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COMMENTATIONES MATHEMATICAE UNIVERS ITATIS CAROLINAE 

15,3 (1974) 

THE TOPOLOGICAL NATURE OP ALGEBRAIC CONTRACTIONS 

Paul CHERENACX, CaDe Town 

Abstract: One ahowa that if c: W — * W/Y ia the 
coequalizer of a constant map and a closed immersion in 
the category of affiae schemes of a countable type over a 
field Jfc- , then, o ia also a topological coequalizer with 
respect to the Zariski topologies. If /fe» E or £ and 
W/V* has. the induced product topology,, than c ia on 
compact balls a topological coequalizer with respect to the 
strong topology on ¥ . Finally^ if. IV^ ia. a closed orbit 

under the action of S on,. W , the group-quoti ent of W by 
G exists if and only if the group quoJtient. of W/WJ-n, by 

<? exiata^ 

Key words: Affine scheme of a countable type over M> 
closed immersion, algebraic contraction, topological coker-
nel, strong open subset, Zariski topology, submersive, in­
variant ideals* 

AMS: 14A15 Ref. 2. 2.741 

§ 0* Introduction* Let M/G be the category of ba­

sed affine schemes of a countable type over a field M, -

The main references here are [21 and C33* 3X CW, ft) is an 

element of M,/G9 W* Sfiee A for some count ably generated 

Jfe algebra A , d e ¥ and Q. = &f&& Jk , Suppose that 

( T, ft ) ia another element of M/G and 

* .• (r, a)-v(w, an 
i s a closed immersion in M/G . This ijnpliaa that V i s 

the zeroes in W of an ideal in A . 
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Then, from [ 2 ] , we know tha t the cokernel of -i, in Jk/G 

i s the map 

ciCW,a>-*cSfi€AOfe+i),r) . 

Definition 1. The map c is called the algebraic 

contraction of V in If • We "write Sfjac (fc+ 1) o Vf/V • 

In this paper, we will demonstrate the following pro­

positions. 

§ 1) Algebraic contractions are surjective. 

§ 2) If c . CW, fi)—> (W/YT Y) ia an algebraic con­

traction, then, as a scheme of countable type over Jk, 9 

W - r is isomorphic to Y/Y - Y • 

§ 3) If e . CIV, S } — * CW/r, r ) is an algebraic con­

traction and "U ia an affine open of 1/f/Y containing 

r , then,, the restriction 

cS ce-' fcu),a)-*cu>r) 
is an algebraic contraction. 

§ 4) c is the topological cokernel of 4, if V} W 

and " W W are endowed with the Zariski topologies. 

Consider the situation when Jk, is € lor 1 ), the 

field of complex numbers (or the field of real numbers). 

Suppose that Jk* has the usual topology. We endow Jk f the 

set theoretic product of Jb, indexed by the natural num­

bers H t with the product topology. Let CWf 0,) be an 

element in M/G . Tf« &fWc A and A has the form 

Jk CX^,.*., X<n,«-.3./3 where 3 is an ideal in the 

polynomial ring M, ZX^} .,• , X^9*.. 3 in a countable num­

ber of variables. Then, "W can be identified with a closed 
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affine subscheme of the affine space Jk 9 and the topo-

legy on W induced by the product topology on A is 

called the product topology on W . 

Now, suppose that C^ , *t-*4,2,..- , are compact 

subsets of W and that C? denotes the interior of C* 

in the product topology. Furthermore, we require that 

1) C c C. A . 

2) C. A - C. U iHi , for some B. e W , is connec-

ted* 

11 W « .U C. . 
**4 * 

In this situation, we make the following definition. 

Definition 2. U is a strong open subset of W (with 

'respect to the C^ ) if and only if H O C ; is open in C^ 

with respect to the product topology, ^ -* 4, 2, ... . The 

collection of strong open subsets of W form a strong to­

pology (with respect to the C^ ). 

§ 5) Suppose that Jh is <T (or R / and that F is 

an affine scheme of finite type over M . If W has the 

product topology and . V (more precisely, V reduced) has 

smooth components, then there is a strong topology on W/Y 

such that 

c : W-+W/Y 

is a topological cokernel. 

We point out the following theorem to be found in Kel­

ly £61, p. 145, which shows that there are substantial dif­

ficulties in extending this result to all elements OV, &) 
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of Jfc/ff . 

16 Theorem. If an infinite number of coordinate spa­

ces are non-compact, then each compact subset of the pro­

duct is nowhere dense. 

Let G be an algebraic group acting on an affine 

scheme 1/f m &fue A of finite type over J*. . Suppose that 

the action of Q on IV is closed and that Jk is algeb­

raically closed. .Che reader is referred to Mumford £83, for 

the notions that we now introduce* Our notation is the 

following: 

i) A is the collection of elements in A inva­

riant under (a • 

ii) R is the collection of (closed) orbits of W 

under the action of G . 

iii) 1^ is the (reduced) defining ideal of Jt, K 

an element of 31 • 

Note that every closed subset of W (Zariski topology) 

contains a maximal ideal M, of A and if At is algeb­

raically closed, an element of A must take on a value in 

Jfc at M . therefore* as one can easily show,. 

A*» no <*,+ I ) . 
it € R * 

We consider ->&,,,**>«, ... > **lWtr • a finite number of 

orbits of G and their union 
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The action of G on W induces an action of <J on the 

algebraic contraction W/Wmi . Furthermore, let W « 

» Sfî c AG
 a-*3 Ci W-—> F

&
 he the map of affine 

schemes induced by the inclusion A —-*• A • We state 

now informally the results to be demonstrated in § 6. Mo­

re precision will be found in § 6. 

§ 6) A categorical quotient (W > c ) of W" by <3f ex­

ists, c is submersive and W* is an affine scheme 

of countable type over M if and only if the correspond­

ing assertion for W/W/nv (instead of W ) is true. 

The section in which the result i) above is proven, 

is § i , -t « 4,2, 3,4, 5,6 . 

§ 1 The sur.iectivity of algebraic contractions 

We use the notation of § 0. Let c*; Jk + 1—*• A be 

the inclusion map of Jk> algebras corresponding to an al­

gebraic contraction c • Suppose that D is a prime ideal 

of Jfe. + I which generates A • Then.,. 

rr 

Л « . 2!. cu. i . 

wћere ^ є D and a>« « A , 

i c I , 

łTłV 

4, 2, ... , <пг . If 

and, thus , J D I , But, I i s maximal in 4 + 1 . This im­

pl ies t h a t I m 3 . As I i s an ideal i n A , i t i s impos­

s ib le t h a t i t generates A . Therefore,, DA i s a (proper) 

ideal of A , and, as 

- 485 -



yncto* i) m 3 

for a minimal prime ideal D* of 3 A f it follows that c 

is surjeetive. 

§ 2. Algebraic contractiona outside points of contrac­

tion 

Again, we use the notation of § 0. Let. 

*-t f ••* f * m i >-•••»• • 

be a generating set of I as an A module. Then. 

w-v« u , s ^ a f ) 
*W**MS* •'W'.U 

where Ar i s the locsJLisatien_of. A a t ^ • Alao^. 

w/v- «cvi ». .u...a^ii£L.cu^^..xi?« > 

where <Jfc + I)x ie the localisatiozL.eX..Je +• I a t £m • 

We mu_Jt show that, under the induced map 

e* r ( A - f l ) ^ - ^ A* , 
"*> T m T"* 

Cfc + D f iaianmorphic to A* aa a ,fe, algebra. 

Clearly* e* i s ma izaectioa*. Snppnaa.trmt 

Cu A 

X m ~ytrL €T A f 

It follows that 

<£-> *n-+4 

belongs to (Jte- + I ) r 
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§ 3 . Affine localizations of algebraic contractions 

are algebraic contractions 

The result promised in § 0 is an immediate consequen­

ce of the next proposition. 

Proposition 1. In the category of countably generated 

M/ algebras, localization preserves equalizers. 

Proof* Let -i i B —> A be the equalizer of f, 9, s 

: A — » B in the category of countably generated Jk> al­

gebras* Suppose, furthermore, that S is a multiplicative 

system in E . We need to ahom that. E$ is the equalizer 

of fs , <%>s ; A s ~ > 3 f o ^ cs. , Note that £•< (S) m 

.-* Of © i C S ) * 

i ) i s : Es—-*• A 5 , the map i local ized .at $ , ia 

infective.* 4,£ (Q,/A>) m 0 implies that -I (a,) /<i Ob) 0 0 . 

There i s an V e S so that i ( V ) i C a ) = 0 . Then, 

-kCVcu) -= 0 and A>*a, s 0 in E g , Hence, o*/fo =. 0 . 

i i ) f o ^ (cv//b)sr c^*^sCa</.>i>) . This i s clear. 

ix i ) Suppose that f s(a,//t>) « o^sCo///t>) . Then there 

i s an >*.*• e S so that 

f o-L ( V ) ( f ( a ) - 0^(0,)) =r 0 . 

Aa f o i C V ) « s . t ^ o i ( V ) , 

Kierefore*. i C V ) « / e E , and 

<*,/-£ (/*>)» -t, CV ) Q, /-£ C/t>/fe') 
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belongs to E g . 

i ) , i i ) , and i i i ) imply Proposition 1. 

§ 4» Algebraic contractions are topological quotients 

with respect to the Zariski topology 

Let It be an open neighborhood of V . We must show 

that cCH) i s open i n W W • As c i s an isomorphism 

outside V ? th is wil l be done i f we show that c ( U ' ) i s 

open in W>T for an open neighborhood "U* of V con­

tained in U . 

"U i s covered by affine opens "Wf « S-fz.ec CAf ) . Aa 

K - U and V have no points in common, 

2 Cf) + I m A . 

Here> <£ Cf ) i s the ideal generated by the £m . Hence, 

A M f + t 

where £ e S C£^> and t c l , But,. 

• cCWf) - ( W / V ) f 

i s open in wVV • As Wf c U and W*f i s a neighbor­

hood of V , we may take IX* s "W . 

§ 5. Algebraic contractions can be topological quo­

t i en t s for appropriate strong topologies 

We reduce to the case when W » ..fe, , m, << oo , J e . « - € 

(or m ) • 
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Consider the diagram 

y _!L-> K/Y 

Лs 

Л^-S-a. ЛГ/V 

where -i* i s induced because of the functor ia l i ty of co-

equalizers. Here, toC* and W have the product topolog­

i e s . Then, i f J i s the ideal of If } <i>* corresponds to 

the natural map 

Sk + I + 3—* (&>+ D/D 
m 

of jk> algebras and is thus a closed immersion. Suppose 

that there are compact subsets C^ of JkT'/Y defining 

a strong topology on Jk/^/Y auch that the algebraic 

contraction c is a topological quotient. A diagram cha­

se shows that 

C. » c\n yf/Y 
•v *& 

are compact subsets of W/Y defining a strong topolo­

gy on TrWV such that c is a topological quotient. 

Hence > we need only show; 

Suppose that Ik is € Cor E. ) and that Jk^ is 

affine m space. If At* has the product topology and V 

is a closed affine subscheme of AC* with smooth compo­

nents, then there is a strong topology on Jk /Y such 

that c ; Jk"*—V Jk^/V is a topological cokernel. 

This result, however, is an easy consequence of the 

next proposition, setting C^ « c (B^) . 

Proposition 2. Let V be a closed affine subscheme 
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of h"*, <** -* co , M, w C (or 18. )* Suppose that Y has 

smooth components and t h a t "S^ i s the closed ba l l of ra­

dius K in .V* .about 0 . I f V " and. >tWy have 

the product topology 

c : мГ '-*- *Г/Y 

гestricts to a topologэ ,cal quotient 

c : V *<**> 

Prgof. Note that 

c : 3 ^ - CYnB^)-^ cCB )̂ - CcCY)) 

i s a homoomorphism. Hence, we are f inished i f we show t h a t 

every open neighborhood U of Y A 3K i s mapped to an 

open neighborhood cCU) of cCY) . 

Y-j, . . . , Y^ wil l he the coiiipoj-ients of Y and 

Y^ wil l have some defining equations 

E1 - ...... - FT*. 0 

where mt-t is an integer bigger than zer_a and 4 £ *i .4 3. . 

We assume, furthermore, that 

my 1 £ /m, 2 £ ...... £ /w£ . 

Sex. 

S a <(./*4fA>29 ...,**£) U ^ / v t ^ /mi ? . 

Then, if, for >b » (*4 ,/b£,••«. ,'.4>3») e S , 

ғ * 
Ä гn

 x
4 *•••• * "> 

and the elementa І of S are enumerated 

^t *
 Љ2 - * • • • > *<m 

/ïй» a- ЯW.'î • /m 2 • ф ... • /m-̂ . * û can. 1 
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where y-4, . . . ? T<rru are integers bigger than zero, and 

where < F ^ ) r \ . . . , ^ ^ , «W,, > ••• b e l ^ 

to I , the ideal of Y , and generate the M* algebra 

*fe + I « Notice t h a t we need to take powers of the 1^, , 

A4tt 6 m, P ®s I need not be reduced; and that the pro­

duct topology on 4 V T i s independent of the genera­

t o r s chosen for M> + I . 

Let Dc » <>x e At I l# I < f 1 ? Ye- be the pro­

duct of 3 c m, times, and 

-ţ.вtfW.-И <Ł « CFe x < , * _ . . , * * ) > 

where Jk. « Je , -l r f m + l m v + 2 , 

Claim: For each P e 3/t, ? there i s an open s e t U* 

containg P with the property: 

If <f > 0 ( t h u s * . . c f e l 1^ there i s a f > 0 such 

t h a t every point of 

c^ff i j flcCTI')) 

l i e s within a (Euclidean) distance <f of Y fill* * 

Assume that the claim i s known. As 3 f t i s compact, 

for each cf > 0 , t h e r e i s a f > 0 such t h a t every 

point of c ^ ( S c f l c ( B ^ ) ) l i e s within a distance cT of 

Y H 3K . I f U i a an open neighborhood of Y f) 3^, and 

3 C li ) i s i t s boundary* l e t 

<f* /mx^-CcUa, ! ' ) I l l e l ^ A Y , X'cBCTI)} . 
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Here, d denotes the. Euclidean, diatanca and. 0 < of**- co 

as both 3Kf\Y and BCli) are compact. Clearly, 

cU<3 f l c < B ^ » c U 

and 

G ft c C S j « c <c^«5f 0 c < ! * » ) 

is open* Hence, the proof of Proposition 2 will be complete 

as soon as the claim is demonstrated^ 

Proof of Claim: 'Consider V e*%K(\Y . The V^ , 

-I =s 4, • •. , #• $ can. he arranged so that 

<L # 

P c *0 Y• and. P 4 O V» for some integer 

ô  sat isfying 4 < <j, t6 £ . By choosing appropriate 

l inear combinations of 

r 4, > • • • • • 1 x- | , ? 

for i z. o + 4 one can guarantee tha t 

T*(?) + 0 

for -i ^ a + 4 and 4 & -ft- 4s rm.h, . Hence, there i s a c lo­

sed (compact) bal l 1LCP) of radius JD araund P such 

that 

F^ra)# 0 

for Q. C I L C P ) , -i 2: q, + 4 and 4 4s jp, £ em<i . Also, i f 

Q ~ mJjn,i\Y?'(&)\ t & c l L C P ) , - l 2 4 t ^ U ^ ^ / m i } ; 

6 > 0 a i L ( ? ) i s compact-. !Qiua., i f for a l l . A e S 

and a c S^CP) , 

i ^ c a > i < ? , 
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then 

lCP^Ca).p££t&>« ... -F.^CQ))^!^ f 

and 

tF;<ca).rfcQ).....F^ca)i-=^/arV©*-4 • 

Hence, we can assume that 

P e A Yi 
and that I is reduced* 

Next, we show that if | is small enough, and S e~ 

# ) For some *i , 4 & -t .6 -g. , 

F . '1ca),F.2ca), . . . ,F"v ica) 

must be small. 

Suppose, for instance, that JJ^, 4 .6 <o. <£ /»i 1 , is not 

small* As 

i^ca>.p*aca). . . . -p£*ca>i * ? • 

ip**ca>. . . . .p f*ca>i 

must be small for (^i,>b2, ... , ^ ) e S . Inductions 

then, implies that one has small values 

for some -i such that 2 £ -t, .£ #. . Otherwise,. F^ is 

small for A £ AA, £ rm. A .in which case ^ ) is true* 

The proof is reduced to the case inhere V has one 

reduced smooth component* 

- 493 -



We select defining equation? R,., F a , . . . , P^, for 7 . 

Iiet & c Sy CP) • For every ^ , 4 it I 6 fíflr can be 

written 

ST* ST* 
F. CJC) - .-J^ (ft)(X,- Q^)+ . . . + ----?- (fl) (Xn- Q,n) + 

higher degree terms 

where X m (X^X^, ... , X^) and ft m CQ^ «2,... , fl^ ) . 

If tj> is small enoughs the higher degree terms can be dis­

regarded. Let 

Ш) 

áЗC. r (61) ŽIl ( Û ) 

җ w ð ţk(Q) 
tMC-

A (ft) • CX- ft) « f i s t i i e equation of the subspace of to 

p a r a l l e l to the tangent space. TCG) t a V a t ft. whose 

distance from TCft) and*.. hanca,,. ft if determined by f . 

The coefficients pf AC ft) are bojtindad aa ft e B» C?) , a 

compact s e t . Therefore, for a given <$* > 0 $ there i s an 

| > 0 sach that a point X in 3 L C ? ) sat is fy ing 

IP^CX) I «c £ for -i » 4, 2 , . . . , /m» must l i e within 

a distance <f of y / l S f < ? ) . Taking U - B ^ P ) , the 

in te r ior of I L C P ) , thft proof i s complete* 

Example 1» If, in Proposition 2, one takes the pro.** 

duct topology on JfcTV'V , c : ^ —> M /Y i s not ne­

cessari ly the topological quotient . Let A -= H and 
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m, -» 2 . Suppose V ia the Y axia* Then, tfae image of 

the open subset 

U - < ( / , < j . ) U < e"^ > 

«-
of .&T under c is not open* For instance, the sequence 

lies outside U but converges to the image of the Y ax­

is under c . 

§ 6* Some geometric invariant theory 

Our notation is that of § 0, First, we collect some 

results which, will be useful. 

Let W S m &rua Afi and c &! W*—> ¥ G be the map 

defined by the inclusion A & — * A . Then,, according to 
(T C 

Mumford LSI, p. 8, a categorical quotient CW , c ) of W" 

by <3 exists and c is submersive when the following 

conditions hold* 

i) If e'j G H W — > W defines the operation of G 

on W and P^ : G x -TIT—.*- W ia the second projection, 

then 

ceo fir „ c * ^ . 

ii) o G is the subsheaf of invariants of 

iii) If X is an invariant cloaed sufaaet of W , 

c**(X) 5a closed in W** 5 if 1^ , i e 1 , form a set 

ef invariant closed subsets of "Hf , then 
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c e ( r \ L ) m tr\ c G <x. ) . 

As in Mumford [83, p»28, one can deduce tha t i i i ) i s implied 

by the re la t ion: 

i i i ' ) y/C % A . ) n A * • v/sl (A.DAG) 
i d - 4 € i ** 

where the. A^ are (3 invariant ideals in A correspon -

ding to the X^ , Note that the radical operation V commu­

tes with A . 

Hext, we restate the first result promised in § 0» 

Proposition 3» Suppose that Wim, is the finite union 

of orbits J t ^ - ^ y . , st,^ of G . A categorical quotient 

(W fc ) Ql W by 6 exists^ c is submersive and W 

is an affine scheme of countable type over A if and only 

if a for the induced action of G on ¥ / ^ , a categorical 

quotient ( f ^ , e^) of W ^ by G exLata.^ c%^ is sub-

aersive and w ^ is an affine scheme of countable type 

over Jk, * Moreover,, if W exists,. W** » W^ . 

Proof* There is a countable subset ft*1 of R such 

that \J JX, is dense in ¥ and H 1 « < « . . A ^JcS", 
it. a R** 

If we write &* • ̂ - f c ^ , .•.,-*$/, ̂ 4 . ^ » .-. * , it fol­

lows that 

A^ » . Г\ CJk, -»• 1. ) 

Define now 
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E a -* &, + (1^ n (Jk+ IH )) 

and r inductively, for each pos i t ive integer <£> > 0 , 

I ) E . . » Jte, + CIu , r l B J . 

Then, for each integer $> > 0 , by means of induction, 

one can prove without d i f f i cu l ty tha t 

I I ) £ . » . n C ie+1- ) . 

Let £ « /""V Cft,+ IA> , Relations X.and I I imply 

* + C I ^ A E ^ ) - ^ a + i ^ ) n c i t + l ^ ) 

for each integer ^ > rm, , the.-order k 1 " being imma­

t e r i a l * Hence, on taking countable in tersect ions , 

A e » 3 S « /O , ( * + L ) . Let c^.W/lrV -* W* be the 

r** 
affine map of schemes defined by the inc .usion A —> 3 . 

For both W and W/W^v , Condition y above i s ob­

viously t r u e . One can derive Condition i i ) for both W 

and ft/Hem, front Proposition 1 . Hence, in order to comple­

t e the proof" of Proposition 3, i t i s necessary to show that 

i i i ' ) i s val id for W i f and only if i t i s valid for 

W/Tflk. . 
rtn 

As Sfwt^ E.£ —•• S - J U A E J ^ has been shown in § 4 to 

be a topological quotient , for each integer £ > 0 , so i s 

the composite 

%&& E1—^ Sfm^E^—-* . . . . . - * Sfiae E ^ . 

Therefore, the map 
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»» *v 

&ţгљ^A-^èщc%Г\ CJfe*I л . ) 
tftV 

-.r\ 
»* s *f 

i s t h e t o p o l o g i c a l q u o t i e n t s h r i n k i n g each Jt* , i> « 

s < , 2 » M , , ^ , t o a p o i n t . Hence-

/WV i fffiř 

ni) j( 2: A.. n ( r w *.•:,.. ..- vls (A.nc.r. c*,+ i ;;; 

6* G 
I n t e r s e c t i n g t h i s l a s t e q u a l i t y wi th £ « A «-. O (Jk, + L ) * 

we discover t h a t /(. .Sj A . ) /1A&» /2g (A . f) AG ) when 
Vex * ^ e l * 

i i i * ) i s v a l i d for W X i ^ . Since every £ i n v a r i a n t i d e ­

a l B* i n B i s of t he form A ' A B fo r some G i nva ­

r i a n t i d e a l A' i n A , t h e v a l i d i t y of i i i * ) for ¥ im­

p l i e s the v a l i d i t y of i i i " ) for " ^ / " H ^ * q . e . d . 
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