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SOME PRIMITIVE CLASSES OF LATTICES CLOSED UNDER THE 

FORMATION OF PROJECTIVE IMAGES 

Vdclav SLAVfe, Praha 

Abstract: In this paper it is shown that there exist 
infinitely many primitive classes X of lattices such that 
U K , $**>> C L ) St SMJT ( L') imply L# « X , where 
SUutWL) denotes the lattice of all aublattices of L • 
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A lattice L1 is said to be a projective image of a 

lattice L if there exists an isomorphism of &AAI/(L) onto 

SAAJLT (L* ) , where SuudrCL ) denotes the set of all sub

sets of L closed under both meet and join; AoirCL) is 

a lattice with respect to the set inclusion. G. Gratzer sug

gests (see Cl]f Problem 8) to find primitive classes of lat

tices which are closed under the formation of projective ima

ges. It is known (see [2], £43) that the primitive class of 

all distributive, and the primitive class of all modular lat

tices, as well, has the property mentioned above. The purpose 

of this paper is to show that there exist infinitely many 

primitive classes of lattices closed under the formation of 

projective images. 

Let L and L1 be latticea and let i|r be an isomor-
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phi8io of SAAJITCL) onto SAJJU ( V) . This isomorphism 

induces a b i s e c t i o n if? of L onto L* def ined by 

^ (x ) m y> i f f i | r ( - ( i x } ) = s ^ ^ ? . 

Since the elements x , ty of L are comparable i n L 

( i . e . ^ , / ^ , J s SAA£T(L) i i t has the length, two i n 

SAAJT (L) ) i f and only i f t h e elements ip Cx) p ij? Cry,) 

are comparable i n L* , we have 

Lemma 1. Let M. be a l a t t i c e which i s a s l a t t i c e de

termined by the comparab i l i ty r e l a t i o n uniquely up to i s o 

morphism. Then SAAJT (M.) — &AjJb> (H9) imp l ies 

JI » jr . 

Lemma 2 . Let Jfc be a l a t t i c e which i s as l a t t i c e de

termined by the comparabi l i ty r e l a t i o n uniquely up to i s o 

morphism. Let L and L"* be l a t t i c e s such t h a t SaJtr (L) 

i s isomorphic t o S u & C L ' ) and l e t i l e & o G r ( L ) .Then 

" Jt e JSAAJT CV) . 

Proof/ Let f be an isomorphism of &uJZr C L ) onto 

SAAJT ( LV> . SAAA> CJL ) i s a s u b l a t t i c e of SAJJT CL) 

and if C SAAJZT CJi)) « SAAJT Cyr CM.)) i s isomorphic 

t o SuJlrCH) . By Lemma 1 we ge t t h a t if ( )i ) i s i s o 

morphic to M> , i . e . M € SaJtr C L ' ) . 

Given a l a t t i c e L % we denote by L * a l a t t i c e which 

i s obtained from L by adding exact ly t h r e e elements CK, <£ , 

a* y C i s the smal les t element of L * , i i s the grea

t e s t element of L * and a> i s comparable with no element 

of L .The following Lemma 3 i s evident . 

Lemma 3 . I f a l a t t i c e L i s as l a t t i c e determined by. 
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the comparability relation uniquely up to isomorphism then 

L* has the same property. 

Define two sequences of lattices by the following rules: 

(i) L^ is the five-element non-modular lattice: 

(ii) Jil . is the five-element non-distributive modular lat-

tice; 

(iii) L . * L* and M « Ji* for all m, & 1 . 

It is easy to show that the lattices L̂ j and. H^ are as 

lattices determined by the comparability relation uniquely 

up to isomorphism. By Lemma 3 we can get that the lattices 

L^, M ^ (!iv £ A ) have also this property. Given a lat

tice L , we denote by X ( L ) the class of all lattices 

that contain no sublattice isomorphic to L « -n the paper 

[33 it is proved that the classes X ( L ^ ) and X (L^) r\ 

n X ( -M^) are primitive for all m, as 4 . 

Combining this fact with Lemma 2 we get 

Theorem. The primitive classes X ( L ^ ) and KCL^n 

n X ( jA/n,) (for all m, -£ 4 ) are closed under the forma

tion of projective images. 
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