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Commentstiones Mathematicae Universitatis Carolines 

14,4 (1973) 

FURTHER NOTE ON FR&JHET SPACES 

R. FRlC, Zilina 

Abstract: This is a continuation of [13. Further pro
perties concerning C* -embedding and complete separation 
of discrete closed countably infinite subsets of the Fr6-
chet space A& constructed by F.B. Jones are studied. 

Key words; Frdchet space, Niemytzki space, C*-embed
ding, complete separation. 
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Answering a problem of J. Novdk (£6, Problem, 93) it 

was shown in Cl3 that the space Aco constructed by 

F.B. Jones in [43 (as a Moore space which is not complete

ly regular) is a sequentially regular Fr£chet space which 
2) is not #0 -completely regular , i.e. 

(A) There is a countable set I c A ^ and a point 

X e ApQ-X such that for every continuous function £ 

on A ^ we have f Cx) € £ CX 3 . 

In the present paper (which is a continuation of [11) 

it is shown that much more is true,vis. a discrete closed 

1) The space A«* was denoted by ( L * , A&) in f 13 • 
2) «K0-regular was improperly used for <K0 -completely 

regular in [ID t henceforth only the latter will be used. 
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aat X a ACQ satisfying (A) is constructed. This pro

ves a conjecture of J. Nov6k. From the construction it 

follows that 

(B) There is a discrate closed countable subspace Z 

which is not C*-embedded (in the sense of £33) in A ^ . 

Moreover, two propositions concerning complete separation 

of subsets of a discrete closed countable infinite set in 

A co are given. Finally, it ia proved that 

(C) A op ia cloaad in every sequentially regular Fr6-

chet apace in which it ia C*-embedded. 

The notation and raaulta of 111 are used without ex

planation. 

The following proposition is a alight modification of 

Proposition 1.2 in [5, p.4441 : 

Proposition 1. Let f be a continuous function on the 

Niemytzki apace (L, ft). Than the function Av(x)m £((x,0» 

ia of the firat Baira class. 

Proof. For each m e N , A^Cx)** £((x,m,~*)) is a 

continuous function of a real variable and h-m,—*' & * 

In what follows £ denoted the aat of all rational 

pointa of J , i.e. 

E » *( $, I £ * (x, 0) , * rational I • 

Propoaitioq 2. Let £ be a continuoua function on the 

Niemytxki apace <!•,&) such that f C B 1 » 0 . Then for 

uncountably many pointa ^ i P wa have €(%) ~ 0 . 
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Proof * By (Theorem 5.2 in L71 a function A is of the 

first Baire class if and only if Jh*~lVl ia an P^ -aet for 

every open set V c R « Thus, in the above notation*h?~(0) 

is a ff^-aet. Since from the Baire category theorem it fol

lows that a countable dense set of real numbers cannot be a 

Gcf -set, the aet J&v^CO) ia uncountable and hence £(qj)& 

=s £(Cx,0)) 9 h,(x) m 0 for uncountably many £ e J) • 

Let JC be the set of all rational points of the first 

"edge" of Lee ,i.e. 

It follows that JC is a discrete closed countable infinite 

subset of (h00f *„) . 

Proposition j. Let £ be a continuous function on 

(LCO9^00) auch that £ IXI m 0 . !Ehen £(&)*(). 

Proof* Since CL^ f2i^) can be obviously regarded as a 

subspace of CL*, , A ^ ) it follows from Proposition 2 that 

f C/jf,) « 0 for uncountably many n^ e Y , where 

Now let t be a positive real number and Jk, a natural num

ber. Since £ (<y,)*0 for uncountably many <$, e Y we have 

£(x) m 0 for uncountably many points of at least one of 

the sets tfe^lfccA? and < C ^ ; 4^)!^ ell. Recall (ef.C43) 

that if an open set U c I, contains uncountably many points 

of one of the sets A > B , then XVL contains uncountably 

many points of the other. Using this result we obtain, af

ter finitely many steps, 0* C ^ ) * f*TC- e,€)] * $. Since 
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•f Oĵ Of!,)} is a fundamental system of. neighbourhoods of -ft , 

we have f (#,) * 0 . 

Let Z s l y (#,) . Then. Z ia a discrete closed count

able subset of L . 

Proposition 4« The subspace (Z , &*»/_ ) is not C* -

embedded in C L ^ , A ^ ) . 

Proof. Let f be a function defined on Z as follows: 

f (*) m 0 for # c X , £ C>fv) « 4 . 

Then f is continuous on (2,4.*^.). and it follows from 

Proposition 3 that £ cannot be continuously extended onto 

Proposition 5« There is a diaerate closed countable 

infinite set I in ( L ^ , ^ ^ ) and infinite subsets L, I2c 

c I , l^n 1^ « J? which are not completely separated 

** CL„; *<») . 

Proof• In the same way as in Proposition 3 it can be 

proved that if 

E'-i^lo^ - ( * + \/2,0)} * rational } 

then 

X9 mi<Lt 1 * « A n E f J u f C j ^ <ia)\q0*£n E f } 

is a discrete closed countable infinite subset in CL^^A.^) 

such that X9 and ji> are not completely separated. Put 

I ^ X , I« » X 1 , I » 1^ u 1^ and the assertion is ob-
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viously satisfied. 

Proposition 6, For every discrete closed countable in

finite set I in ( Leo , ft& ) there are infinite aubsets 

L , I« c I which are completely separated. 

Proof* Since I is a discrete closed countable infini

te Bet in (Loo, A«,) it follows that I - (<p,) is infinite 

and for some neighbourhood Q^i^i) of ^ we have 

I - (>fi,) c L ^ - Oĵ  C-ft) , Consequently* there ia an infini

te subset l0 c I such that 10 can be arranged into a 

one-to-one 8equence < x^ > and either 

a) Projection of every x+, lies in t - J , 

or 

b) For some fixed it, every xj, is of the form 

C * J i * 2 ! M } a n d " *'*' -<*<£,*>• J> ia the projec

tion of £4, , then <x^, > la a strictly monotone, say inc-

reasing, sequence of real numbers. 

In both cases, similarly as in tl, pp.414-41?1 ,a con

tinuous function £ on CL«»jA^) can be constructed such 

that 

Proposition 7. Let iLm 9 X&) be a £* -embedded sub-

space of a Fr^chet space CS, 6") . aen ffL^ m L^ • 

Proof. Suppose that, on the contrary, &L& - Lm + 0 • 

Consequently, there is a one-to-one sequence < x ^ > of 

points of hjo and a point x « £ -l,mfXm Zm, ^ . Hence 
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I » U(x^) is a discrete closed countable infinite set in 

C L<3o 9 JI& ) and from Proposition 6 follows the existence 

of a continuous function £ on C L ^ , A ^ ) such that the 

sequence < £Cxm) > does not converge. Since f can be 

continuously extended over S we have a contradiction 

with x m Stim, x^ 

Note. The reader familiar with C23 may have noticed 

that C L ^ O J A ^ ) has the property 4* .Further results con

cerning mutual relations between the property 41, and G* -

embedding of discrete closed countable subspaces of sequen

tial (convergence) spaces are intended to be published el

sewhere. 
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