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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

15,3 (1974)

THE TOPOLOGICAL NATURE OF ALGEBRAIC CONTRACTIONS

Paul CHERENACK, Cape Town

Abstract: One shows that if ¢: W— W/Y ia the
coequalizer of a constant map and a closed immersion in
the category of affine schemes of & countable type over a
field % , then. ¢ ia alsc a topological coequalizer with
respect to the Zariski topologies. If k=R or C and
WV has the induced praoduct tnpnlogy, then ¢ 1is on
compact balla a topelogical coequalizer with respect to the
strong topology on W . Finally, if W,, is a closed orbit

under the action of § on W, the gruup_qnntun:L of W by
@ exists if and only if the group quatient of W/W,, by

G exiasts.
Ke rds: Affine scheme of a countable type over p %
closed immersion, algebraic contraction, topological coker-

nel, strong open subset, Zariski topology, submersive, in-
varlant ideals.

AMS: 14A15 Ref. Z. 2.741

§ 0. Introduction. Let &/G be the category of ba-
sed affine schemes of a countable type over a field & -
The main references here are [2]1 and [3]. I£ (W, ) is an
element of #/G, W=Spee A  for some countably generated
% algebra A, G €W and B = Spec & ., Suppose that
(Y, 6) is another element of #/G and

4:(Y,6)—> (W, Q)
is a closed immersion in %./G . This implies that YV is

the zeroes in W of an ideal in A .
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Then, from [2], we know that the cokernel of 4 in £/G

is the map

c: (W,8)— (Spec (+1),Y)

Definition 1. The map ¢  is called the algebraic
contraction of V in W . We write Spee (R+I)= WV .

In this paper, we will demonstrate the following pro=-
positions.
§ 1) Algebraic contractions are surjective.
§2) If c¢.(W,8)— (W/V,V) is an algebraic con-
traction, then, as a scheme of countable type over Mk ,
W -7 is isomerphic te WV -7V .
§3) If c. (W,8)— (W/V,V) is an algebraic con-
traction and U is an affine apen of W.,/Y containing
V , then, the restriction

e (e, Q)— (U, V)

is an algebraic contraction.
§4) c is the topological cokernel of 4+ if V, W
and WV are endowed with the Zariski topologies.

Consider the situation when % is € <(or R ), the
field of complex numbers (or the field of real numbers).
Suppose that & has the usual topology. We endow &" y the
set theoretic product of kR indexed by the natural num-
bers N , with the product topology. Let (W, &) be an
element in & ./G . W= Spee A armd A has the form
R LX 0y Xppyeeods D where J 1is an ideal in the
polynomial ring % [ X ,..., X, ,..] 1in a countable num-

ber of variables. Then, W can be identified with a closed
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affine subscheme of the affine space kN , and the topo-
“legy on W  induced by the product topology on L
called the product topology on W .

Now, suppose that C; , 4=4,2,... , are compact
subseéts of W and that C._? denotes the interior of C;

in the product topology. Furthermore, we require that

9] C‘L<:C1.‘_‘_‘1 .

2) ¢  -C U{R3 , for some R €W , is connec-
v+ q +

ted.

0
3); w' ,U C- .
=1 ¥
In this situation, we make the following definition.

Definition 2. U is_ s strong open subset of W (with
‘respect to the C; ) if and only if U NC; is open in (;
with respect to the product topology, 4 = 1,2,... . The
collection of strong open subsets of W form a gtrong to-
polozy (with respect to the C; ).

§ 5) Suppose that & is € (or B . and that W is
an affine scheme of finite type over & . If W has the
product topology and Y (more precisely, V reduced) has
smooth components, then there is a strong topology on WV
such that

c: W> WY

is a topological cokernel.

We point out the following theorem to be found in Kel-
ly [61, p. 145, which shows that there are substantial dif-

ficulties in extending this result to all elements (W, &)
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of /G .
16 Theorem. If an infinite number of coordinate spa-
ces are non-compact, then each compact subset of the pro-

duct is nowhere dense.

Let G be an algebraic group acting on an affine
scheme W= Snec A of finite type over & . Suppose that
the action of & on W is closed and that & is algeb-
raically closed. The reader is referred to Mumford [81, for
the notions that we now introduce. Our notation is the

following:

i) AG is the collection of elements in A inva-
riant under G .

ii) R is the collection of (closed) orbits of W
under the action of G .

iji) I, is the (reduced) defining ideal of x, x
an element of R .

Note that every closed subset of W  (Zariski topology)
contains a maximal ideal M of A and if & is algeb-
raically closed, an element of A must take on a value in

% at M . Therefore, as one can easily shaw,
G
A anR (o +I1,) .

We consider i, ,n,, ..., %, , @& finite number of

orbits of G and their union

m
W, = M e
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The action of 6 on W induces an action of @ on the
algebraic contraction W/W,, . Furthermore, let Wl

= Spec AG and & W—s wC be the map of affine
schemes induced by the inclusion A%— A . We state
now informally the results to be demonstrated in § 6. Mo-
re precision will be found in § 6.

§ 6) A categorical quotient (WG, ) ot w by ¢ ex-
ists, I is submersive and we is an affine scheme
of countable type over & if and only if the correspond-

ing assertion for W/W,, (instead of W ) is true.

The section in which the result i) above is proven,

is§i,4i=1,2,3,4,5,6 .

§ 1 The surjectivity of algebraic contractions

We use the notation of § 0. Let c*: fe+]— A be
the inclusion map of % algebras corresponding to an al-
gebraic contraction ¢ . Suppose that J 1is a prime ideal

of % + I which generates A . Then,
’m .
1=.Z0ds
where 4, €J and e, €A, 1=4,2,..., m . If
tel ,
m .
t =£§1<ta¢‘.’)?¢sJ ,

and, thus, Jo I . But, I is maximal in & + I . This im-
plies that I =J , As I is an ideal in A , it is impos-
sible that it generates A . Therefore, JA 1is a (proper)
ideal of A, and, as .
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PN+ =

for a minimal prime ideal J' of JA , it follows that c

I
is surjective.

§ 2. Algebraic contractions outeide points of contrac-

tion

Again, we use the notation of § 0. Let.
£y, 000, £

> Sre e

be a generating set of I as an A module. Then,
<
mz=A1 ™
where A;m is the localization of A at £, .Also,.
@0
W/YV=-4V}= U Spec (Chet I )
mz S
where MH-I);M is the localization.of e+ 1 at £, .
We must show that, under the induced map
* o,
Cn P (B +D1)p — Ap
(e + Ig is.isomorphic to Ag as a & algebra.
m i
Clearly, o:‘ is an injection, Suppose that
q’ .
X = (—‘F‘;)"" € A{m

It follows that
af

-
(£,

belongs to (f + 1)4. .
m

- 486 -



§ 3 . Affine localizations of algebraic contractions
are algebraic contractions
The result promised in § O is &an immediate consequen-
ce of the next proposition.
Proposition 1. In the category of countably generated

A& algebraa, localization preserves equalizers.

Proof. Let 4 :E— A be the equalizer of £, ¢g:
t A>3 in the category of countably generated & al-
gebras. Suppose, furthermore, that S is a multiplicative
system in F . We need toc show that Eg is the equalizer
of f5,qg i Ag™> Be, sy - Note that fo4 (S)a

= q,ari(S) .
i) 2g:Eg—> Ag , the map 4 iocalized at § ,is
injective. 4g(a/n)=0 implies that 41 (a) 4 (»)=10.

There is an A’ € S so that 4 (A’)41(a)= 0 . Then,

ils'a)=0 and Aa =0 in Eg . Hence, a/sr=10.

ii) £s ° ig (a/r)= ?so—vs(q,//a) . This is clear.

iii) Suppose that fg(a/s) = gg(a/s) . Then there

isan A e S so that

fodi (A)(f(a)=-glad)=0 .
de £foi(a’) = goi(s’),

£(4(s)a) =g (W)a)=0 .
Therefore, 1(»’)a e E , and

s s)m LA ol (as’)

- 487 -



belongs to Es .

i), ii), and iii) imply Proposition 1.

§ 4. Algebraic contractions are topological quotients

with respect to the Zariski topology

Let U be an open neighbarhaod of V . We must show
that ¢(U) 3is open in W./V . As ¢ is an isomorphism
outside V , this will be done if we show that c(U’) is
open in WY for an open neighborhood U’ of V  con-

tained in U .
U is cavered by affine apens W«Fm‘ Shec CAF,,.,,) . As
W-1U and V have no points in common,
§ (fm‘) + 1 = A,
Here, X (£, ) is the ideal generated by the f, . Hence,
m
4 =f+t
where £ e £ (f,) and te I . But,
m
cW) = (W/V ),
is open in W/V. 48 Wy c U and Wy is a neighbor-

hood of V, we may take U’ = %;

§ 5. Algebraic contractions can be tapological quo-
tients for appropriate strong topologies

We reduce to the case when W= k", m < o0 ,k=C
(or R ).
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Consider the diagram

W — Wy

L

=" —c——> XA

where 4’ is induced because of the functoriality of co-
equalizers. Here, %" and W  have the product topolog-
ies. Then, if J is the ideal of W, 4’ corresponds to
the natural map

R+ 1+ —> (R+1D/I
of f& algebras and i; thus a closed immersion. Suppose
that 'l;here are compact subsets C."; of /Y  defining

a strong topology on R™/Y such that the algebraic

contraction ¢' 1is a topological quotient. A diagram cha-

se shows that
C, =C.NW/Y

are compact subsets of W./V defining a strong topolo-
gy on W/V such that ¢ is a topological quotient.

Hence, we need only show:

Suppose that % is € (or R ) and that %™ is
affine m space. If &™ has the product topology and V
is a closed affine subscheme of k" with smooth compo-
nents, then there is a strong topology on &"/V  such
that c¢: A"—s &™/V is a topological cokernel.

This result, however, is an easy consequence of the

next proposition, setting C;= ¢ (3B,) .
Proposition 2. Let V be a closed affine subscheme

~ 489 ~



of Y, m < 0, &= € (or R ). Suppose that ¥ has
smooth components and that E, is the closed ball of ra-
dius x in %™ about 0. If &™ and K™V have
the product topology

c: o"— a™V
restricts to a topological quotient

c: B, — e(B,)

Proof. Note that
e¢:B, - (YNB,)—> °CB_:¢) - (e(V))

is a homcomorphism. Hence, we are finished if we show that
every open neighborhood U of VN 5,‘ is mapped to an
open neighborhoed ¢(U) of (V) .

Viseeon V,-_ will be the componénta of ¥V and

YV,  will have some defining equations

P.1 = ocseees = P:”“‘;- 0
v 4

where m4 is an integer bigger than zerc and 14 4 £ 4 ,
We assume, furthermore, that
mAZme 2 ... z2mg. .
Set .
S=HA(rl,52,...,53) 11 nic mit .
Then, if, for A= (A4,42,...,44) e & ,

M A2

F, = EVF

~3
= EYEP L E

4
and the elements of S are enumerated
Ayy Bgy siee y P s

m=m1.m2+....-m3 . ¢ can be writte
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1

m
yeees (B )™ Gy see )

¥
c=((P,a4)

where 44, ...,7%'m  are integers bigger than zero, and

my
& @ belong

where cr,,ﬂ)“,...,cr% g ) e

to I , the ideal of V , and generate the 4 algebra
% + I . DNotice that we need to take powers of the I, ,

14t ¢m , a8 1 need not be reduced; and that the pro-
duet topology on &™7Y is independent of the genera-

tors chosen for & + I .

Let Dg:{\xekllxlsﬁ'}, Fe be the pro-
duct of _'D? m times and
G§=<}"x<.;‘<’ ;R )

? =M

vhere p ) =k, —'c=rm.+4,m+2,.... .

Claim: For each P e B, , there is an open set U’
containg P  with the property:
If >0 (thus, deR ), thereis a §>0 such

that every point of

c”(Gi Ne(U’))

lies within a (Euclidean) distance J° of VNU’ .

Assume that the claim is known. As B, is compact,

for each & > 0 , there is a § >0 such that every
point of c"’(Gg Ne(By)) lies within a distance d” of

Vﬂ?,,, . If U is en apen neighborhood of ¥ N 3B, and
B(U) is its boundary, let

&= min{d®R,R)IReB, NYV,RecB(UI} .
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Here, d denotes the Buclidean distance and 0 < o' < oo
as both B, NV and B(U) are compact. Clearly,

c"(e'g NecE,Necl

and

Gn ¢ (B,) = e (G N e (E,0)

is open. Hence, the proof of Proposition 2 will be complete
as soon as the claim is demonstrated.

Proof of Claim: ‘Consider Pe B, NV . The V; ,

.

4 =1,.00, 4 can be arranged so that

% #
PeNNvy, and P& U V. for some integer
421 ¥ iag+1 Vv
9, satisfying 1< g & 4 - By choosing appropriate
linear combinations of
1 mi
1R A

for 4 = 9/-.-4 one can guarantee that

?
1~
P_." (P)#+0
for +2q+4 and 4 & f £ mi . Hence, there is a clo-
sed (compact) ball _ﬁ?(P) of redius @ arcund P  such

that
BT ) 0
for &eiP(P),Lqu-i-'f and 1< p € m4i . Also, if
9=mdm-tlrf'(&)llGe§9<P),%ZQ+4,4éaﬁ,emu’,3,

8 >0 a.s:-f?(?) is compact. Thus, if for all A e S

and G € B (B) ,
I, l<g ,
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then
X »2 , phE s
IR €O By Qe s B @NTTI < §

and

1/9%

&1 n2 Ag, e
IETC8) . Fy (@ . s F @< §777/6

Hence, we can assume that
Pe Vs

and that I 1is reduced.

Next, we show that if § is small enough and & €
€ 3(, P,

%) For some 1, 1£&£ 4 £ 34 ,

Yy e, Bl

e

=)

E' ), ¢

4

must be small.

Suppose, for instance, that E:u', 1£ u £ m

, 1is not

small. As
“ »2 b3
I‘E:' (G)»P2 (&)-...'Fé_ (el =< £ >
»2 A3
L’r‘a (€K ""Pé el

must be small for (wm, A2, ... , »3) e S . Induction,

then, implies that one has small values

1 mi
£, ...,

for some 4  such that 2<£4 £ 4 . Otherwise, F,;w is

small for 41 £ «w £ m4 , in which case Xx ) is true.

The proof is reduced to the case where VY has one

reduced smooth component.
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We select defining equations Fy, Fy,...,Fm  for V.
Let 6 = Bo(P) . For every 4 , 141 & m , F; can be

written
8F; oF;
E(X)= o%. Q)X -8 )+ ...+ % @) (X,-6,) +

higher degree terme

where X = (X ,X Xp) anod B=10(6,,8,,... ,8,).

TR
If @ 1is small enough, the higher degree terms can be dis-

regarded. Let

( OF, oF, )

'55?;(&) ....... ‘é‘f;(&)
ACB) = | +ovuenn e e
ok, or,.

. —m (Q)

3)(_1(&) X ] )

ACB) - (X=-Q) = g is the equation of the subspace of £
parallel to the tangent space T(G) to V at @ whose
distance from T(G) and, hence, @ ir determihed by § .
The coefficients of A(Q) are bounded aa Q e fg, (?), a
compact set. Therefore, for a given J > 0 , there is an

§ > 0 such that a point X in ig, (P) satiefying

IF, (01 < § for 4 =4,2,..., m nust lie within
a distance d° of an-B-Q(P) . Teking U -IBQCP) , the
interior of 3@ (P) , the proof is complete.

Exgmple 1, If, in Proposition 2, one takes the pro=
duct topology on &R™/V , ¢: &R"— R/V is not ne-~
cessarily the topological quotient. Let & = R and
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m =2 . Suppose ¥V is the Y axis. Then, the image of
the open subset

U=4Cx,p)lx<e™?}

of &  under ¢ is not open. For instance, the sequence

Xm = Ceﬂm, 1/mm )

lies outside U but converges to the image of the Y ax-

is under ¢ .

§ 6. Some geometric invariant theory

Our notation is that of § O. First, we collect some

results which will be useful.

Let WG = Szru.cAG and <%: W— W€ be the map
defined by the inclusion A®— A . Then, according to
Mumford [8], p. 8, a categorical quotient (WG, e®) ot W

G

by G exists and ¢ is submersive when the following

econditions hold.

i) If 6€: G xW—> W definea the operation of G
on W and F, : G xW—> W isa the second projection,

then

CGG & = QG ° ?l .
ii) o9,,G  is the subsheaf of invariants of

=w
G
c*(gw) .

iii) If X 4is an invariant closed subset of W ,
e®(X) $u closed in WG; if X, ,1 el , form a set

c¢f invariant closed subsets of W , then
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Cenx = N Sex) .
el ¥ iel \J

As in Mumford [8], p.28, one can deduce that iii) is implied
by the relation:

G G
iii”) \/(_z1 AVNA = ‘/E:: (A,NAD)
+€

Y
bd

where the. A; are G invariant ideals in A correspon -
ding to the X, . Note that the radical operation v
tes with N .

commu~

Next, we restate the first result promised in § O.

Proposition 3. Suppose that W,, is the finite unien

of orbits s,,/,,.. , L, Oof G . A categorical quotient
. &

(WG,cG) of W by G exists, ¢® is submersive and W

is an affine scheme of countable type over A& if and only

if, for the induced action of G on W/ Wy, , a categorical

quotient (We ¢S ) of W,, by € exista, ¢ is sub-

G
mersive and W, is an affine scheme of countable type

over % , Moreover, if WG exists, WG: wﬂi .

Proof. There is a countable subset R” of R

such
that U » is dense in W and R'=4n_,k_, ... 1 _3cR".
n eR” 472 Tm

If we write R"=dn Mo, eeey Sy, Xy gyeee B, it fol-
ilows that

G <o

A = ‘f\(h+1& Yy .

v=1 A

Define naow
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By =+ (Iy, N(R+I,)0) '
and , inductively, for each positive integer 4 >0 ,

Then, for each integer 4 > 0 , by means of anduction,

one can prove without difficulty that

4
I1) B, =, (1,0 -

Let 3B = nQR‘ (% +1,). Relationa I and IT imply
~”
2 + (InéﬂEm) = .0 (R +In,)N (k-n-I,t#)
for each integer 4 >m , the order in R" being imma-
teriel. Hence, on taking countable intersections,

A =3 )L/;R".(h +1,.) . Let cﬁn:W)Wm W be the

affine map of schemes defined by the inc .usion Ae——) B.

For both W and W.”W,, , Conditien  above is ob-
viously true. One can derive Condition ii) for both W
and W/W,, from Proposition 1. Hence, in order to comple-
te the proof-of Proposition 3, it is necessary to show that

iii”) is valid for W if and only if it is valid for

w/W,, .
A8 Spee Ej —> Smee E; , has been shown in § 4 to
be a topological quotient, for each integer 4 > 0 , so is

the composite
Spee E,—> SpecE,— ... —> Smee E,,

Therefore, the map
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avy
Spec A—> Spee N\ (S+ Iy )
4= ~
is the topological quotient shrinking each ny;, 4=

= 4’2,_,,,m , to a point. Hence

4€1l

”m
1) KB AN (A (eI, V= VS (A NCA o+ I, 00 .
der v iaa " v Ast ~

G
Intersecting this last equality with B =AG= fﬁk' (h-r-I,pl y
ke R"
we discover that V(= A.) NA = V= (A, nA%) when
+4€r * el v

iii’) is valid for W.”W,, .Since every & invariant ide-
al B’ in B is of the form A’ NB for some G  inva-
riant ideal A’ in A , the validity of iii’) for W im-
plies the validity of iii’) for W.W,, . q.e.d.
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