--*- C CX- , d) . 

Hence there exists an arrow £, : c—*>cL of C such that 

V «. £, 'JH* . Let x e D c . Choosing JH- «. x , we get 

aCf^aCx)*. aCf^x) » faCx) . Hence oC .T < 1 )* f . 
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Let .M inductively generate C . Since C has con­

stants, Jil generates C and therefore the functor C —> 

—:•.E/ruT given by cr-*C(X-,c) is faithful.lt remains 

to ahow that it is full. Let v;CCX-,c) ---#- CCX-,<£) be a 

natural transformation. Let m e M , x a o c and consi­

der x: *m>—> c .Since - c ^ C x ) ^ . . t^Cx^) = t w ( x ) for 

any 9,: cm, — > mv in .M., *v»n,Q-*) =- £.• for some x$: /m.—>ct -

Define f: oc —>> act by £x ** x* . It can be analogously 

deduced from the naturality of t that f does not depend 

on the choice of art . 

We are going to show that f * o (£A ) for an arrow 

€A : c —*> d of C . Again, the naturality of % imp­

lies that o CtrmC^v))Cx) s-r Cf a C*i,))Cx) for any mt e 

e .M , ̂t J /m-—*-c and x e rjmt , Hence oCt^Cfe,)) s 

=: £ a C-h,) and thus £ » o C £A ) for some £*: c — > d be­

cause -M inductively generates C . We have D (t^CJM) =-

s-aC.f^aCJh,) and therefore tr^CJv)* £|*t .Hence tj -= 

» C C X - , ^ ) and the proof is accomplished. 

Let CM, a) and CA,o') be concrete categories. A 

full embedding T:.M—*> A is called a realization if 

o a o'T (see C5J)• 

Proposition 4. Let (C,a), CA,of) be concrete cate-

gories, (C,o) have constants, M inductively generate 

C and T be a realization. Let for any constant x : Lc —>-

->Lc' of A there exist an £t c—*• c* such that 

LC£) =s x_ . Let a point wise left Kan extension L = La"vKT 

exist and S6 K(T) =*= 0 . Then L is an initial object 
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in y KCT) . 

Proof: There exieto S m &H C T ) and a unique na­

tural tranaformation #:L----*• £ with &X the identi­

ty. Let mv e li, c e C and ^-iLmv—•Lc an arrow of A * 

There exiot© £: /m,—t* c with S(£) ** &efr =* Ge'L(£) . 

Let ^ e a'Lon. . Since CC, o) has conatanta and LX • T 

is a reali2ationy X:L<m—• Ltm is an arrow of A and 

<^*t»LC£)x:L<m,—^Lc are conatanta. Thua there exist 

JtyiAfc* "***—* c with %*,» LC*Kj), LC£)x -=* L Cfva) . It 

hold© &(Jh^)m e^LC-hj,)- e^^XM %L(€)Km ^LCH^mSCM^) and 

therefore ^ » M,% . Hence ^x«L(f)x , i«e. o'C^-Kx) S 

» 0,LC£)Cx).Therefore <^»LC£) and L io left id-full. 

M. ie dense in C by Lemma 3. L ie proved to be full in 

the same way as L* in the proof of Propoeition 3. Since 

C has aonstants, JA generates C and L is faithful by 

Proposition 1. 

Proposition 5. Let M, be dense in C and V^ (T ) 

colimit preaerving. Then F ia a pointwiee left Kan exten-

sion of T along X -

Proof is evident because M is dense in C if and 

only if Id c together with the identity natural tranefor­

mation Id|( : X —>» X ie the pointwiee left Kan extension 

of X along X (see [43). 

Proposition 6. Let _Nl be denee in C and T*JH—**A 

a full embedding. Let X*: TJ1—-*A be the inclueion func­

tor and T~ : Til — > Jtt the two-aided inveroe functor 

to T; M — > Til . Let the pointwiee left Kan extensions 
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L * L o * t K T , IdK and Lf-« LortK» T~*, IotK. exist. 

Let L* be left TM -faithful and left TM -full. Then 

L* is a right adjoint for L • 

Proof; It is sufficient to find natural transformations 

^s IcLc---> L* L , e : L L ' - ^ Id A such that the 

following composites are the identities (of V rasp* L ) 

%& L'e Lit eL 
L ' - ^ L ' L L ' - ^ L , L-^-^ L l / L - ^ L . 

Let m t c . l l . Putting T^Cf)» L*LC£) for each 

£ s mt — > c we obtain a natural transformation 

m \ CCK-,e) * > CCK-,LfLc) . Since .M is dense, there 

exists a unique *) c : c—»- L*Lc with tr^CC) -=• ̂ cf . 

Clearly % : Idc~* > L* L is a natural transformation. 

Let mt c M , a € A and f s nru — > Ua, be an arrow 

of C . Since L' is left Til -full, there exists an arrow 

X$ : Trm,—-*- a of A such that L* C A^) * -£ . We shall 

show that X i TP-* > a is a natural transformation from 
P T 

( X l L * a ) — > M — * " A to the constant functor a . Let ki 

be an arrow of CX 4- L* a ) with the domain £ s «rv—>Vcu 

and the codomain 9,: W—^-L'a. , i.e. £ = a-*t . Then 
L' C A f) . £* 9,^ * LCA^)*t « LCA^L'TCJO- L'CA^TCJi,)) . 

Since L' is left Til -faithful, Xf* A^TCJh,) and it pro­

ves the requested naturality of A . Since LL'o, is a 

colimit of TP with the components LC£) of the limi­

ting cone, one gets a unique € a ; LL'a,—>a such that 

Xf m e ^ L Cf ) for any f : m t — • L 1 a and tm e Jl .It can 

be easily shown that e : LL* * » Id^ is a natural trans-
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formation. Indeed, e ^ LL* (K) m /te^ for any arrow 

n,% Q , — ^ a? of A becauae tih^ are the components of 

a natural tranaformation from TP to the conatant functor 

o! and e^LUCit)LCf)= e^LCL'C/t)^)-A^^^*^becau­

ae ViKVCt0f) Z*V(ILH - UCiOL'Câ )*- UCKXJ * 

Consider the following diagram: 

L L C f ) 

The top triangle commutes by the definition of ̂ ^^ . Fur­

ther LCe^L'LCf) s LCe^LCf))-* V(X*) * £ . Hence 

^(ej/^^f - £ and LCe^He*, = V ~ because 

L'o, is a colimit of T ~ V . CX'^L'a) —*• C . We have 

proved that V e • *i L is the identity. 

Finally, let £; .tiv—*c and take the diagram 

LL'LCf) 
LLXc 

Ш) 1fПe> •tc 

Lc 

The top triangle commutes by the definition of ^c ' F u P " 

ther, e^LL'LCf ) m XL*Lm and L'LCf ) * L*CAL.L^> ) • 

Hence AL»LCf) * LCf) and in the same way aa before we ob­

tain CLCLC^C) m 4^ 
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Proposition 7» Let TJ4 be dense in A . Then any two 

full embeddings from *4KCT) are naturally isomorphic. 

Proof: Let S, S' e *£KCT) and c e C . Denote by 

K* : TM —*** A the inclusion functor. The categories 

(X* 4* Sc ) and (JC'̂ -S'c) are isomorphic and therefore 

the density of TJML implies that 5c and S'c are iso­

morphic. In this way we obtain the natural isomorphism bet­

ween S and 5* . 

If CC, o ) and C A , D ' ) are concrete categories, we 

can consider the full subcategories of <€KC T ) consist­

ing of all functors F commuting with the forgetful func­

tors ( D s O ' P ) or of all realizations* Here density can 

be replaced by inductive generation and this situation is 

actually treated in £2]. 

Applications 

A) Let A be the category of closure spaces (see El]) and 

continuous maps* Let £f~ be a category, objects of which 

are the pairs ou » (a*a,9 WL) where a*a, is a set 

and <&L s exp> a%cu and arrows f jfofa,*6fc)—»> (a'fr, &) 

correspond with maps ti*(-£): d*cu—>-a'ir such that for 

X e A we have CD'C£))^CX) e <0L . Let oiJL—>Em* , 

a' : tf~—£*.EmA be the forgetful functors* Let ,^,/ir* be 

two closure spaces with the same underlying set DAA, .* anr • 

We say that JU, £ nr if there is an arrow f: ir—> ju. of 

.A with oCf) ss <LcLOUt .Dual atoms of the lattice of all 

closure spaces with the same underlying set are called ul-

traspaces. Any ultraspaoe is a topological space* Let % 

535 -



be the full subcategory of A consisting of all ultra spa­

ces* Realizations of subcategories of A in if" are inve­

stigated in £33 • 

Let C be a full subcategory of A such that M, e C , 

we. 11, AJU & «& implies that ttreC. Let M * C n % and 

A * Sf~ . Then M inductively generates C « It follows 

from the fact that whenever a point ,* a a AX, belongs to 

the it, -closure of some subset df s OAA, , then we can find 

an ultraspace / W 2 ^ such that x belongs to the -or-clo­

sure of /y, . 

Let T s Jit —** A be a realization. We are going to show 

that a pointwise left Kan extension L » Lcurv^ T exists and 

LM, m (aw* H tl^J .where Tmr »(avr, ^L^) -If M, e C , 
ti*w*m • 

/itr € id. and £\ mr—»- JUL, i s an arrow of C , we can f ind a 

/t*̂  c M, 44/4 > JUL, such that there e x i s t s an arrow fA\ n*r~* 

—> wA with D ( £ ) S D (£, ) „ Therefore for any we & and 

any arrow £: mr—*M, of C there i s an arrow A^ t T<ur —> 

—•* L/u, with Q(£) S D'CAJO . Evidently A i s a cone from 
y »T» 

the base CK^^t)—»-H—*A to the vertex L/u, . Let ̂  be a 

cone from TP to a, e A . Then ̂ ^ is a constant for any 

constant x ; <ur — > AJU . Define to,: D'LAA, —-*• n'a, by %%x -» 

= (C*v.>f - There is an arrow jfa/: LJJL, — > a, of A with t?(Jk%) ~ 

&M, because n*C(tt^) a* Jv for any f: 4tr—» ,0, with D££)-= 

as <ioLo\L . Hence A is a limiting cone* 

These results can help us in the study of realizations 

of full subcategories of A in ff~ . Take for instance the 

full subcategory C of A consisting of all regular closu­

re T^ -spaces and a realization T s 1 1 — * A , Since C 
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contains the category of all completely regular topological 

T4 -spaces as a full subcategory, it follows from C6J that 

T<ur =- (a<w, C(<w)) , where (T(*ur) is the system of all 

open sets of mr , for any ultraspace w with a non-measur­

able underlying set or Tar» (nwf i£,(w)) , where it(<ur) is 

the system of all closed sets of w , for any such ultraspa­

ce. Let the first case occur. Then LCUTI^T(AJ^) » (QJUL, (T(AJU)) for 

anyxt, with a non-measurable UAJL . Hence Lam/K T is not 

full. By Proposition 4 or by the results of T2j we get the 

following theorem. 

There exists no realization of the category of all re­

gular closure Xf -spaces in tf" . 

B) Let C be the category of all Hausdorff topological spa­

ces and continuous maps, Ji the full subcategory of all re­

gular Hausdorff spaces and A «• Sf" . Let o: C—*£m* and 

Q' • X—> E/n* be the forgetful functors. It is shown in 

C6] that for any realization S; C — * A £mim (amv, 0Y/m,)) 

for any mv c ii or Sm% «= C o w , X(mi)) for any rm e J& . Let 

T : H—** X be a realization such that T/m,**(ami,t£(m,)) 

for any mv 0 M . Then Lcurv^Tcs (ac , X(c)) for any 

c e C . Hence Lcvrv^T is a realization and it is an ini­

tial object in *&^<T) . 

X is a reflexive subcategory of C . Denote by 

Fj C — • .M a left adjoint to the inclusion functor X:Jt—fr>C 

and *ri : 1<LC ---*• KT the unit of this adjunction* Then 

a pointwise right Kan extension exists and is equal to TP . 

The full subcategory of *£K (T) consisting of all func-
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ctore commuting with the forgetful functors has a terminal 

object K which is defined as follows: B.c-= (ac, 5LCc)) , 

where A ( c ) » 4 ^ ) c / x e X(Tc)\ . The functor X is 

right JL -full and right JL -faithful and thus is a termi­

nal object in the full subcategory of ^ ( T ) consisting 

of all such functors. By E61 Jt is not a full embedding 

because fife) is not a subbasis for £ Co) . The pro­

blem of the existence of a terminal object in <£K CT) is 

in close connection with the open problem concerning the 

number of realizations of C in A • 

C) Let C be the category of ordered sets and isotone maps, 

JA a full subcategory of C having a single object, name­

ly a two-element chain and A the category of semigroups 

and homomorphisms. Let D : C — > E*v6 and a*: A—*E/ri4> 

be the forgetful functors. JH is dense in C and cogene-

rates C . Let T assign to the two-element chain a two-

element upper semilattice. Clearly T ; A—> A is a re­

alization. Um Sekanina has constructed in £73 a full embed­

ding H : C — > A extending T as follows: He is the 

free semigroup with the generating set D C and with 

relations K • n^ = * « /î  •oc<=>o<>/^ c ac , # -£ %> . It can 

be easily shown that K is a pointwise left Kan extension 

of T along K * Therefore M is an initial object in 

"t K < T ) . Let X' and T" 4 be as in Proposition 6. 

LamsufT^sx L* assigns to each a 6 A the set la, of 

all idempotents of a* with the following ordering: 

X, ̂  € la,, x 2L ty<?*s=g*> .x • 4j, as # =* /£ • ,x . This ordering 

is considered in the theory of semigroups. For instance, 
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if a is an upper semilattice, then U<is is its ordered 

set. Clearly V is left T M -full and left T M -faith­

ful. By Proposition 6 V is a right adjoint for K . By 

Proposition 5 H is up to the natural isomorphism the on­

ly colimit preserving full embedding from *tft(T) . There 

is no limit preserving full embedding C — * A inducing a 

realization on .M because a semigroup product of two semi-

lattices is an idempotent semigroup* 

D) A similar situation is in the following case (see £83). 

C is the category of graphs and arrows are mappings pre­

serving the relation "between", M is a full subcategory 

of all trees and X is the category of ternary algebras 

and homomorphisms. ii is dense in C and cogenerates C . 

In [83 it is constructed a realization T J J l — * A and 

LcurVft T is proved to be a full embedding. But in this ca­

se it has not a right adjoint. 
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