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Commentationes Mathematicae Universitatis Carolinae

14,3 (1973)

FULL EMBEDDINGS WITH A GIVEN RESTRICTION

Jirf ROSICKE, Brno

Apg;rﬂgg: Let A,C be categories, M a full subca-
tegory of y K: M — ¢ the inclusion functor and T: M—»
—> A a full and faithful functor. Denote by Fx (T) the
category of all full and faithful functors S:C— A with
SK = T , arrows of which are natural tranaformat:.ona 6
between two such functors having the property that 6K is
the identity natural transformation. There are studied con-
ditions under which S’K (T) has an initial object. If

M is emall, cogenerates C and is dense in C, A is cocom-
plete and co-well-powered, this initial object exists.

da: Category, faithful functor, natural trans-
formation, initial object, realization, Kan extension.

AMS, Primary: 18A25, 18440 Ref, Z. 2.726
Secondary: 54A05, 06A20

Let A,C be categories, M a subcategory of C ,
K:M — C the inclusion functor and T: M—> A a func-
tor. Denote by ‘€K (T) the category of all functors
S: C—> A with SK = T , arrows of which are natural
transformations 6  between two such functors having the
property that 6 X is the identity natural transformation.
We shall consider some full subcategories of ?K (T) eape-
cially the full subcategory consisting of all full embed-
dings and the existence of initial or terminal objects of

these subcategories. More precisely, we shall construct a
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functor from <% (T) which turns out to be initial or
terminal in A € € (T) when A is non-empty. There-
fore, these considerations can help us in recognizing whe-
ther a full embedding S: C— A  extending T really
exists., Further, we shall be interested in the existence
of full embeddings having a right or left adjoint. Concer-
ning concepts of the theory of categories see [4].

Ihe Kan extensions

A left Kan extension of T along X is a pair con-
sisting of a functor L : C—> A and a natural transfor-
mation 7 : T-> LK such that for each pair S:C—>
—> A,oc: T-»SK there is a unique natural transformation
6: L=>S such that o« = 6K -7. L is denoted by
Lam,x T . In most cases L can be defined pointwise, for
instance when M is small and A cocomplete. Then Lc for
ce&C is a colimit of the functor

(ki) ZomuTen

where (XJc) is the comma category having

mel m R m’
objects: arrows:
£ £ £
c c

£
P  is the projection m —>c+—> m . L(g) is a unique

arrow commuting with the limiting cones for any arrow o
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of C. In this case L is called a pointwise left Kan ex-
tension. If M is a full subcategory of ¢ and the point-
wise left Kan extension Lamy T exiats, 7 can be cho-
sen as the identity natural transformation., Detail informa-
tion concerning Kan extensions can be found in [4].

The last result implies that if M is full, the point-
wise left Kan extension Lamy T is an initial object of
€ (T) .

Definition. A functor F:C—> A is called left
M -faithful when to every m e M, ¢ €« C and every pair
£, g3+ m —>c  of parallel arrows of C the equality
F(f) = F(g) implies £ =g .

Propogition 1. Let the left Kan extension L= LamyT,
of T along K exist. Let there exist a left M -faithful
functor S:C—> A and a pointwise epi natural transfor-
mation o : T——> SK . Then L is left M -faithful. If M
generates (,L is faithful.

Progf: Let meM,ceC and £ g:m—>c bea
parallel pair of arrows of C . There is a natural trans-
formation 6: L —» S such that <= 6X.7 . Therefo-
re G6,L(£) = S(f)e,, and 6,L(g) = S(g)6, . Since
©Cm is epi, 6m is epi and therefore L (f) 4 L(g) be-
cause S is left M -faithful.

Let c,d € C and £¢9:c4-——»d, be arrows of C .
Since M generates C , there is an m ¢ M and an arrow

fhim —c with £h -9}1.!0 have L(£h) 4 L(gh) and
therefore L (£f) 4 L(g) .
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Full embeddinge
From now till the end of this paper we shall suppose
that M is a full subcategory of C .

Definition. A functor F: C —> A is called left
M -full when to every m e M and to every arrow g :
:Fm —>Fc of A, there is an arrow £: m —c¢ of C
with F(f) = ¢ .

Let &(T), #(T) and €K (T) be the full subcate-
gories of ¥4 (T) consisting of all left M -full and
left M -faithful functors, full and faithful functors and
of all full embeddings.

Lemmg 1. Let M cogenerate C . Let L e €4 (T),
S e y(T) and 6:L—>S be an arrow of €y (T) . Let
meM, ceC and £,3:Lm —> Le be a parallel
pair of arrows of A . The following conditions are equiva-
lent:

(1) scf = Gcg‘ ’

(ii) LMh)f=L(kh)g for every arrow h:c —> . of C
and every &R e M . \

Proof: Let (i) hold, e e M and h:c—>k .It is
L(h) = g L(k) = S(M)e, . By (1) L(WIF =Llkg .

Let (ii) hold and suppose that 6,f + 6,9 . Since
S is left M -full, there exist arrows £’,¢': m—>c
with @.£ = S(£’) , 6.9 = S(¢’) . Since £'% g’
and M cogenerates C , we can finda % € M and an ar-

row m:c—> & of C such that hf’ & g . Hence
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S(h£’) 4 S(hg’') and therefore S(R)6.f # S(h)6. g -
It implies L (/)£ = L(f)g , which is a contradiction.

The proof can be visualized on the following commutative

i o
diagram ¢ L)
Im — ¢ m——= L&
—
9
(. 6o O
S(£ )
Sm ————)- Sc _.i.__, S
. —_—
5@

Let L:C—>A be a functor and ¢ € C . Let us ha- -
ve the following diagram in A .

Arrows of this di;gram are all arrows of A with the domain
in LM and the codomain Lc¢ . Arrows f£,g:lm—Lc have
the same domain in this diagram if and only if L(A)£ =

= Lik)g for every arrow sr:c—> R and every K€

€ m . We denote this diagram by D, . -

Let M be small and C cocomplete. Let L, be a
pointwise left Kan extension of T along X . Suppose that

we have functors Lg: C—> A  for each ordinal f# < o .
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Let « be isolated. Define L c = ColimD_ .o  for
every ¢ ¢ C . Let 3\.‘:'4'” be the component of the
limiting cone with the domain Le¢_4¢ . Let x:c—¢c’
and m:c’—>% ,where c,c’e C, ReM . Let £f,g :

1Ly ,m—>1, ,c be a parallel pair of arrows of

Dlg.yoe It is L, (0L (W)¥=L,  (mr)f=L, (hr)g=
1
=L, , (W)L, (n)g .and therefore JL:-. ‘La_,‘ (R)f =
A,
= ﬁ-:,’"" Lesndg o Hence J\.:, at L, ,C%) de-

termines a cone from D . o . Let L ()il c—>L ¢

be a unique arrow of A with L G)AT™ L A% L, ) .

—tyet

" Then Le:C—A is a functor and A~ ;1,«_4_-_., L, a

natural transformation.

Let « be limit, Let L (c) Dbe a colimit of the
diagram having objects Ljc and arrows A’;'ﬂ” for
A < o with the limiting cone £ Lyc—>L,c3 .Each ar-
row x:c—>c¢’ of C induces a unique arrow L (x):
:Lge —» L c' commuting with the limiting cones. Hence
Le: C—> A is a functor and ™=, L,—=> L. a na-
tural tranarorﬁation for any B < « .

In both cases if L_ ¢ is isomorphic to some L,c ,

< e« we choose L_c to be equal to this L,c .
o« n

Lemmg 2, L, e € (T) for any o« and for any
B< & there exists a pointwise epi natural transforma-
tion AP Ly—> L, which is an arrow of €, (T) .
For any F @ € (T) and for any ordinal « there is at

- 524 -



.most one arrow 6:L, —— F of €, (T) .

Proof: Since M is a full subcategory of C ,L,X =
= T . Clearly DLo'”“’ has no parallel arrows for any me
€ M . Therefore L,m =L,m , i.e. L,X = T . Hence
LoeX =T for any « . Clearly A™® exists for any
B < cc and AP©aATP o AT for any <3 < < .By
the transfinite induction it can be easily shown that

7\.':.,'“' is epi for any B <<, c&C .

Let Fe €x(T) and 6,62 L, —>F be arrows
of €x(T). Since L, is a left Kan extension, we ha-
ve 6A”% = 6’A%"% ., Therefore & = &’ because

A0 is pointwise epi.

Let Lyc=Lsc  for some o< 3. Then L, ¢ =

= La,q¢ . By Lemma 2 J@Z“"’a”"" = 4,_7‘; and
T+ LB _B,A T+,
XS A, "=a, a7 =1, @and therefore L c~L,  ,c .

Thue in this case L,c = L,c for any o £ J° . Suppo-
se that for every c ¢ C there exists an ordinal ¢ (c)
such that Lg.yc = Lsc for any 3 = g (e¢) . Put
Lyc =Lycwrc . Let n: ¢c—> ¢" . Suppose that
ye & g (e) . Put Ly(n) =Ly (n):L,c—=Lyc' .
In this way we obtain a functor L, € €, (T) . Let
A%:Lec—>L,ec be equal to AT for

< < 3 (c) and to the identity for o = ¢ (c) .Clear-

ly A : L -1, is an arrow of €, (T) .

Proposition 2. Let M be small and cogenerate [
Let A be cocomplete and co-well-powered. Let &, (T) # g .
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Then L, is an initial object in &Ly (T) .

Proof: Let ¢ € C . Since A is co-well-powered
and any 9\.2"" is epi, there exists 74 (c) . Therefore,
L, 1is defined.

Let S e £,(T) . There exists a unique natural
transformation €9 : L, —> S such that 6°K  is the
identity. Suppose that such 6" exists for each 3 < .
Let « be isolated and ¢ € C . By Lemma 1 there exists
a unique arrow 6.;°: L_c —» Sc of A with

G:l‘;"”- 65" . Takeany £:c —> ¢’ in C

and consider the diagram

CZLN 4

6”
Loy e L.e’ < Sc

L L (£ S(e)

———— —
L'(-'vc o=, 0C L"‘c oc Se
Gc

A

c
The left hand square and the outer rectangle commute and
oc ,o=1 e oty o0 .
therefore S(£)8; AL "= 65 Lo (£) AT . Since this
-,
composed arrow factors uniquely through A% % S(£)e =

= 65 Lo (£) and 6% is natural, By Lemma 2 6%

is unique.

Let o« be limit and (3 < « . Since 6% is unique,
it must hold &7 = gP+1 3 4:8+1 | Hence for any c e

€ C  there exists a unique arrow 65 :L,c—> Sc  with
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6':' Ibﬂc’“ = Ge” . The naturality of 6% can be pro-

ved similarly as in the previous case.

Put o = 67’ . Evidently 6*:L,-—=»S isa
natural transformation which is the only arrow from L to
S in Ly (TY .

It remains to show that L, is left M -full and left
M -faithful. Let meM, ce C and n:L,m —> L,c .
Since Lym =Sm , 6*x: Sm —>Sc and S is left M -

full, there exists n':m —>c with S(£’)=6¥n . It

holds &Xx = S(x")=6XL, (') . By Lemma 1 L,(e)r =
=Ly(M)IL, (x’) for every arrow M :c — R and eve-
ry %+ € M . Since L,c is a colimit of the diagram
D,,e » it holds x= Ly(x'). Thus L, is left M -
full. The proof of the fact that L, is left M -faithful
is the same as the first part of the proof of Proposition 1.

The assumption that M is small and A cocomplete
can be replaced by the supposition that all used colimits
exist in A . The supposition that M generates C is ne-
cessary as follows from the following example.

Let C be a full subcategory of the category of orde-
red sets and isotone maps consisting of a one-point set m
and a two-element chain ¢ , M of a one-point set m .Let
A vea category of upper semilattices and homomorphisms.
Let Tm  be a one-element upper semilattice. Denote
m=(i{x3,%), c=({gy ,23,<) , where o = z . Let
4g:m —>c be the constant arrow with the value 4 ,ane-

logous z .Let a =({t,u},v),tvu = & be a two-
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element upper semilattice and t,s : Tm —> a as before.
Put Sc=a,S(g)=t, S(x)=4 and Sc=a,S(y )=« ,
S'(z)=t . These equalities determine S, S’e £, (T) and
an arbitrary element of £, (T) is naturally isomorphic
with one of them. But there is no natural transformation
between S and S', Hence £, (T) has not an initial ob-
Jject.

Propogition 3. Let all suppositions of Proposition 2
be fulfilled and in addition M be dense in C (left ade-
quate in the sense of Isbell), Then L, is an initial ob-
ject in Fy (T) .

Proof: Since the density of M implies that M gene-~
rates C, L. ia proved to be faithful in the same way as
in Proposition 1.

Let n:Lygc —> Lyc® beanarrowof A. Let me M.
We assign to each arrow £:m —> ¢ of C a unique ar-
roW Ty (£):m —> ¢ with Ly(®m (€)= 2L (£) . Ve shall
show that this assignment gives a natural transformation
i C(Kk~,c) =—> C(K-,¢") of contravariant functors
M—Emwm (C(Km,e¢) is the set of all arrows
m—>»c of C).Let g :m'—>m be an arrow of M and

form the following diagram in Emw»

C(Xm,e) —™ = CKm,e)

CXg,c) C(Kg,e”)

C(Km'c) —m o CKm',c")
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Let £ « C(Km,c) . It is C(Xg,c’) 2, (£) = %, (£)g.  and
Cp» C(KQ,¢)(£) = Ty (£@) . Since L,(v,,(£)g) =

=L (T (ENLy (@)= kL (L (Q)=nL (fg)= L, (T, (£3.)), we
get 7,,(f)g =%, (fg) and therefore our diagram commutes.
Hence © is natural and the density of M implies the
existence of 1': ¢ —> ¢’ with == C(X-, ') . There-
fore L, (W)L, () =L, (W£f) =L o (¥m (£)) =nrL, (£) for

any m e M\ and £:m —>c . Hence Lu(n' )AL, (£) =

= mh?,Lo(f) . Since L,c is a colimit of the functor
TP:(Kdc) —= A with the components L,(£): TP£ —»L,c¢
of the limiting cone, one gets that L (x)A% = A A . Sin-

ce A, is epi, L (x’) = and thus L, is full,

Corollary 1. Let M be small, dense in C and coge-
nerate C . Let A Dbe cocomplete and co-well-powered. Then
the existence of a left M -full and left M -faithful func-
tor C—>A implies the existence of a full and faithful

one.

Corollary 2, Let all suppositions of Proposition 3 be
fulfilled, T be a full embedding and in addition for eve-
ry a € A there exist a proper class of objects of A iso-
morphic with @ . Then L, is an initial obJject in "EK(T) .

Proof: Since L, is full and faithful,L,c=1L,¢c’
implies that ¢ is isomorphic with ¢' . Since for every
object & of A there is a proper class of objects iso-
morphic with @ ,the colimits in the construction of L,

can be chosen such that L,c -L*c' for isomorphic ¢ % .
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A concrete category (C, o) is a pair consisting
of a category C and a faithful functor o: C—Em» .
If (C,0) is a concrete category, we shall denote the
restriction of O on M again by O .We say that M in-
ductively generates C if for any ¢, d e C and any ar-
row £f:0c —> Od of Ems £ = o(£) , for an arrow
£4y:ic—>d of C if and only if for any m e M and
any arrow o.: m —»c of C there exists an arrow &' :
:m—>d of C with O(K') = £a(h) (see [2]). We
say that a concrete category (C, ) has constants if for
any c,c’e C and any constant function £: oc —>Dc’
there exists an arrow £’: ¢ —> ¢’ with O(f’)= £ .If
x e oc’ and £: gc —> Oc’ is a constant function

with £4 = x for any 4 € mc , we shall denote this £’

by x .

Lemma 3, Let (C,3) be a concrete category having
constants. Then M is dense if and only if it inductively
generates C .

Proof: Let M be dense. Let ¢,d € C and £: gc—
~—s>pd . Let for any m e M  and any #2:m —>c the-
re exist an arrow f2:m —>d of C with gh')=£fa(h).
If we put Ty, (M) = h' for any h:m —>c,me M ,we ob-
tain a natural transformation : C(K-,c)—> C(K-,d) .
Hence there exists an arrow f,:c—>d of C such that
W =£, % . Let x € oc . Choosing % = x ,we get
of)aox)=0(,x)=£fa(x). Hence oO(f,)=f .
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Let M inductively generate C . Since C has con-

stants, M generates C and therefore the functor C —

—->3me given by c—>C(K~,¢c) is faithful.It remains

to show that it is fulle. Let ©:C(K~-,c¢)—=» C(X-,d) be a
natural transformation. Let m e M, x e o¢  and consi-
der x:m —>c .Since Ty (X))@= T, (Xg) = Tm(X) for

’

any g:m —> m in M, €p(x)=x" for some x':m—>d .

Define £:0c —> od by £x = x’ . It can be analogously
deduced from the naturality of = that £ does not depend
on the choice of m .

We are going to show that £ = no(f,) for an arrow
fiiec—>d of C . Again, the naturality of * imp-
lies that O (%, (A ))(X) = (£0(h))(x) for any m e
eM, h:m—¢ and X e om . Hence O(7Z,,(h)) =
=£fo(h) and thus £=a(£,) for some £,:c—> d be~
cause M  inductively generates ( . We have n(t,, (%)) =
=o(£,)0(fk) and therefore ,, (h)=£,/h .Hence T =

= C(X-,£,) and the proof is accomplished.

Let (M,0) and (A,O0’) be concrete categories. A
full embedding T: M—> A is called a realization if
o=0oT (see [51).

Propogition 4. Let (C, o), (A,n') be concrete cate-
gories, (c » 0) have constants, M inductively generate
C and T be a realization. Let for any constant x:Lc—
—>Lc' of A there exist an £:¢ —> ¢’ such that
L(£) = x . Let a pointwise left Kan extension L =LanT
exist and £, (T)+ # . Then L is an initial object
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in F (T) .

Proof: There exists S e &£ (T) and a unique na-
tural transformation 6:L —*» S with €X  the identi-
ty. Let m eM, ceC and ¢:Llm-—>Lc an arrow of A.
There exists £f: m —» ¢ with S(f)=6,9 = 6, L(£) .
Let x € p’Lam . Since (C,a) has constents and LK =T
ie a realization, X:Lm—» Lm is an arrow of A and
9%, L(f)Xx:Lm —> Lc  are constants. Thus there exist
hyhytm—>c with gx=L0Aa),L{(fIx=L(h,) . It
holds S(h,)= 6,L(f,)= 6, g x= 6,L(£)x=6 Lk, )=S(h,) and

therefore %, = /h, . Hence gx = L(f)x , i.e.D'(g)(x)=
= O'L(£)(x).Therefore g = L(£) and L is left M -full.
M is dense in C by Lemma 3. 1 is proved to be full in
the same way as L4 in the proof of Proposition 3. Since
C has sonstants, M generates C and L is faithful by
Proposition 1.

Proposition 5. Let M be dense in C and €k (T)
colimit preserving. Then F is a pointwise left Kan exten-
sion of T along K .

Proof is evident because M is dense in C if and
only if Idl ¢ together with the identity natural transfor-
mation Id.K : X—> X is the pointwise left Kan extension
of X along K (see [41).

Proposition 6. Let M be dense in ( and T:M—>A
a full embedding. Let X’: TM —> A be the inclusion func-
torand T°': TM—> M the two-sided inverse functor

to T:M—> TM . Let the pointwise left Kan extensions
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L=Lang T, Idy, and L'=Lany T~Y Id, exist.

Let L' be left TM -faithful and left TM -full. Then
L’ is a right adjoint for L .

Proof: It is sufficient to find natural transformations
Mmilde—> L'L, e:LL —> Id, such that the
following composites are the identities (of L’ reap.L )

L L'e Ln el
rY—=»np'it—s1, L—=—sLlUL—sL .

Let m € M . Putting %, (f)=L"L(£f) for each
f:m—c¢ we obtain a natural transformation
i CK~-,c)——> C(K-,L'Lec) . Since M is dense, there
exists a unique 7.: ¢— L'Le¢c with Zm (£) = qf.

Clearly = : Id,——>L'L is a natural transformation.

Let m e M, a€eA and £: m—>La be an arrow
of C. Since L' is left TM -full, there exists an arrow
Ag:Tm—>a of A such that L'(A;) = £ . We shall
show that A : TP—> a is a natural transformation from
(K¢L’a)—£—>M—?‘—>A to the constant functor a . Let &
be an arrow of (X¥L'a) with the domain f:m —L'a

and the codomain g¢: m'—> L'’a ,i.e. £ = g% . Then

v( Ad=f=gh =L (A = L (.ﬂ.’)L'T(ln,)- L'(J\,,T(h)) .

Since L' is left TM -faithful, Ag=AgT(h) and it pro-
ves the requested naturality of A . Since LL'q is a
colimit of TP with the components L (£) of the limi-
ting cone, one gets a unique €, :LL'a—>a such that
Ag= g,LC(£) foreny £: m—>La and m € M It can
be easily shown that € : LL'——> Id, is a natural trans-
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formation. Indeed, €, LL (1) = n €4 for any arrow
Lia—>a of A Dbecause nAge are the components of

a natural transformation from TP to the constant functor
1]

o and €y LL(RILCE) = €, LIL (R)E) = Ay =nA becau~
8¢ L'CApye) =L(0)E = LML (AL =Lk A,) .

Consider the following diagram:
L) L'Ll'a
A
£ e, L'(ey)

La L'a
The top triangle commutes by the definition of Nivg - Fur-
ther L'(€)L'L(£f) =D (e, L(£))=1L'(Ag) = £ .  Hence

L'(egdmp, £ =€ and L'(g)npy = 1000 because
L’a is & colimit of T~ 'P:(X’¥Ll'a)—> C . We have
proved that L'e - L is the identity.
Finally, let €:m —>»c and take the diagram
, .
Lem ._L_I'_I'_'_(fl._;. LL'Lc

L) Ln,) €le

Le

The top triangle commutes by the definition of ¢, - Fur-
ther, € LL'L(E) = ALy  80A L) = DAL -

Hence Aps) ¢¢) =L (£) and in the same way as before we ob-
tain €, L) = 4
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Proposition 7. Let TM be dense in A . Then any two
full embeddings from <%y (T) are naturally isomorphic.

Proof: Let S,S’e €4(T) and ¢ e C . Denote by
X':TM — A the inclusion functor. The categories
(X'{ Se) and (X' S’c) are isomorphic and therefore
the density of TM implies that S¢ and S'’c are iso-
morphic. In this way we obtain the natural isomorphism bet~

ween S and S’ .

If (C,o) and (A,n’) are concrete categories, we
can consider the full subcategories of €y, (T) consist-
ing of all functors F commuting with the forgetful func-
tors (o =0a’F) or of all realizations. Here density can
be replaced by inductive generation and this situation is

actually treated in [2].

Applicgtions

A) Let A be the category of closure spaces (see [1]) and
continuous maps. Let &~ be a category, objects of which
are the pairs a = (n’a, ?) where o’a is a set
and 9L € exp D' and arrows £:(p'a,®d) — (0’¥, &)
correspond with maps O’(f): ’a —>a’® such that for
X e % wehave (o’EN'(X) € &4 . Leto:A—>Ems,
o : $ —>Ens be the forgetful functors. Let «,n be
two closure spaces with the same underlying set ou = g .
We say that 4 < «~ if there is an arrow f:»—>.u of
A with O(f) =4dg, .Dual atoms of the lattice of all
closure spaces with the same underlying set are called ul-

traspaces. Any ultraspace is a topological space. Let %U
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be the full subcategory of A consisting of all ultraspa-
ces, Realizations of subcategories of A in ¥~ are inve-
stigated in [3].

Let C be a full subcategory of A such that we C,
wel,wew inplies that e C .Let M=Cn % and
A=Y ., Then M inductively generates C . It follows
from the fact that whenever a point x € ow belongs to
the « -closure of some subset 4 s ou , then we can find
an ultraspace wr =z « such that x belongs to the wr-clo-
sure of 4 .

Let T:M —> A Dbe a realization. We are going to show
that a pointwise left Kan extension L = LanyT  exists and

Lu = (ow, N €, where Tw =(aw, ¥, ) .If w e C,
UEWeH

weM and f:ar—> 4 is an arrow of C , we can find a
w, € M\, wy =4 such that there exists an arrow f,: w—
—> wy with o(£)=n0(f,). Therefore for any wre M and
any arrow f: w —> .4 of C there is an arrow A;: Tw —
—> Lu with o(f) = p'(A;) . Evidently A is a cone from
the base (K&u)LM—T-»A to the vertex Lu . Let u be a
cone from TP to a e A . Then @y is a constant for any
constant x : w* —> u . Define f:p'Lu —> n'a by hx =
= @y - There is an arrow &: Lu —>a of A with o’(R') =
=h because O’(Ug)= b for any £: w—> u witho(f)=
= 4d gy - Hence A is a limiting cone.

These results can help us in the study of realizations
of full subcategories of A in ¥~ .Take for instance the
full subcategory C of A consisting of all regular closu-

re T,-spaces and a realization T:M—> A . Since C
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contains the category of all completely regular topological
T, -spaces as a full subcategory, it follows from [6] that
Tw = (ow, F(aw)) , where @) is the system of all

open sets of wr, for any ultraspace a4~ with a non-measur-

able underlying set or Tw = (ow, $£(w)), where XL (w) is
the system of all closed sets of w , for any such ultraspa-
ce. Let the first case occur. Then Lamy T(w)= (o, 07(«)) for
any 4 with a non-measurable pu . Hence Lamy T is not
full. By Proposition 4 or by the results of [2] we get the
following theorem.

There exists no realization of the category of all re-

gular closure T,-spaces in ¥~ .

B) Let C be the category of all Hausdorff topological spa-
ces and continuous maps, M the full subcategory of all re-
gular Hausdorff spaces and A = ¥~ , Let o: C—>Ems and
0’: A—> Ems  be the forgetful functors. It is shown in
L6] that for any realization S: C—» A Sm = (am,0(m))
for any m e M or Sm = (om,s(m)) for any me M . Let
T: M—>A be a realization such that Tm =(om, &L(m))
for any m ¢ M . Then LanyTe= (ac, &£ (c)) for any
ceC . Hence LangT is a realization and it is an ini-

tial object in €y (T) .

M is a reflexive subcategory of C . Denote by
FiC—»M a left adjoint to the inclusion functor XK: M —C
and q : Id, —=» KF the unit of this adjunction. Then
a pointwise right Kan extension exists and is equal to TF .
The full subcategory of < (T) consisting of all func-
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ctors commuting with the forgetful functors has a terminal
object R which is defined as follows: Re=(ac, R(e)),
where R (c)=4n'x./x € £L(Fe)} . The functor R is
right M -full and right M -faithful and thus is a termi-
nal object in the full subcategory of ¥, (T) consisting
of all such functors. By [61] R is not a full embedding
because R (c) is not a subbasis for £ (c¢) . The pro-
blem of the existence of a terminel object in %y (T) is
in close connection with the open problem concerning the

number of realizations of C in A .

C) Let C be the category of ordered sets and isotone maps,
M a full subcategory of C having a single object, name-
1y a two-element chain and A the category of semigroups
and homomorphisms. Let o: C—> Ems and n’: A—Emsn
be the forgetful functors. M is dense in (C and cogene-
rates C . Let T assign to the two-element chain a two-
element upper semilattice. Clearly T: M—> A  is a re-
alization. M. Sekanina has constructed in (7] a full embed-
ding H: C— A extending T as follows: Mc 1is the
free semigroup with the generating set nec¢ and with
relations X:.np=X=1 -XE=>X,4€0C, X = . It can
be easily shown that H is a pointwise left Kan extension
of T along X . Therefore H is an initial object in

LK (T) . Let X' and T-? be as in Proposition 6.
Lam'K.lT": L'  assigns to each o € A  the set Ia of
all idempotents of @ with the following ordering:

X% € la , x2g=>x-g4=x=4-x . This ordering

is considered in the theory of semigroups. For instance,
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if a is an upper semilattice, then L'a is its ordered

set. Clearly L' is left TM -full and left TM -faith-

ful, By Proposition 6 1' is a right adjoint for H . By
Proposition 5 H is up to the natural isomorphism the on-
ly colimit preserving full embedding from <%y (T) . There
is no limit preserving full embedding C—A inducing a
realization on M because a semigroup product of two semi-

lattices is an idempotent semigroup.

D) A similar situation is in the following case (see [8]).
C 1is the category of graphs and arrows are mappings pre-
serving the relation "between", M is a full subcategory
of all trees and A is the category of ternary algebras
and homomorphisms. M is dense in (C and cogenerates C .
In [8] it is constructed a realization T: M—> A and
Lamy T is proved to be a full embedding. But in this ca-

se it has not a right adjoint.
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