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NOTES ON RADICAL FILTERS OF IDEALS

Tomé8 KEPKA, Praha

Abstract: Let R be a ring and 1 be a non-empty
set of left ideals of R . Denote by #(M) the radical
filter generated by M .In this paper we give a certain
characterization of (m) .

Key words: Radical filter, hereditary torsion class,
hereditary radical.
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In the following, R will be an associative ring with
unit and the word "module" means a unitary left R -module.
Further, we shall denote by R-mod  the category of all
the X -modules and < (M) will be the set of all sub-
modules in M for any M e R-mod ., Let M = ¥(R) be
a non-empty subset. Consider the following six conditions
for Mm .

(Fp) If IeM,Ke SCR) and I£K , then Xe M .

(Fp) If Ie€M and AeR , then (I:A)=4plpeR ,
preltem .
(Fg) If I,KeM , then TnXeM ,

(F4) If I,XeM, then I.KeM . end
(Fs) If IeM,XeS(R),KS T and (K:A)e MYA el, then XeMm,
(Fg) If I1e M, X e (R) and (K:A)eMVAel, then X M .
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The set M is called a filter (a radical filter) if it
satisfies the conditions (Fy), (F,), (F3) ((F,), (F,),
(Fg)). As it is easy to show, any radical filter satisfies
all the six conditions (F4) ... (Fg). Recall that there is
a one-to-one correspondence between radical filters and

so called hereditary radicals. A hereditary radical is an
arbitrary subfuncter of the identity x having the follo-

wing properties:

@ xMra) = 0VH e R-mod

(II) NV =NAXM) VHeR-mod YNe M) .

If M 1is a radical filter, then the subfunctor x ,
given by L (M) =4{m 1(0:m )e M3 , is a hereditary

radical. Conversely, if x 1is a hereditary radical then
(K/ ) X X : .
{I1I e dR),n Il = /1% is a radical filter. (For the

proof see e.g. [4].) A non-empty class of modules M is
seid to be a hereditary torsion class, if it is closed un-
der submodules, homomorphic images, extensions and direct

i s
sums. In this case, the subfunctor s, x (M) =Ne‘!(M)nmN

is a hereditary radical. Conversely, if x is a hereditary
radical then {MIn (M) = M3 is a hereditary torsion
class. Since the irtersection of any set of radical fil-
ters is a radical filter, we can consider the complete

lattice & (R) of all radical filters of the ring X .
Finelly, denote by X (R) the set of all the subsets

M s $CR)  which satisfy the conditions (E;) and (F,).

It is obvious that X (R) is a sublattice in the lattice
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23“) of all subsets of ¥(R) .

2, If MeR-mod and X e (M) then we denote
by €71CX,M) the set {NINe (M), Xs N} and by
E2(X M) the set <NINe ¢(M), XX  ana ¥x
is essential in K 7 . Further, E3(X,M) will be
E2CK, M) U 4X3

2.1. Lemma. Let M € R-mod and X,L,Ne (M)
be such that X & L ¢ N . Then:

(1) NcSQ(K,M) iff NAX =X implies X=X for
arbitrary X e (M) .

(1) N« €2¢L, M) implies N e £2¢X,M) .

(iii) L e €2(X ,M) implies N e €2¢X,M)

Proof. Obvious.

Before we proceed further, let us introduce the fol-
lowing notation. If M € X ~ mod and £ M e $M) ,
then by f4y we shall mean the hereditary radicel corres-

ponding to the hereditary torsion class, which is genera-

M
ted by all the factor-modules N, N € M ., Further

put A (M) =4SI1SeFM),3me M\S
VYmeM VA eRXR\N(S:m) VNeMm3I&e(N:m) such that
Am € S}% and BM) = Y(MINQALI(M) . Thus

RM)=4S|1Sed M), Vme M\SIme MILeR\(S:m)INe T
such that (N:m ) s (S:Am)} .

2.2..Lemma. Let M e R- mod., Ae $(M) and
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f+Mc S(U), Then Ae AL (M) iff there is m €
e M\ A such that
somg (B/8 , *™*4/4) = 0
for all Ne M and Be TCN, M)
Proof. (i) Let A € A (M) .Then there is m & M\ A
such that (N:m) £ (At A m) for any me M, Ne M

R A
m* 7A is non-

and AeR\NCA:m ), If g@: B/.N'--—b

zero, then g (& + N)=9om +A % 0 for some #e€B and
e€R . Hence pe R\(A:m) and (N: &) € (A:pm) , a

contradiction.

(ii) Let A satisfy the condition of the lemma. If (N:m)g
s(A:Am) for sce NeM and A € R\ (A:m) ;then the

Rm + N Rm+ A
mapping ¢@: N — /A defined by

g(pm + N)=pAm +A Ype€ R , is a non-zero homomor-

phism, a contradiction.

2.3, Lemma. Let M e R-mod , X e (M) and
P4+ Meae SCM) be such that X e B(M) . Then:

(1) Se €2 ¢X, M) , where S/x-nm(M/x) .

. M
(ii) )L,m( /X) %+ 0, provideda M+ X .

Proof. (i) Let m e M\ X be arbitrary. In view
of Lemma 2.2, there is N e M and B.e Y(M) such that

R X
NeB and HmR(B/N, mr /JC)* 0 . Since
(Bmw

B B X
Ib,m( /N) = /N,)om /K) + 0 . However,
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(Rm+K ) Rm+X s s
o /K= /XA~ /K , and consequently /X
is essential in M/JS .
(i) There is m e M\X , and hence (by Lemma 2.2)
B Rm+X
HmR( /N, /K)#:O for some NeM and B €
Rm +X M
¢ €N M) . has O o xp (/K = £, (/x)
2.4. Lemma. Let M€ R-mod, Xe (M) andaf+Ms
€ Y(M) . Then the following are equivalent:
1) X, Aam 4 .
(i) R, M)A QM) % £ .

(iii) There are A¢€3(K,M) and Se€ ¥(M) such that
AgES and xm(s/A)=0

(iv) There are A e 64(}(,}4) and Se (M) such that

AES and );m(s/A) =0 .

"
W x, C/x) Mo

Proof. (i) implies (ii) and (iii) implies (iv) trivi-
ally. (i) implies (iii). Let Ae €3(X,M) A QA (M) . By

Lemma 2.2, there is me M\ A such that

B Xm 4+ A
Ho'm.R( /X, JA) = 0 for all NeM and B e
€ €1(N, N) . From this, one can easily derive
Rm+A Rm+A
)Lm( JA) =0 .Now it is sufficient to put S = mr 74
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Similarly we can prove (ii) implies (iv).

M M s
(iv) implies (v). If {om( /K) = /X , then ;L,m( /A) =

s g
= /A for all A, S e €4<]C,M) such that A s S

(v) implies (i). Assume, on the contrary, that Xe B(7),

and therefore, in view of Lemma 2,3, S e e%x,M) , where
S M
/X = lbm( /J() . Using Lemma 2.3 again, we get
M
)Lm( /S) % 0 , a contradiction.

2.5._Theorem. Let M & S (R) be a non-empty sub-
set. Then F(M)=4{I1le $(R), e'(I,R) € B(MI} =

=4IlIe $R), €XI,R) € BCmM)}

Proof. The theorem follows from Lemma 2.4, since

Femy = i111e 9R), 2, 1) = X1,

2.6. Corollary. A non-empty subset B £ Y(R) is a

radical filter iff it satisfies the following condition:

(Fy) If T« $CR) and YKe€(L,R) Vv ¢ R\K3s &
€cR3AAeRN(X:2)3Le R such that (L:»)s(X:Ax),
then 1e R .

Proof. This corollary is only a transcription of Theo-
rem 2.5.

For a non-empty subset M = Y(R) put C(M) =
11132 eR3KeMm such that (K:A)s 1}t and D(M)=
11lVA eRX\N1 3 peRN (I:N) such that (1:@X) e
e M3
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2.7. Corollary. Let m < 4 (R) be a non-empty
subset. Then F(M)={IlIe $(R), E'(I,R)c HCMN}=

={IlIe¥(R), (I, R) e DCC(MN?
In particular, if M  satisfies (F,) and (F,), then

FM)={I1ENI,R) e DeM)I=SI1EXI,R) s Dem)} .

Proof. The corollary follows from Theorem 2.5, since
B(M) = HC(M)) , as one may check easily.
As a very easy consequence of 2.7 and 2.1 we get the

following well-known result (see [3]).

2.8. Corollary. Let M & ¢(R) be a non-empty sub-
set satisfying (F; ), (F,) and let €*(0,RYES M . Then

F(m) =dm)

2.9. Corollary. Let M & ¢ (R) be a non-empty sub-
set and let # (M) =4I1I1e S(R),IAeR\I3NeM3neR such
that (N:m) € (I;A)} . Then F(M)=<II€NI RINiRI}c
sHmi .

Proof. (i) Let I« #(M), I =R ., Then, by 2.6 (for
n=41), there are meR, A €R\(1:4)=KE\1 ana Ne
eM with ¢CN:m) e (I:2) .

(ii) Let Te $CR  and 4E€CI,RINAR}} 5 2 (M) .

, then obviously T e

Set S/I=;r,m(n/I> . If S=R
e ¥(Mm) ., Suppose S #=R . By the hypothesis, there are

AeR\S,NeM and me€R such that (N:m)s(S:Q).
Thus (S$:4) € F(M) and .?t-o-Sex.m(B'/S)

’ a con=-

R
tradiction since )(.m( /S) = 0
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2.10. Corollary. Let I € Y(R) be a two-sided ide-
el 9: X — 1/1 " be the canonical epimorphism and

R s 3(3./1) be a radical filter. Put ¥ = {K|XK'€ ¥(R),
IeX and @(X)e€R? . Then g(L)e R for all

Le&Cx).
Proof. Let L € F( &) be arbitrary and X € S(RI\{R}

be such that I's X and ¢ (L) € ¢(X) . By 2.9, there

are Ne £, reR =and € e R\X with (N:x) s (X:6).
Since I is a two-sided ideal, I & (N:x) and Is(X:6).
Hence 9 ((N:xN=(pN):oa)) s gUX:6)) = (pK): p(€)) .

However, 9(){) ek and ¢(&) & @(X) . Thus we have pro-

R
vea i€'cg I\ { /iy e ) ;, and therefore

9‘14) s R (by 2.9).

2.11. Corollary. The lattice &£(R) is distributive,
and it is complementary iff R is a semiartinian ring.

Proof. For U, %" e X(R) put U iff FU) =
=X(V) ., Prom 2.9 it is easy to see that @ is a congruen-
ce relation on the lattice % (R) and that

X (R) :
/;D = L(R), If, further, &(R) is complementary,

then the radical filter A which is generated by all ma-
ximal left ideals possesses a complement ', and conse-
quently R = ¥(R) (since AR x{X} implies I'=

= iR} ). For the converse implication suppose that R
is semieartinian and % e £ (R) 1is an element. Denote

VY=4I11e $(R) "is meximal and I e 4 ¥ and
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%=4I11e SCR) is moximal and T ¢ % or I=R3.
Obviously, %, % e X (R). Further, since R is semiar-
tinian, F(?) =% and F(F(U) v F(R)) = (R) .
Finelly, let (%) n F(Z) & {R? . Then there is I e
eFV)A F(Z), I+ R is a maximal left ideal. By 2.9,
(I:A)e X for some A € R\I , However, 1= oA+ <,
where © € R and « € I are suitable, and so I= (I:pd)=
= ((I:A):@)e X . Thus I € £ A ¥, a contradiction.

Let us note here that the preceding corollary was al-
ready proved before in [1] for the case of commuative noe-

therian rings.

3. In this paragraph we generalize some results from
[2] to get a characterization of (M) , where M is a
countable set of two-sided ideals. Let ’IY.L={I,,,12,...? be
a countable subsystem of ¥(R) . A sequence {A,,2A,,..}
of elements from R will be called M -regular if the set
{417, € I;% is infinite for any 4 =4,2,... . Denote
by A (M) the set of all the 1M -regular sequences and
put G (M) = {I1V4iA,N,...3¢ w(MmVeeR 3m =4 such
thet A, .2 poel} .

3.1. Theorem. Let M = {I,,I,,...% be a countable
subsystem of ¥ (R ) . Then:
(i)  G(M) is a radical filter.
(ii) g,cm) s Fim) .

(iii) G (M) = (M) provided every ideal from T is

two-sided.
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Broof. (i) The condition (E,) is obvious. Now (Fp).
Let Te€ G(M) and @ € R be arbitrary. If {A,,R,,.76
€%L(M) and ¢ €eR , then (by the hypothesis) there is
m 24 such that A,..A,e0e 1, ie. d,.. 2, @ €(l:6),
Finally (F;). Let Ie $(R), X e G(M) and (I:se)e § (M)
for each a2 € X , Given {A4,A,,..3e Y (M) and ¢ R,

there is m 24 with A,..2,¢ €X .However, the sequen-

ce {dp, s Mpyaye 3 is also 7 -regular and (I:dy,.-A @€
€ G (M) , Hence there is m = 1 such that Ag,.m, -

...ﬂ-m+4 . 4 G(I:lm---n,,P) and so na-m'*m .oe \ﬂrm oo &4 9 el.

(ii) Suppose, on the contrary, that there exists Ie
€ G (M), I&§(M). Hence (by (Fs)) there is A, @« I ‘such
that (I:2,) ¢ F(M) . Further, Iy nI, € F(M) and
therefore there is A, € I, n I, such that (154, 14) =
=((I:2,4):4,) &€ (M) .. Repeating this argument, we get
a sequence {A,,A,,...} baving the following properties:

(ec) .&és Linln..Al, for every 3=1,2,..,

(B) (T:edy.. ) & F(M)  for every G =4,2,. .

From (e¢) we see that iAy,29,:-.% is an M -regular se-
quence. Hence,by the hypothesis, .ﬂm....ﬂ,,.'f. €]l for some
m 24 , end consequently (I:2,..4,) =R , which is a

contradiction with ().

iii) Obvious, since I. & G ( henever I. is a
C(did ious, I? G (M) when I?
two-sided ideal.

3.2. Corollsry. Let M = {I,,...,I,% be a finite set
of two-sided ideals. Then F(M)=4I1VA,,Ay,... € 1,1 ...
eonly, 3m 2 A such that Mg «+c A, 6 I3 .
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Proof. Denote by ¥ the set defined above. From 3.1

it is obvious that #(M) & J , 1In order to prove the

converse inclusion we need only to observe the following
fact., If {1y, Ap,e 3 @ YL(M) , then there exist 1 &
& Ly< Ly<Xy<.. such that Mé . .11_*.4 .71-,5‘_4 eLn.nl,
for all 4 =41,2,.. .

3.3. Corollary. Let M be a finite set of two-sided
ideals. Then 0 € F(M) iff lﬁml is right T -nil-
€

potent.

(1)

[2]

[3)

[4]

L.

L.

P.
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