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Abstract: A proof is given of a factorization theorem
in Banach algebra modules based on the induction theorem.
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Recently, V. Ptdk obtained a theorem of the closed
graph type, the so called induction theorem [3],[4],[5]
which gives an abstract deacription of results based on suc-
cessive approximations, among others, the factorization theo-
rem in Banach algebra modules. It is the purpose of this re-
mark to strengthen the main result of [3]. Similar results
have been obtained also by other authors (see e.g. [1],[2]);
however it seems interesting to give a proof based on the
induction theorem which puts into evidence the essence of
the approximation process; the induction theorem yields the

result immediately.

First of all, we recall some formulations and princip-
les following [ 5). Given a positive number n and a set M
in a metric.space (E,d ), we denote by U (M, n) =
={y eE; dlgy M<nr?t. Let {ARIIre(0,t) bea
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family of subsets of T . We define the limit A(0) as fol-

lows:

Ay =N (U A" .
O<chnét néh

The following principle is called

The Induction Theorem. Let (E,ol) be a complete met-

ric space, let @ be a non-negative function defined on the
interval T=(0,t> transforming T into itself and such
that
Ed=n+awr(n)+arlwin) +a(w (w ()))+ ...

is finite for esch s e (0,t) , Let {Z(x)3rne(0,t> be a fa-
mily of subsets of E .

If ZwW)e U(Z(w(x)),n) for each x € (0,t) then

Z(rx)e UCZ(0), &(x))

for each x g (0,t) .

Definition. Let A be a Banach algebra and F Dbe a
Banach space which is an A -module. We shall say that F pos-
sesses an approximate unit of order 3 if, for each e€> 0 s
each x € P and @ 8 A there exists an e e A, lel £ (3
such that lex -xl<e, lea ~al<e .

Theorem. Let A be a Banach algebra and F be a Banacp
space which is en A -module. Let B be the unital Banach al-
gebra deduced from A . Suppose that F possesses an approxi.
mate unit of order (3 -

Then, for each 4 ¢ P and every e >0 , there exist
elements x € P and o €A such that

az = %
with lal& f, 2e(By)” , lz-gl<e .
Proof. Denote by G(B) the set of all invertible ele-

ments of B , Let ¢ >0 be given, let &« be a positive
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number, o < (3 + 4)"' , Consider the complete metric space
AxP with a distance function given by the norm | (@, %)=
= max (lal, (ce)"Ix1) . We define, for each x € (0,45,
the set Z(n)c AxT as follows:

Z(n) =<Ca,2); lal&B(1-n), (+&)e G(B)
for some |6l& n and z =(a + &)y ¥ .

We intend to show that Z(x)e U(Z((4-x)x,x) for
each s € (0,41 .In other words, for each (a,z)e Z(x) ,we
shall find an e e A, lel & so that
d+6' € @(B) with d=a+x6e, 6'=(41-c)& and

K+ &)y e+ )y lancce .
Set = e+ (1-c) . Since I-1=ccle-4l<4 we have

HeBGB) and &= B (4-4)"2 & (Cl-eN™ . Ve
mz=0 mz0

have, for each ¢ e A ,

o™ - Mele x lle-Nels (- (B 4407

Further, o'+ 6'= o +6& = & (&2 4+ 6) . The ele-
ment o'+ 6°e G(B) if and only if & Ta + 6 « G(B) .
But we have X Ma + 6-(a +8)=(8"-1)a . Since the
set G(B) is open and the mapping q —» e~? is continu-
ous in B(B) it follows that we can find e e A sgo that
& 'a + € G(B) and 1 (8 Ta+6)> - (as+e)'l<
< (2 1b"‘npl)'4 ”n ot & . Moreover, we can choose e 80
that \(b"’-'ﬂ«y lexece(21Ca+6)713"" as well. We
have then
e+ 8" - (a+ 67" | = 1 (B ar8) 0y - (a+ 87y l&
1t ar 670~ (a4 8 oyl lar ) 0y -
—(a+8) gl &\ (ra + 821 - (ax BRI P
+lla+ )N (" Igplenace .
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Finally, the element (0,4 ) belongs to Z(4) and by

the induction theorem (0,4) e 2(1)cU(Z2(0),6(1)) , i.e.

100, )~{(a,z) <& (1) = -:? for some (a,z) e Z(0) ., It

follows that lal£ f3, z e (BA‘.)"’ and (we)ig-zl< P

and the proof is complete.
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